首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gamma‐hydroxybutyrate acid (GHB) is a recreational drug with a high addictive potential. Severe side effects such as GHB‐induced coma are common and linked to increased emergency room attendances. Task‐based functional‐imaging studies have revealed an association between the regular use of GHB and multiple GHB‐induced comas, and altered neurocognitive function. However the effects of multiple GHB‐induced comas and regular GHB‐use on intrinsic brain connectivity during rest remain unknown. The study population consisted of 23 GHB‐users with ≥4 GHB‐induced comas (GHB‐Coma), 22 GHB‐users who never experienced a GHB‐induced coma (GHB‐NoComa) and 24 polydrug users who never used GHB (No‐GHB). Resting‐state scans were collected to assess resting‐state functional‐connectivity within and between the default mode network (DMN), the bilateral central executive network (CEN) and the salience network (SN). The GHB‐NoComa group showed decreased rsFC of the right CEN with a region in the anterior cingulate cortex (pFWE = 0.048) and decreased rsFC between the right CEN and the DMN (pFWE = 0.048) when compared with the No‐GHB group. These results suggest that regular GHB‐use is associated with decreased rsFC within the right CEN and between the right CEN and the DMN. The presence of multiple GHB‐induced comas is not associated with (additional) alterations in rsFC.  相似文献   

2.
Some intrinsic connectivity networks including the default mode network (DMN) and executive control network (ECN) may underlie social anxiety disorder (SAD). Although the cerebellum has been implicated in the pathophysiology of SAD and several networks relevant to higher-order cognition, it remains unknown whether cerebellar areas involved in DMN and ECN exhibit altered resting-state functional connectivity (rsFC) with cortical networks in SAD. Forty-six patients with SAD and 64 healthy controls (HC) were included and submitted to the baseline resting-state functional magnetic resonance imaging (fMRI). Seventeen SAD patients who completed post-treatment clinical assessments were included after group cognitive behavior therapy (CBT). RsFC of three cerebellar subregions in both groups was assessed respectively in a voxel-wise way, and these rsFC maps were compared by two-sample t tests between groups. Whole-brain voxel-wise regression was performed to examine whether cerebellar connectivity networks can predict response to CBT. Lower rsFC circuits of cerebellar subregions compared with HC at baseline (p < 0.05, corrected by false discovery rate) were revealed. The left Crus I rsFC with dorsal medial prefrontal cortex was negatively correlated with symptom severity. The clinical assessments in SAD patients were significantly decreased after CBT. Higher pretreatment cerebellar rsFC with angular gyrus and dorsal lateral frontal cortex corresponded with greater symptom improvement following CBT. Cerebellar rsFC circuits involving DMN and ECN are possible neuropathologic mechanisms of SAD. Stronger pretreatment cerebellar rsFC circuits involving ECN suggest potential neural markers to predict CBT response.  相似文献   

3.
In schizophrenia, consistent structural and functional changes have been demonstrated for the insula including aberrant salience processing, which is critical for psychosis. Interactions within and across default mode and central executive network (DMN, CEN) are impaired in schizophrenia. The question arises whether these 2 types of changes are related. Recently, the anterior insula has been demonstrated to control DMN/CEN interactions. We hypothesized that aberrant insula and DMN/CEN activity in schizophrenia is associated with an impaired dependence of DMN/CEN interactions on anterior insular salience network (SN) activity. Eighteen patients with schizophrenia during psychosis and 20 healthy controls were studied by resting-state-fMRI and psychometric examination. High-model-order independent component analysis of fMRI data revealed spatiotemporal patterns of synchronized ongoing blood-oxygenation-level-dependent (BOLD) activity including SN, DMN, and CEN. Scores of functional and time-lagged connectivity across networks’ time courses were calculated. Connectivity scores and spatial network maps were compared between groups and related with patients’ hallucination and delusion severity. Spatial BOLD-synchronicity was altered in patients’ SN, DMN, and CEN, including decreased activity in the right anterior insula (rAI). Patients’ functional connectivity between DMN and CEN was increased and related with hallucinations severity. Importantly, patients’ time-lagged connectivity between SN and DMN/CEN was reduced, and decreased rAI activity of the SN was associated with both hallucinations and increased functional connectivity between DMN and CEN. Data provide evidence for an aberrant dependence of DMN/CEN interactions on anterior insular SN activity, linking impaired insula, DMN, CEN activity, and psychosis in schizophrenia.Key words: schizophrenia, psychosis, anterior insula, salience network, default mode network, central executive network  相似文献   

