首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Next-generation sequencing was used to investigate 9 rare Chinese pedigrees with rare autosomal recessive neurologic Mendelian disorders. Five probands with ataxia-telangectasia and 1 proband with chorea-acanthocytosis were analyzed by targeted gene sequencing. Whole-exome sequencing was used to investigate 3 affected individuals with Joubert syndrome, nemaline myopathy, or spastic ataxia Charlevoix-Saguenay type. A list of known and novel candidate variants was identified for each causative gene. All variants were genetically verified by Sanger sequencing or quantitative polymerase chain reaction with the strategy of disease segregation in related pedigrees and healthy controls. The advantages of using next-generation sequencing to diagnose rare autosomal recessive neurologic Mendelian disorders characterized by genetic and phenotypic heterogeneity are demonstrated. A genetic diagnostic strategy combining the use of targeted gene sequencing and whole-exome sequencing with the aid of next-generation sequencing platforms has shown great promise for improving the diagnosis of neurologic Mendelian disorders.  相似文献   

2.
Whole genome sequencing (WGS) improves Mendelian disorder diagnosis over whole exome sequencing (WES); however, additional diagnostic yields and costs remain undefined. We investigated differences between diagnostic and cost outcomes of WGS and WES in a cohort with suspected Mendelian disorders. WGS was performed in 38 WES-negative families derived from a 64 family Mendelian cohort that previously underwent WES. For new WGS diagnoses, contemporary WES reanalysis determined whether variants were diagnosable by original WES or unique to WGS. Diagnostic rates were estimated for WES and WGS to simulate outcomes if both had been applied to the 64 families. Diagnostic costs were calculated for various genomic testing scenarios. WGS diagnosed 34% (13/38) of WES-negative families. However, contemporary WES reanalysis on average 2 years later would have diagnosed 18% (7/38 families) resulting in a WGS-specific diagnostic yield of 19% (6/31 remaining families). In WES-negative families, the incremental cost per additional diagnosis using WGS following WES reanalysis was AU$36,710 (£19,407;US$23,727) and WGS alone was AU$41,916 (£22,159;US$27,093) compared to WES-reanalysis. When we simulated the use of WGS alone as an initial genomic test, the incremental cost for each additional diagnosis was AU$29,708 (£15,705;US$19,201) whereas contemporary WES followed by WGS was AU$36,710 (£19,407;US$23,727) compared to contemporary WES. Our findings confirm that WGS is the optimal genomic test choice for maximal diagnosis in Mendelian disorders. However, accepting a small reduction in diagnostic yield, WES with subsequent reanalysis confers the lowest costs. Whether WES or WGS is utilised will depend on clinical scenario and local resourcing and availability.Subject terms: Genetics research, Genetic testing, Medical genomics  相似文献   

3.
4.
Arteriovenous malformations (AVMs) are vascular lesions in which an overgrowth of blood vessels of varying sizes develops with one or more direct connections between the arterial and venous circulation. We performed a retrospective review of a cohort of 54 patients with AVMs referred to our clinical genomic laboratory for high-depth next-generation sequencing (NGS) panel of Disorders of Somatic Mosaicism (DoSM). Thirty-seven of 54 patients were female (68.5%). Among the 54 cases, 37 (68.5%) cases had pathogenic and/or likely pathogenic (P/LP) variants identified, two cases (3.7%) had variants of uncertain clinical significance, and the remaining 15 cases (27.8%) had negative results. MAP2K1 variants were found in 12 cases, followed by eight cases with KRAS variants and seven with TEK variants, and the remainder being identified in several other genes on the panel. Among the 37 positive cases, 32 cases had somatic alterations only; the remaining five cases had at least one germline P/LP variant, including four cases with PTEN and one with RASA1. Of note, two cases had the unexpected co-existence of two P/LP variants. In summary, this study illustrated the molecular diagnostic yield (68.5%) of this cohort of patients with a clinical indication of AVMs by our high-depth DoSM NGS panel.  相似文献   

