首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The nucleus accumbens is involved in different types of emotional learning, ranging from appetitive instrumental learning to Pavlovian fear conditioning. In previous studies, we found that temporary inactivation of the nucleus accumbens blocked both the acquisition and expression of conditioned fear. This was not due to altered dopaminergic activity as we have also found that intra-nucleus accumbens infusions of the dopamine agonist amphetamine do not affect either the acquisition or the expression of conditioned fear. Therefore, in the present study we examined whether cholinergic activity in the nucleus accumbens is involved in the acquisition and expression of conditioned fear. Specifically, the effect of intra-nucleus accumbens infusions of the unselective cholinergic agonist carbachol on the acquisition and expression of conditioned fear was assessed. Across several experiments, we measured fear to visual and acoustic conditioned stimuli and to the experimental context. Further, two different measures of conditioned fear were recorded: fear potentiation of startle and freezing. Intra-nucleus accumbens carbachol infusions disrupted acquisition as well as expression of conditioned fear, regardless of the modality of the fear-eliciting stimulus or of the specific measure of conditioned fear. This disruption of conditioned fear was not simply a by-product of enhanced motor activity which also occurred after intra-nucleus accumbens carbachol infusions. Interestingly, despite the substantial effect of intra-nucleus accumbens carbachol on expression of conditioned fear, the results of the final experiment suggest that these rats extinguish similarly to control rats. Taken together, the present results indicate that acetylcholine within the nucleus accumbens is important for the learning and retrieval of conditioned fear.  相似文献   

2.
Vital microdialysis studies on Sprague–Dawley rats using HPLC showed that performance of a conditioned reflex fear response was accompanied by an increase in the extracellular level of citrulline (a coproduct of nitric oxide synthesis) in the nucleus accumbens. Administration of the dopamine D2 receptor antagonist raclopride (10 μM) into the nucleus accumbens decreased the magnitude of the increase in the extracellular citrulline level in this structure during performance of the conditioned reflex fear response but had no effect on its behavioral measures (the level of freezing). Doses increased investigative activity in a novel context which had been inhibited by acquisition of the conditioned reflex fear response, without affecting the investigative behavior of control animals. These data suggest that the dopaminergic input and dopamine D2 receptors control the activity of the NO-ergic system of the nucleus accumbens during performance of the conditioned reflex fear response and may control “transfer” of fear to another behavioral situation.  相似文献   

3.
Central dopamine (DA) activity is thought to play a role in fear motivation. The aim of the present study was to assess the involvement of DA D1 receptors in emotional learning. The authors report that peripheral and intraamygdalar administration of the specific D1 receptor antagonist SCH 23390 blocked the acquisition of fear-potentiated startle. Analysis of shock reactivity during footshock administration revealed that the learning impairment could not be explained by a diminution in the aversive properties of the unconditioned stimulus. Additionally, systemic and intraamygdalar injection of SCH 23390 did not alter fear expression as measured with the shock sensitization of acoustic startle. The potential contribution of mesoamygdaloid DA to the acquisition and retrieval of conditioned fear responses is discussed.  相似文献   

4.
Dopamine transmission within the nucleus accumbens has been implicated as a neurochemical substrate of associative learning processes. It has been suggested that the acquisition of classically conditioned fear to a specific environment, or context, differs fundamentally from the development of conditioned fear to a discrete stimulus, such as a light or a tone. In this study, we assessed extracellular dopamine in the rat nucleus accumbens shell and core during the expression of a conditioned fear response. Animals were aversively conditioned to either a context or a tone and extracellular dopamine was measured in the nucleus accumbens shell and core by in vivo microdialysis over the next 2 days as animals were returned first to the conditioning chamber (day 1: context test), and subsequently as animals were again returned to the chamber and presented with the conditioned tone stimulus (day 2: tone test). Dopamine levels in the core were significantly higher in the Context-Shock group compared to the Tone-Shock group during the 30-min exposure to context while dopamine levels in the nucleus accumbens shell did not differ significantly during the context test between groups. In contrast, extracellular dopamine in the shell but not the core of Tone-Shock animals increased significantly during presentation of the tone. Dopamine in both the shell and core remained unchanged during the tone test in the Context-Shock groups.These data suggest distinct roles for shell and core dopamine transmission in the expression of a conditioned emotional response. While dopamine increased in the shell primarily during the presentation of a discrete tone conditioned stimulus, core dopamine responded more to a contextual conditioned stimulus. These results may reflect differences in either the type of information acquired or the salience of the learned associations which are formed to a context vs. a discrete tone cue.  相似文献   