4.
Large‐scale brain networks play a prominent role in cognitive abilities and their activity is impaired in psychiatric disorders, such as schizophrenia. Patients with 22q11.2 deletion syndrome (22q11DS) are at high risk of developing schizophrenia and present similar cognitive impairments, including executive functions deficits. Thus, 22q11DS represents a model for the study of neural biomarkers associated with schizophrenia. In this study, we investigated structural and functional connectivity within and between the Default Mode (DMN), the Central Executive (CEN), and the Saliency network (SN) in 22q11DS using resting‐state fMRI and DTI. Furthermore, we investigated if triple network impairments were related to executive dysfunctions or the presence of psychotic symptoms. Sixty‐three patients with 22q11DS and sixty‐eighty controls (age 6–33 years) were included in the study. Structural connectivity between main nodes of DMN, CEN, and SN was computed using probabilistic tractography. Functional connectivity was computed as the partial correlation between the time courses extracted from each node. Structural and functional connectivity measures were then correlated to executive functions and psychotic symptom scores. Our results showed mainly reduced structural connectivity within the CEN, DMN, and SN, in patients with 22q11DS compared with controls as well as reduced between‐network connectivity. Functional connectivity appeared to be more preserved, with impairments being evident only within the DMN. Structural connectivity impairments were also related to executive dysfunctions. These findings show an association between triple network structural alterations and executive deficits in patients with the microdeletion, suggesting that 22q11DS and schizophrenia share common psychopathological mechanisms. Hum Brain Mapp 38:2177–2189, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

5.
BackgroundThere is considerable evidence of dysconnectivity within the default-mode network (DMN) in schizophrenia, as measured during resting-state functional MRI (rs-fMRI). History of childhood trauma (CT) is observed at a higher frequency in schizophrenia than in the general population, but its relationship to DMN functional connectivity has yet to be investigated.MethodsCT history and rs-fMRI data were collected in 65 individuals with schizophrenia and 132 healthy controls. Seed-based functional connectivity between each of 4 a priori defined seeds of the DMN (medial prefrontal cortex, right and left lateral parietal lobes, and the posterior cingulate cortex) and all other voxels of the brain were compared across groups. Effects of CT on functional connectivity were examined using multiple regression analyses. Where significant associations were observed, regression analyses were further used to determine whether variance in behavioral measures of Theory of Mind (ToM), previously associated with DMN recruitment, were explained by these associations.ResultsSeed-based analyses revealed evidence of widespread reductions in functional connectivity in patients vs controls, including between the left/right parietal lobe (LP) and multiple other regions, including the parietal operculum bilaterally. Across all subjects, increased CT scores were associated with reduced prefrontal-parietal connectivity and, in patients, with increased prefrontal-cerebellar connectivity also. These CT-associated differences in DMN connectivity also predicted variation in behavioral measures of ToM.ConclusionsThese findings suggest that CT history is associated with variation in DMN connectivity during rs-fMRI in patients with schizophrenia and healthy participants, which may partly mediate associations observed between early life adversity and cognitive performance.  相似文献   