5.
6.
《Genetics in medicine》2023,25(9):100880
PurposeAdoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions.MethodsProbands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design.ResultsA total of 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses (P < .001). Yield was greater for GS vs TGPs in Hispanic/Latino(a) (17.2% vs 9.5%, P < .001) and White/European American (19.8% vs 7.9%, P < .001) but not in Black/African American (11.5% vs 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS.ConclusionGS may yield up to twice as many diagnoses in pediatric patients compared with TGP testing but not yet across all population groups.  相似文献   

7.
Patients with dystonia are particularly appropriate for diagnostic exome sequencing (DES), due to the complex, diverse features and genetic heterogeneity. Personal and family history data were collected from test requisition forms and medical records from 189 patients with reported dystonia and available family members received for clinical DES. Of them, 20.2% patients had a positive genetic finding associated with dystonia. Detection rates for cases with isolated and combined dystonia were 22.4% and 25.0%, respectively. 71.4% of the cohort had co-occurring non-movement-related findings and a detection rate of 24.4%. Patients with childhood-onset dystonia trended toward higher detection rates (31.8%) compared to infancy (23.6%), adolescence (12.5%), and early-adulthood onset (16%). Uncharacterized gene findings were found in 6.7% (8/119) of cases that underwent analysis for genes without an established disease relationship. Patients with intellectual disability/developmental delay, seizures/epilepsy and/or multifocal dystonia were more likely to have positive findings (P = .0093, .0397, .0006). Four (2.1%) patients had findings in two genes, and seven (3.7%) had reclassification after the original report due to new literature, new clinical information or reanalysis request. Pediatric patients were more likely to have positive findings (P = .0180). Our observations show utility of family-based DES in patients with dystonia and illustrate the complexity of testing.  相似文献   

8.
9.
Genetic ataxias are associated with mutations in hundreds of genes with high phenotypic overlap complicating the clinical diagnosis. Whole‐exome sequencing (WES) has increased the overall diagnostic rate considerably. However, the upper limit of this method remains ill‐defined, hindering efforts to address the remaining diagnostic gap. To further assess the role of rare coding variation in ataxic disorders, we reanalyzed our previously published exome cohort of 76 predominantly adult and sporadic‐onset patients, expanded the total number of cases to 260, and introduced analyses for copy number variation and repeat expansion in a representative subset. For new cases (n = 184), our resulting clinically relevant detection rate remained stable at 47% with 24% classified as pathogenic. Reanalysis of the previously sequenced 76 patients modestly improved the pathogenic rate by 7%. For the combined cohort (n = 260), the total observed clinical detection rate was 52% with 25% classified as pathogenic. Published studies of similar neurological phenotypes report comparable rates. This consistency across multiple cohorts suggests that, despite continued technical and analytical advancements, an approximately 50% diagnostic rate marks a relative ceiling for current WES‐based methods and a more comprehensive genome‐wide assessment is needed to identify the missing causative genetic etiologies for cerebellar ataxia and related neurodegenerative diseases.  相似文献   

10.
11.
12.
13.
《Genetics in medicine》2019,21(7):1603-1610
PurposeStructural variation (SV) is associated with inherited diseases. Next-generation sequencing (NGS) is an efficient method for SV detection because of its high-throughput, low cost, and base-pair resolution. However, due to lack of standard NGS protocols and a limited number of clinical samples with pathogenic SVs, comprehensive standards for SV detection, interpretation, and reporting are to be established.MethodsWe performed SV assessment on 60,000 clinical samples tested with hereditary cancer NGS panels spanning 48 genes. To evaluate NGS results, NGS and orthogonal methods were used separately in a blinded fashion for SV detection in all samples.ResultsA total of 1,037 SVs in coding sequence (CDS) or untranslated regions (UTRs) and 30,847 SVs in introns were detected and validated. Across all variant types, NGS shows 100% sensitivity and 99.9% specificity. Overall, 64% of CDS/UTR SVs were classified as pathogenic/likely pathogenic, and five deletions/duplications were reclassified as pathogenic using breakpoint information from NGS.ConclusionThe SVs presented here can be used as a valuable resource for clinical research and diagnostics. The data illustrate NGS as a powerful tool for SV detection. Application of NGS and confirmation technologies in genetic testing ensures delivering accurate and reliable results for diagnosis and patient care.  相似文献   