5.
The effect of lesions of the amygdala on fear-potentiated startle using an auditory conditioned stimulus (CS) was evaluated, after replicating and extending previous findings that a tone is an effective CS for fear-potentiated startle. Rats received 10 tone-shock pairings on 2 successive days. At 24-48 hr following training, they received bilateral electrolytic lesions of the central nucleus of the amygdala or sham operations, and then were tested for fear-potentiated startle 4-5 days later. Lesions of the amygdala impaired fear-potentiated startle using an auditory CS, consistent with the previous findings using a visual CS. These data indicate that the effect of lesions of the amygdala on fear-potentiated startle is not specific to one sensory modality, consistent with the hypotheses that the amygdala is involved in processing multimodal information related to conditioned fear, or is part of an output pathway for motor and autonomic expressions of conditioned fear.  相似文献   

6.
Latent inhibition describes a process by which pre-exposure of a stimulus without consequence retards the learning of subsequent conditioned associations with that stimulus. It is well established that latent inhibition in rats is impaired by increased dopamine function and potentiated by reduced dopamine function. Previous evidence has suggested that these effects are modulated via the meso-accumbens dopamine projections. We have now undertaken three experiments to examine this issue directly, especially in the light of one study in which latent inhibition was reported to be unaffected by direct injection of amphetamine into the accumbens. Latent inhibition was studied using the effect of pre-exposure of a tone stimulus on the subsequent formation of a conditioned emotional response to the tone. 6-Hydroxydopamine-induced lesions of dopamine terminals in the nucleus accumbens resulted in potentiation of latent inhibition. Bilateral local injections of the dopamine antagonist haloperidol into the nucleus accumbens (0.5 microg/side) before conditioning also potentiated latent inhibition. Moreover, such injections were able to reverse the disruptive effect of systemic amphetamine (1mg/kg, i.p.) on latent inhibition. Bilateral local injection of amphetamine (5 microg/side) into the nucleus accumbens before conditioning was able to disrupt latent inhibition, provided that it was preceded by a systemic injection of amphetamine (1mg/kg) 24h earlier.We conclude that the attenuation of latent inhibition by increased dopamine function in the nucleus accumbens is brought about by impulse-dependent release of the neurotransmitter occurring at the time of conditioning. The previously reported failure to disrupt latent inhibition with intra-accumbens amphetamine is probably due to impulse-independent release of dopamine. The implications of these conclusions for theories linking disrupted latent inhibition to the attentional deficits in schizophrenia, and to the dopamine theory of this disorder, are discussed.  相似文献   

7.
Fear-potentiated startle in the rat is a measure of conditioned fear that is blocked by lesions of the central nucleus of the amygdala. In a companion study, Rosen, Hitchcock, Sananes, Miserendino, and Davis (1991) demonstrated a direct anatomical projection from the central nucleus to the brainstem startle reflex circuit. In the present study, fear-potentiated startle was blocked by lesions that interrupted this pathway at 3 different levels or by a crossed lesion that interrupted the pathway at its source on one side and at a more caudal level on the other side. Although synaptic relays have not been ruled out entirely, the data suggest that the direct projection from the central nucleus of the amygdala to the startle circuit mediates the expression of fear-potentiated startle. These findings are consistent with the literature indicating that efferent projections from the central nucleus to various brainstem structures are involved in the expression of several conditioned fear responses.  相似文献   