6.
《Clinical neurophysiology》2020,131(5):1021-1029
ObjectiveThe functional connectivity of the brain in chronic pancreatitis (CP) remains unknown. This study aimed to investigate functional connectivity in CP patients using resting state functional magnetic resonance imaging (fMRI) and explore the associations to clinical parameters and altered cerebral metabolites.MethodsSeed-based and ROI-to-ROI analyses were performed to assess connectivity within and between the default mode network (DMN) and salience network (SN). Additionally, functional connectivity in these networks were investigated in relation to clinical parameters (CP etiology, pain, medication, etc.) and cerebral glutamate/creatine level in the anterior cingulate cortex.ResultsThirty CP patients and 23 healthy controls were analyzed. CP patients showed hyper-connectivity in DMN and SN as compared to healthy controls. Furthermore, CP patients had reduced anti-correlated functional connectivity between DMN and SN (all P ≤ 0.009). The altered DMN connectivity correlated to glutamate/creatine level (r = 0.503, P = 0.020) in patients with pain, but not to the clinical parameters.ConclusionsCP patients had altered functional connectivity within and between brain networks. Altered DMN functional connectivity had an association to cerebral metabolic changes.SignificanceAltered functional connectivity in CP share similarities with other chronic pain conditions, and support our understanding of altered brain circuitry associated with the CP disease.  相似文献   

7.
The salience network (SN) serves to identify salient stimuli and to switch between the central executive network (CEN) and the default‐mode network (DMN), both of which are impaired in Alzheimer's disease (AD)/amnestic mild cognitive impairment (aMCI). We hypothesized that both the structural and functional organization of the SN and functional interactions between the SN and CEN/DMN are altered in normal aging and in AD/aMCI. Gray matter volume (GMV) and resting‐state functional connectivity (FC) were analyzed from healthy younger (HYC) to older controls (HOC) and from HOC to aMCI and AD patients. All the SN components showed significant differences in the GMV, intranetwork FC, and internetwork FC between the HYC and HOC. Most of the SN components showed differences in the GMV between the HOC and AD and between the aMCI and AD. Compared with the HOC, AD patients exhibited significant differences in intra‐ and internetwork FCs of the SN, whereas aMCI patients demonstrated differences in internetwork FC of the SN. Most of the GMVs and internetwork FCs of the SN and part of the intranetwork FC of the SN were correlated with cognitive differences in older subjects. Our findings suggested that structural and functional impairments of the SN may occur as early as in normal aging and that functional disconnection between the SN and CEN/ DMN may also be associated with both normal aging and disease progression. Hum Brain Mapp 35:3446–3464, 2014. © 2013 Wiley Periodicals, Inc .  相似文献   

8.
BACKGROUNDOver the past decade, resting-state functional magnetic resonance imaging (rs-fMRI) has concentrated on brain networks such as the default mode network (DMN), the salience network (SN), and the central executive network (CEN), allowing for a better understanding of cognitive deficits observed in mental disorders, as well as other characteristic psychopathological phenomena such as thought and behavior disorganization.AIMTo investigate differential patterns of effective connectivity across distributed brain networks involved in schizophrenia (SCH) and mood disorders. METHODSThe sample comprised 58 patients with either paranoid syndrome in the context of SCH (n = 26) or depressive syndrome (Ds) (n = 32), in the context of major depressive disorder or bipolar disorder. The methods used include rs-fMRI and subsequent dynamic causal modeling to determine the direction and strength of connections to and from various nodes in the DMN, SN and CEN.RESULTSA significant excitatory connection from the dorsal anterior cingulate cortex to the anterior insula (aI) was observed in the SCH patient group, whereas inhibitory connections from the precuneus to the ventrolateral prefrontal cortex and from the aI to the precuneus were observed in the Ds group. CONCLUSIONThe results delineate specific patterns associated with SCH and Ds and offer a better explanation of the underlying mechanisms of these disorders, and inform differential diagnosis and precise treatment targeting.  相似文献   