14.
《Genetics in medicine》2016,18(12):1282-1289
PurposeNext-generation sequencing (NGS) is now routinely used to interrogate large sets of genes in a diagnostic setting. Regions of high sequence homology continue to be a major challenge for short-read technologies and can lead to false-positive and false-negative diagnostic errors. At the scale of whole-exome sequencing (WES), laboratories may be limited in their knowledge of genes and regions that pose technical hurdles due to high homology. We have created an exome-wide resource that catalogs highly homologous regions that is tailored toward diagnostic applications.MethodsThis resource was developed using a mappability-based approach tailored to current Sanger and NGS protocols.ResultsGene-level and exon-level lists delineate regions that are difficult or impossible to analyze via standard NGS. These regions are ranked by degree of affectedness, annotated for medical relevance, and classified by the type of homology (within-gene, different functional gene, known pseudogene, uncharacterized noncoding region). Additionally, we provide a list of exons that cannot be analyzed by short-amplicon Sanger sequencing.ConclusionThis resource can help guide clinical test design, supplemental assay implementation, and results interpretation in the context of high homology.Genet Med 18 12, 1282–1289.  相似文献   

15.
Short stature homeobox (SHOX) haploinsufficiency is a frequent cause of short stature. Despite advances in sequencing technologies, the identification of SHOX mutations continues to be performed using standard methods, including multiplex ligation-dependent probe amplification (MLPA) followed by Sanger sequencing. We designed a targeted panel of genes associated with growth impairment, including SHOX genomic and enhancer regions, to improve the resolution of next-generation sequencing for SHOX analysis. We used two software packages, CONTRA and Nexus Copy Number, in addition to visual analysis to investigate the presence of copy number variants (CNVs). We evaluated 15 patients with previously known SHOX defects, including point mutations, deletions and a duplication, and 77 patients with idiopathic short stature (ISS). The panel was able to confirm all known defects in the validation analysis. During the prospective evaluation, we identified two new partial SHOX deletions (one detected only by visual analysis), including an intragenic deletion not detected by MLPA. Additionally, we were able to determine the breakpoints in four cases. Our results show that the designed panel can be used for the molecular investigation of patients with ISS, and it may even detect CNVs in SHOX and its enhancers, which may be present in a significant fraction of patients.  相似文献   

16.
PurposeThis study aimed to generate benchmark estimates for the cost, diagnostic yield, and cost per positive diagnosis of diagnostic exome sequencing (ES) in heterogeneous pediatric patient populations and to illustrate how the design of an ES service can influence its cost and yield.MethodsA literature review and Monte Carlo simulations were used to generate benchmark estimates for singleton and trio ES. A cost model for the Clinical Assessment of the Utility of Sequencing and Evaluation as a Service (CAUSES) study, which is testing a proposed delivery model for diagnostic ES in British Columbia, is used to illustrate the potential effects of changing the service design.ResultsThe benchmark diagnostic yield was 34.3% (95% confidence interval (CI): 23.2–46.5) for trio ES and 26.5% (95% CI: 12.9–42.9) for singleton ES. The benchmark cost of delivery was C$6,437 (95% CI: $5,305–$7,704) in 2016 Canadian dollars (US$4,859; 4,391€) for trio ES and C$2,576 (95% CI: $1,993–$3,270) (US$1,944; 1,757€) for singleton ES. Scenario models for CAUSES suggest that alternative service designs could reduce costs but might lead to a higher cost per diagnosis due to lower yields.ConclusionBroad conclusions about the cost-effectiveness of ES should be drawn with caution when relying on studies that use cost or yield assumptions that lie at the extremes of the benchmark ranges.  相似文献   

17.
The MHC continues to have the most disease-associations compared to other regions of the human genome, even in the genome-wide association study (GWAS) and single nucleotide polymorphism (SNP) era. Analysis of non-coding variation and their impact on the level of expression of HLA allotypes has shed new light on the potential mechanisms underlying HLA disease associations and alloreactivity in transplantation. Next-generation sequencing (NGS) technology has the capability of delineating the phase of variants in the HLA antigen-recognition site (ARS) with non-coding regulatory polymorphisms. These relationships are critical for understanding the qualitative and quantitative implications of HLA gene diversity. This article summarizes current understanding of non-coding region variation of HLA loci, the consequences of regulatory variation on HLA expression, the role for evolution in shaping lineage-specific expression, and the impact of HLA expression on disease susceptibility and transplantation outcomes. A role for phased sequencing methods for the MHC, and perspectives for future directions in basic and applied immunogenetic studies of the MHC are presented.  相似文献   