8.
Extracellular dopamine contents in the caudate nucleus, nucleus accumbens, and prefrontal cortex of the rat brain were measured during two sessions of extinction of an acoustic startle reaction – each consisting of ten sound stimuli, the two sessions separated by 24 h – with simultaneous recording of freezing behavior. The results demonstrated a decrease in extracellular dopamine levels in the caudate nucleus and an increase in the nucleus accumbens during both sessions of extinction, with return to initial immediately after sessions ended. During the second session, the amplitude of startle responses and the magnitude of changes in dopamine levels in both structures were significantly smaller than during the first session. Between the sessions, dopamine levels in the caudate nucleus remained constant, while those in the nucleus accumbens decreased. The prefrontal cortex showed increases in dopamine levels during both sessions of extinction, as well as between the two sessions. The amplitude of the startle reaction was found to correlate with dopamine levels in the prefrontal cortex after the end of the corresponding extinction session and with the dopamine level before the start of the second session. The freezing time before the start of sound stimulation in the second session, this being a measure of conditioned fear, correlated with the dopamine level in the caudate nucleus on the training day and with the dopamine level in the nucleus accumbens before the start of the second session. The role of the dopaminergic system in the mechanisms forming and realizing the various components of defensive behavior are discussed.  相似文献   

9.
Yang YL  Su YW  Ng MC  Chang CL  Lu KT 《Neuroscience letters》2005,383(1-2):145-150
Extract of Ginkgo biloba EGb 761 has been used in the treatment of various common geriatric complaints including vertigo, short-term memory loss, hearing loss, lack of attention, vigilance and cerebral vascular disorder. Recent results suggest that it can serve as a cognitive enhancer and anti-stress buffer. It raises a possibility that EGb 761 may be involved in the fear conditioning. In this study, we used fear-potentiated startle (FPS) to evaluate the possible effects of EGb 761 on the acquisition stage of fear conditioning. Our results showed that administration of EGb 761 30 min prior to the conditioning facilitated acquisition of conditioned fear in a dose dependent manner. No significant differences had been observed in either basal startle response or shock activity. These results indicated that the facilitation effect of EGb 761 was not the result of impaired basal startle response or enhanced pain perception. Subsequent control experiment results indicated that the facilitation effect of EGb 761 on the acquisition was not due to anxiogenic effect or non-specific effect. Our data present the first evidence that EGb 761 can enhance fear memory formation rather than serve as an anti-stress buffer.  相似文献   

10.
Recent data from developing rats suggest that structures downstream from the amygdala are involved in the acquisition of conditioned fear-potentiated startle (FPS). The authors tested this idea in adult rats by temporarily inactivating the structure critical for FPS, the caudal pontine reticular nucleus (PnC), during fear conditioning. When the conditioned stimulus (CS) was an odor, rats displayed freezing, but not FPS, at test. This effect was not due to a decrease in footshock sensitivity. Further, no savings were evident on retraining. When the CS was a light, inactivation of the PnC had no effect on the acquisition of FPS. Thus, the PnC may be crucial for the acquisition of conditioned FPS to an odor, but not a light.  相似文献   

11.
Injections of neuropeptide S (NPS) into the lateral ventricle induce a strong hyperactivity. Since most behavioral paradigms are dependent of spontaneous locomotor activity, this makes it difficult to interpret the role of NPS in such paradigms. The aim of the present experiment was to investigate the effects of NPS in fear-potentiated startle, a behavioral fear paradigm which we believe is less sensitive to general changes in locomotor activity. Furthermore, NPS was directly injected into the amygdala, the central site of the neural fear circuitry. Our data shows that intra-amygdala NPS injections dose-dependently block the expression of conditioned fear and that this effect is independent of NPS effects on locomotor activity. This strongly supports a crucial role of amygdaloid NPS in conditioned fear.  相似文献   

12.
The fear-potentiated startle paradigm, in which the amplitude of the startle reflex is enhanced in the presence of a stimulus previously paired with footshock, was used to measure aversive conditioning after intra-amygdala infusion of the competitive N-methyl-D-aspartate (NMDA) receptor antagonist DL-2-amino-5-phosphonopentanoic acid (AP5). Infusion of 2.5 micrograms/side AP5 immediately before five noise-footshock pairings on each of 2 consecutive days dose-dependently blocked acquisition or consolidation of auditory fear-potentiated startle, consistent with previous results from our laboratory obtained with a visual stimulus. Somatosensory or auditory transmission deficits do not appear to be induced by intra-amygdala AP5 because rats reacted normally to footshocks and showed reliable potentiated startle expression after pretesting AP5 infusion at a dose that blocked acquisition. Together with earlier reports, these data suggest that an NMDA-dependent process localized in or near the amygdala may be necessary for the acquisition of conditioned fear across different sensory modalities.  相似文献   