9.
BackgroundProblem solving therapy (PST) and “Engage,” a reward-exposure” based therapy, are important treatment options for late-life depression, given modest efficacy of antidepressants in this disorder. Abnormal function of the reward and default mode networks has been observed during depressive episodes. This study examined whether resting state functional connectivity (rsFC) of reward and DMN circuitries is associated with treatment outcomes.MethodsThirty-two older adults with major depression (mean age = 72.7) were randomized to 9-weeks of either PST or “Engage.” We assessed rsFC at baseline and week 6. We placed seeds in three a priori regions of interest: subgenual anterior cingulate cortex (sgACC), dorsal anterior cingulate cortex (dACC), and nucleus accumbens (NAcc). Outcome measures included the Hamilton Depression Rating Scale (HAMD) and the Behavioral Activation for Depression Scale (BADS).ResultsIn both PST and “Engage,” higher rsFC between the sgACC and middle temporal gyrus at baseline was associated with greater improvement in depression severity (HAMD). Preliminary findings suggested that in “Engage” treated participants, lower rsFC between the dACC and dorsomedial prefrontal cortex at baseline was associated with HAMD improvement. Finally, in Engage only, increased rsFC from baseline to week 6 between NAcc and Superior Parietal Cortex was associated with increased BADS scores.ConclusionThe results suggest that patients who present with higher rsFC between the sgACC and a structure within the DMN may benefit from behavioral psychotherapies for late life depression. “Engage” may lead to increased rsFC within the reward system reflecting a reconditioning of the reward systems by reward exposure  相似文献   

10.
IntroductionPrevious studies of herpes zoster (HZ) have focused on acute patient manifestations and the most common sequela, postherpetic neuralgia (PHN), both serving to disrupt brain dynamics. Although the majority of such patients gradually recover, without lingering severe pain, little is known about life situations of those who recuperate or the brain dynamics. Our goal was to determine whether default mode network (DMN) dynamics of the recuperative population normalize to the level of healthy individuals.MethodsFor this purpose, we conducted resting‐state functional magnetic resonance imaging (fMRI) studies in 30 patients recuperating from HZ (RHZ group) and 30 healthy controls (HC group). Independent component analysis (ICA) was initially undertaken in both groups to extract DMN components. DMN spatial maps and within‐DMN functional connectivity were then compared by group and then correlated with clinical variables.ResultsRelative to controls, DMN spatial maps of recuperating patients showed higher connectivity in middle frontal gyrus (MFG), right/left medial temporal regions of cortex (RMTC/LMTC), right parietal lobe, and parahippocampal gyrus. The RHZ (vs HC) group also demonstrated significant augmentation of within‐DMN connectivity, including that of LMTC‐MFG and LMTC‐posterior cingulate cortex (PCC). Furthermore, the intensity of LMTC‐MFG connectivity correlated significantly with scoring of pain‐induced emotions and life quality.ConclusionFindings of this preliminary study indicate that a disrupted dissociative pattern of DMN persists in patients recuperating from HZ, relative to healthy controls. We have thus provisionally established the brain mechanisms accounting for major outcomes of HZ, offering heuristic cues for future research on HZ transition states.  相似文献   

11.
《Clinical neurophysiology》2021,132(9):2191-2198
ObjectiveTo explore whether abnormal thalamic resting-state functional connectivity (rsFC) contributes to altered sensorimotor integration and hand dexterity impairment in multiple sclerosis (MS).MethodsTo evaluate sensorimotor integration, we recorded kinematic features of index finger abductions during somatosensory temporal discrimination threshold (STDT) testing in 36 patients with relapsing-remitting MS and 39 healthy controls (HC). Participants underwent a multimodal 3T structural and functional MRI protocol.ResultsPatients had lower index finger abduction velocity during STDT testing compared to HC. Thalamic rsFC with the precentral and postcentral gyri, supplementary motor area (SMA), insula, and basal ganglia was higher in patients than HC. Intrathalamic rsFC and thalamic rsFC with caudate and insula bilaterally was lower in patients than HC. Finger movement velocity positively correlated with intrathalamic rsFC and negatively correlated with thalamic rsFC with the precentral and postcentral gyri, SMA, and putamen.ConclusionsAbnormal thalamic rsFC is a possible substrate for altered sensorimotor integration in MS, with high intrathalamic rsFC facilitating finger movements and increased thalamic rsFC with the basal ganglia and sensorimotor cortex contributing to motor performance deterioration.SignificanceThe combined study of thalamic functional connectivity and upper limb sensorimotor integration may be useful in identifying patients who can benefit from early rehabilitation to prevent upper limb motor impairment.  相似文献   