18.
《Genetics in medicine》2022,24(10):2014-2027
PurposeMethodological challenges have limited economic evaluations of genome sequencing (GS) and exome sequencing (ES). Our objective was to develop conceptual frameworks for model-based cost-effectiveness analyses (CEAs) of diagnostic GS/ES.MethodsWe conducted a scoping review of economic analyses to develop and iterate with experts a set of conceptual CEA frameworks for GS/ES for prenatal testing, early diagnosis in pediatrics, diagnosis of delayed-onset disorders in pediatrics, genetic testing in cancer, screening of newborns, and general population screening.ResultsReflecting on 57 studies meeting inclusion criteria, we recommend the following considerations for each clinical scenario. For prenatal testing, performing comparative analyses of costs of ES strategies and postpartum care, as well as genetic diagnoses and pregnancy outcomes. For early diagnosis in pediatrics, modeling quality-adjusted life years (QALYs) and costs over ≥20 years for rapid turnaround GS/ES. For hereditary cancer syndrome testing, modeling cumulative costs and QALYs for the individual tested and first/second/third-degree relatives. For tumor profiling, not restricting to treatment uptake or response and including QALYs and costs of downstream outcomes. For screening, modeling lifetime costs and QALYs and considering consequences of low penetrance and GS/ES reanalysis.ConclusionOur frameworks can guide the design of model-based CEAs and ultimately foster robust evidence for the economic value of GS/ES.  相似文献   

19.
In this study, we assess exome sequencing (ES) as a diagnostic alternative for genetically heterogeneous disorders. Because ES readily identified a previously reported homozygous mutation in the CAPN3 gene for an individual with an undiagnosed limb girdle muscular dystrophy, we evaluated ES as a generalizable clinical diagnostic tool by assessing the targeting efficiency and sequencing coverage of 88 genes associated with muscle disease (MD) and spastic paraplegia (SPG). We used three exome-capture kits on 125 individuals. Exons constituting each gene were defined using the UCSC and CCDS databases. The three exome-capture kits targeted 47-92% of bases within the UCSC-defined exons and 97-99% of bases within the CCDS-defined exons. An average of 61.2-99.5% and 19.1-99.5% of targeted bases per gene were sequenced to 20X coverage within the CCDS-defined MD and SPG coding exons, respectively. Greater than 95-99% of targeted known mutation positions were sequenced to ≥1X coverage and 55-87% to ≥20X coverage in every exome. We conclude, therefore, that ES is a rapid and efficient first-tier method to screen for mutations, particularly within the CCDS annotated exons, although its application requires disclosure of the extent of coverage for each targeted gene and supplementation with second-tier Sanger sequencing for full coverage.  相似文献   

20.
《Genetics in medicine》2014,16(2):176-182
PurposeThe purpose of this study was to assess the diagnostic yield of the traditional, comprehensive clinical evaluation and targeted genetic testing, within a general genetics clinic. These data are critically needed to develop clinically and economically grounded diagnostic algorithms that consider presenting phenotype, traditional genetics testing, and the emerging role of next-generation sequencing (whole-exome/genome sequencing).MethodsWe retrospectively analyzed a cohort of 500 unselected consecutive patients who received traditional genetic diagnostic evaluations at a tertiary medical center. We calculated the diagnosis rate, number of visits to diagnosis, genetic tests, and the cost of testing.ResultsThirty-nine patients were determined to not have a genetic disorder; 212 of the remaining 461 (46%) received a genetic diagnosis, and 72% of these were diagnosed on the first visit. The cost per subsequent successful genetic diagnosis was estimated at $25,000.ConclusionAlmost half of the patients were diagnosed using the traditional approach, most at the initial visit. For those remaining undiagnosed, next-generation sequencing may be clinically and economically beneficial. Estimating a 50% success rate for next-generation sequencing in undiagnosed genetic disorders, its application after the first clinical visit could result in a higher rate of genetic diagnosis at a considerable cost savings per successful diagnosis.Genet Med16 2, 176–182.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号