13.
14.
Deposits of the retrograde tracer Fluoro-Gold into the ventrolateral nucleus reticularis pontis caudalis labeled neurons in the deep layers of the superior colliculus/mesencephalic reticular formation (deep SC/Me). To test the involvement of this area in the fear-potentiated startle effect, rats were implanted with cannulas into the deep SC/Me and trained for fear-potentiated startle after infusion of the GABA(A) agonist muscimol (0.1 microg/0.5 microl). Two days later, they were tested for fear-potentiated startle. Rats then received a 2nd training session without any infusions, and 2 days later they were reinfused with muscimol (0.1 microg/0.5 microl) and tested for fear-potentiated startle. Local infusion of muscimol into the deep SC/Me completely blocked the expression but not the acquisition of fear-potentiated startle. These results indicate that a synapse in the midbrain is critical for the expression of fear-potentiated startle.  相似文献   

15.
Pretraining intra-amygdala infusions of the NMDA receptor antagonist. D,L-AP5, block fear-potentiated startle in rats tested 24+ hr after training. This may reflect a failure of either acquisition or retention. To evaluate these alternatives, rats were tested for fear-potentiated startle during fear conditioning (30 light-shock pairings [0.6 mA shock]), as well as 1-30 min and 48 hr after fear conditioning. Amygdala lesions abolished fear-potentiated startle at all train-test intervals. Intra-amygdala AP5 infusions (25 nmol/side) abolished fear-potentiated startle during the long-term test and had partial effects at shorter train-test intervals. When the level of fear-potentiated startle during the short-term test was lowered to that of the 48-hr test (i.e., by training rats with a lower, 0.3 mA footshock), AP5 abolished fear-potentiated startle at each timepoint. Thus, amygdala NMDA receptors appear to participate in the initial acquisition of fear memories.  相似文献   

16.
The fear-potentiated startle paradigm has been used with great success to examine conditioned fear in both rats and humans. The purpose of the present experiment was to extend the authors' previous findings and further validate the fear-potentiated startle paradigm in mice. In Experiments 1 and 2, C57BL/6J mice were given Pavlovian fear conditioning with either an auditory or a visual conditioned stimulus. Similar to data collected with rats, fear-potentiated startle was observed for both stimulus modalities. In Experiment 3, posttraining lesions of the amygdala disrupted fear-potentiated startle in both conditioned stimulus modalities. These data are consistent with amygdala lesion studies in rats and suggest that fear-potentiated startle in mice requires an intact amygdala. Together, these results extend the authors' previous results and provide the basis for using this well-understood behavioral paradigm for examining the molecular mechanisms of conditioned fear in transgenic and knockout mice.  相似文献   

17.
Dopaminergic activity during Pavlovian or instrumental learning in key target regions of the mesotelencephalic dopamine system was investigated immunohistochemically using antibodies raised against glutaraldehyde-conjugated dopamine. Experiment 1 examined dopamine immunoreactivity during acquisition of a Pavlovian conditioned-approach response. Observations were taken at three stages of learning: initial, intermediate and asymptotic; each with a conditioned stimulus+ (CS+) group for whom visual or auditory stimuli immediately preceded an unconditioned stimulus (sucrose), and a conditioned stimulus- (CS-) group for whom stimuli and the unconditioned stimulus were unpaired. Animals learned to approach the alcove during CS+ presentations, whilst approach behaviour of the CS- group remained low. In general, target regions exhibiting a dopaminergic reaction responded maximally during the intermediate stage of acquisition, and were less responsive initially, and not responsive at all at asymptote. Specifically, the pattern of dopaminergic response was: shell more than core of the nucleus accumbens; prefrontal cortex, central and basolateral nuclei of the amygdala also significantly responsive. Mediodorsal and laterodorsal striatal regions were reactive only very early in training. Experiment 2 examined dopaminergic reaction following acquisition of a novel conditioned instrumental response. The conditioned response+ (CR+) group responded at a much higher rate on the lever for which unconditioned stimulus-associated stimuli were presented, than on the control lever. The conditioned response- (CR-) group responded at a low rate on both levers. In contrast with experiment 1, the most responsive regions were the core of the nucleus accumbens, medial prefrontal cortex and basolateral area of the amygdala. Thus, the acquisition, but not expression of Pavlovian associations activated dopamine within several key target regions of the mesotelencephalic dopamine system, and preferentially within the shell rather than core of the nucleus accumbens. By contrast, acquisition of a novel instrumental response preferentially activated the core of the nucleus accumbens, and basolateral area of the amygdala. These data carry significant implications for the potential role of these regions in learning and memory.  相似文献   