12.
Wilson’s disease (WD) is an autosomal recessive metabolic disorder characterized by cognitive, psychiatric and motor signs and symptoms that are associated with structural and pathological brain abnormalities, in addition to liver changes. However, functional brain connectivity pattern of WD patients remains largely unknown. In the present study, we investigated functional brain connectivity pattern of WD patients using resting state functional magnetic resonance imaging. Particularly, we studied default mode network (DMN) using posterior cingulate cortex (PCC) based seed functional connectivity analysis and graph theoretic functional brain network analysis tools, and investigated the relationship between the DMN’s functional connectivity pattern of WD patients and their attention functions examined using the attention network test (ANT). Our results demonstrated that WD patients had altered DMN’s functional connectivity and lower local and global network efficiency compared with normal controls (NCs). In addition, the functional connectivity between left inferior temporal cortex and right lateral parietal cortex was correlated with altering function, one of the attention functions, across WD and NC subjects. These findings indicated that the DMN’s functional connectivity was altered in WD patients, which might be correlated with their attention dysfunction.  相似文献   

13.
BackgroundThe unusual sensations of restless legs syndrome/Willis–Ekbom disease (RLS/WED) are induced by rest or a low arousal state with a circadian variation in the threshold for induction. It has been suggested that the emergence of RLS/WED symptoms relates to abnormal brain functions dealing with internally generated stimuli. The purpose of this study was to investigate the changes in the default mode network (DMN) in RLS/WED subjects.MethodsSixteen drug-naïve, idiopathic, RLS/WED subjects, and 16 age-matched and gender-matched healthy subjects were scanned in an asymptomatic resting state. A comparison of the DMN was conducted between the two groups. Resting state functional magnetic resonance imaging (MRI), Korean versions of the International RLS scale, and other sleep questionnaires were used.ResultsThe results showed reductions in the DMN connectivity in the left posterior cingulate cortex, the right orbito-frontal gyrus, the left precuneus, and the right subcallosal gyrus of the RLS/WED subjects. The DMN connectivity was increased in sensory-motor-associated circuits, which included the right superior parietal lobule, the right supplementary motor area, and the left thalamus. In addition, the connectivity between the DMN and thalamus was negatively correlated with that in the orbito-frontal gyrus and the subcallosal gyrus in the subjects.ConclusionsThe results showed disturbances of the DMN in RLS/WED subjects that influence the thalamic relay sensory-motor-associated circuit. These findings may underscore the fact that RLS/WED subjects have disturbances in default mode network functions involving internal stimuli in the resting state. This may be related to compensatory changes to maintain resting.  相似文献   

14.
ABSTRACT

Purpose and Method: This study examined functional connectivity of the default mode network (DMN) and examined brain–behavior relationships in a pilot cohort of children with chronic mild to moderate traumatic brain injury (TBI). Results: Compared to uninjured peers, children with TBI demonstrated less anti-correlated functional connectivity between DMN and right Brodmann Area 40 (BA 40). In children with TBI, more anomalous less anti-correlated) connectivity between DMN and right BA 40 was linked to poorer performance on response inhibition tasks. Conclusion: Collectively, these preliminary findings suggest that functional connectivity between DMN and BA 40 may relate to longterm functional outcomes in chronic pediatric TBI.  相似文献   

15.
Although regional brain abnormalities underlying spatial working memory (SWM) deficits in schizophrenia have been identified, little is known about which brain circuits are functionally disrupted in the SWM network in schizophrenia. We investigated SWM-related interregional functional connectivity in schizophrenia using functional magnetic resonance imaging (fMRI) data collected during a memory task that required analysis of spatial information in object structure. Twelve schizophrenia patients and 11 normal control subjects participated. Patients had SWM performance deficits and deficient neural activation in various brain areas, especially in the high SWM load condition. Examination of the covariation of regional brain activations elicited by the SWM task revealed evidence of functional disconnection between prefrontal and posterior visual association areas in schizophrenia. Under low SMW load, we found reduced functional associations between dorsolateral prefrontal cortex (DLPFC) and inferior temporal cortex (ITC) in the right hemisphere in patients. Under high SWM load, we found evidence for further functional disconnection in patients, including additional reduced functional associations between left DLPFC and right visual areas, including the posterior parietal cortex (PPC), fusiform gyrus, and V1, as well as between right inferior frontal cortex and right PPC. Greater prefrontal-posterior cortical functional connectivity was associated with better SWM performance in controls, but not in patients. These results suggest that prefrontal-posterior functional connectivity associated with the maintenance and control of visual information is central to SWM, and that disruption of this functional network underlies SWM deficits in schizophrenia.  相似文献   

16.
ObjectiveTo examine changes in functional connectivity of the default mode network (DMN) that are induced by sleep deprivation, and to identify individual differences that contribute to the vulnerability of the brain's response to sleep deprivation.MethodsUsing functional magnetic resonance imaging, we scanned 51 healthy young subjects during the resting state. Of these participants, 28 were scanned following 24 h of sleep deprivation, and 23 age- and education-matched control subjects were scanned after being well rested.ResultsIndependent component analysis was conducted to identify the DMN. Unlike previous studies that consider the DMN as one homogeneous network, the present study found a dissociable effect of sleep deprivation on two subsystems of the DMN. Functional connectivity within the dorsal DMN decreased; this was correlated with longer response times in a psychomotor vigilance task (PVT). An enhanced functional connectivity was found within the ventral DMN as well as between two subsystems, after sleep deprivation. In addition, between-subsystems connectivity was positively correlated with working memory and negatively correlated with the response time of PVT, suggesting a possible compensatory effect of enhanced communication across two subsystems.ConclusionsThe present findings suggest a dissociable effect of sleep deprivation on functional connectivity in the DMN. Lower functional connectivity in dorsal DMN was related to impairments of basic cognitive function. Notably, working memory was positively correlated with the putative compensatory enhanced functional connectivity across two subsystems, which in turn correlated with behavioral performance after sleep deprivation; this suggests that good working memory may play a protective role in sleep deprivation.  相似文献   

17.
Brain structural and functional development, throughout childhood and into adulthood, underlies the maturation of increasingly sophisticated cognitive abilities. High-level attentional and cognitive control processes rely on the integrity of, and dynamic interactions between, core neurocognitive networks. The right fronto-insular cortex (rFIC) is a critical component of a salience network (SN) that mediates interactions between large-scale brain networks involved in externally oriented attention [central executive network (CEN)] and internally oriented cognition [default mode network (DMN)]. How these systems reconfigure and mature with development is a critical question for cognitive neuroscience, with implications for neurodevelopmental pathologies affecting brain connectivity. Using functional and effective connectivity measures applied to fMRI data, we examine interactions within and between the SN, CEN, and DMN. We find that functional coupling between key network nodes is stronger in adults than in children, as are causal links emanating from the rFIC. Specifically, the causal influence of the rFIC on nodes of the SN and CEN was significantly greater in adults compared with children. Notably, these results were entirely replicated on an independent dataset of matched children and adults. Developmental changes in functional and effective connectivity were related to structural connectivity along these links. Diffusion tensor imaging tractography revealed increased structural integrity in adults compared with children along both within- and between-network pathways associated with the rFIC. These results suggest that structural and functional maturation of rFIC pathways is a critical component of the process by which human brain networks mature during development to support complex, flexible cognitive processes in adulthood.  相似文献   