18.
Fear conditioning studies have demonstrated the critical role played by the amygdala in emotion processing. Although all lesion studies until now investigated the effect of adult-onset damage on fear conditioning, the current study assessed fear-learning abilities, as measured by fear-potentiated startle, in adult monkeys that had received neonatal neurotoxic amygdala damage or sham-operations. After fear acquisition, their abilities to learn and use a safety cue to modulate their fear to the conditioned cue, and, finally, to extinguish their response to the fear conditioned cue were measured with the AX+/BX- Paradigm. Neonatal amygdala damage retarded, but did not completely abolish, the acquisition of a learned fear. After acquisition of the fear signal, four of the six animals with neonatal amygdala lesions discriminated between the fear and safety cues and were also able to use the safety signal to reduce the potentiated-startle response and to extinguish the fear response when the air-blast was absent. In conclusion, the present results support the critical contribution of the amygdala during the early phases of fear conditioning that leads to quick, robust responses to potentially threatening stimuli, a highly adaptive process across all species and likely to be present in early infancy. The neonatal amygdala lesions also indicated the presence of amygdala-independent alternate pathways that are capable to support fear learning in the absence of a functional amygdala. This parallel processing of fear responses within these alternate pathways was also sufficient to support the ability to flexibly modulate the magnitude of the fear responses.  相似文献   

19.
This series of experiments was designed to reexamine the ontogenetic emergence of the fear-potentiated startle response in rats. Previous results (Hunt, Richardson, & Campbell, 1994) indicated that potentiated startle to a light conditioned stimulus (CS) paired with an acoustic unconditioned stimulus (US) was not observed until 30 days of age. In the present experiments, subjects were given pairings of a light CS with a brief footshock unconditioned stimulus (US) and were tested for fear-potentiated startle 24 hr later. Subjects 23 and 30 days of age exhibited significant potentiated responding in the presence of the light, while 17-and 20-day-olds did not. Subjects 17 days of age did reliably express conditioned decreases in heart rate to the light at the 24-hr test. The failure to observe fear-potentiated startle at the youngest age was shown not to be due to a general disruption of conditioned fear responding by either (a) pretest startle stimulus presentations or (b) contextual characteristics of the startle testing apparatus. The capacity to express fear through a potentiated startle response develops later than the capacity for other defensive responses in the rat.  相似文献   

20.
Daily administration of psychomotor stimulants in a distinctive environment can impart on the environment stimulantlike properties. Rats injected with amphetamine (0.75 mg/kg, sc) daily for 5 days exhibited a robust unconditioned locomotor response, measured in photocell cages, and showed a conditioned locomotor response when treated with saline on the 6th day. This conditioned locomotor response was found to be significantly attenuated by 6-hydroxydopamine (6-OHDA) lesions of the nucleus accumbens when the lesion was made either pre- or postconditioning. Similarly, although rats with 6-OHDA lesions of the nucleus accumbens exhibited a robust supersensitive unconditioned locomotor hyperactivity in response to apomorphine (0.1 mg/kg, sc), they did not show a conditioned response on the test day. These results suggest that the mesolimbic dopamine system may be responsible for both the unconditioned and conditioned locomotor responses to psychomotor stimulant drugs. Further, conditioned locomotion depends on a critical interaction between the physiological release of presynaptic dopamine and occupation of postsynaptic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号