18.
Objective/backgroundObstructive sleep apnea (OSA) patients experience hypoxia and, potentially, autonomic impairments stemming from neural damage. In this study, the executive control networks (ECNs), salience networks (SNs), and default mode networks (DMNs) of adult OSA patients, as well as their relationships with autonomic impairment, were investigated through independent component analysis (ICA).Patients/methodsA total of 41 OSA patients and 19 healthy controls volunteers were recruited and subjected to polysomnography to ascertain their degree, if any, of sleep apnea. Each participant also underwent a cardiovascular autonomic survey, with the participant's baroreflex sensitivity (BRS) being determined based on heart rate and blood pressure alterations. The resting fMRI data of the participants was separated using probabilistic ICA, and six autonomic resting-state networks were established for group comparisons. The differences in autonomic parameters, autonomic functional connectivity (FC), and clinical severity were then correlated.ResultsThe OSA group had significantly worse BRS values than the controls, as well as lower FC in the posterior and anterior SNs, bilateral ECNs, and the ventral DMN, and higher FC in the left ECN. These intrinsic connectivity networks showed dissociable correlations with greater baroreflex impairment and clinical disease severity. The higher FC in the left ECN was associated with the lower FC in the ventral DMN.ConclusionsOur findings suggest that autonomic dysfunction in OSA might be accompanied by central autonomic network alterations. The stronger sympathetic-associated regions in ECNs and the weaker parasympathetic-associated regions in DMNs may represent intrinsic neural architecture fluctuations underlining their consequent processes in OSA.  相似文献   

19.
Altered striatocortical functional connectivity has been suggested to be a trait marker of schizophrenia spectrum disorders, including schizotypal personality. In the present study, we examined the association between schizotypal personality traits and striatocortical functional connectivity in a sample of healthy adults. The German version of the Schizotypal Personality Questionnaire was obtained from N = 111 participants recruited from the general public. Resting‐state functional magnetic resonance imaging scans were acquired at 3T. Six striatal seed regions in each hemisphere were defined and striatocortical resting‐state functional connectivity (rsFC) as well as its lateralization indices was calculated. Regression analysis showed that schizotypy scores, especially from the positive dimension, were positively correlated with rsFC between ventral striatum and frontal cortex and negatively associated with rsFC between dorsal striatum and posterior cingulate. No significant associations were found between negative dimension schizotypy and striatocortical rsFC. We also found positive correlations between schizotypy total scores and lateralization index of right dorsal caudate and right rostral putamen. In conclusion, the present study extends previous evidence of altered striatocortical rsFC in the schizophrenia spectrum. The observed associations resemble in part the alterations observed in psychotic patients and their relatives, providing support for dimensionality from schizotypal personality to the clinical disorder. Hum Brain Mapp 39:288–299, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
BackgroundEpigenetic variation in the serotonin transporter gene (SLC6A4) has been shown to modulate the functioning of brain circuitry associated with the salience network and may heighten the risk for mental illness. This study is, to our knowledge, the first to test this epigenome–brain–behaviour pathway in patients with anorexia nervosa.MethodsWe obtained resting-state functional connectivity (rsFC) data and blood samples from 55 acutely underweight female patients with anorexia nervosa and 55 age-matched female healthy controls. We decomposed imaging data using independent component analysis. We used bisulfite pyrosequencing to analyze blood DNA methylation within the promoter region of SLC6A4. We then explored salience network rsFC patterns in the group × methylation interaction.ResultsWe identified a positive relationship between SLC6A4 methylation levels and rsFC between the dorsolateral prefrontal cortex and the salience network in patients with anorexia nervosa compared to healthy controls. Increased rsFC in the salience network mediated the link between SLC6A4 methylation and eating disorder symptoms in patients with anorexia nervosa. We confirmed findings of rsFC alterations for CpG-specific methylation at a locus with evidence of methylation correspondence between brain and blood tissue.Limitations: This study was cross-sectional in nature, the sample size was modest for the method and methylation levels were measured peripherally, so findings cannot be fully generalized to brain tissue.ConclusionThis study sheds light on the neurobiological process of how epigenetic variation in the SLC6A4 gene may relate to rsFC in the salience network that is linked to psychopathology in anorexia nervosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号