首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue regeneration and repair require a highly complex and orchestrated series of events that require inflammation, but can be compromised when inflammation is excessive or becomes chronic. Macrophages are one of the first cells to contact and respond to implanted materials, and mediate the inflammatory response. The series of events following macrophage association with biomaterials has been well-studied. Dendritic cells (DCs) also directly interact with biomaterials, are critical for specific immune responses, and can be activated in response to interactions with biomaterials. Yet, much less is known about the responses by DCs. This review discusses what we know about DC response to biomaterials, the underlying mechanisms involved, and how DCs can be influenced by the macrophage response to biomaterials. Lastly, I will discuss how biomaterials can be manipulated to enhance or suppress DC function to promote a specific desirable immune response – a major goal for implantable biologically active therapeutics.  相似文献   

2.
The cross-talk between sympatho-adreno-medullar axis and innate immunity players was mainly studied in rodents. In intensive husbandry, pigs are exposed to multiple stressors inducing repeated releases of catecholamines that bind to adrenoreceptors (AR) on target cells. Among adrenoreceptors, the β2-AR is largely expressed by immune cells including macrophages. We report herein on the effects of catecholamines, through β2-AR stimulation, on pig macrophage functions activated by LPS.β2-AR stimulation of porcine macrophages prevented the LPS-induced increase in TNFα and IL-8 secretion while increasing IL-10 secretion. In contrast, treatment with a β2-agonist had no effect on anti-microbial functions. Lastly, β2-AR stimulation of macrophages reduced the expression of genes up-regulated by LPS. Altogether, we demonstrated that β2-AR stimulation of porcine macrophages prevented polarization towards a pro-inflammatory phenotype. Since porcine macrophages are a suitable model for human macrophages, our results might be relevant to appreciate catecholamine effects on human macrophages.  相似文献   

3.
《Medical hypotheses》2014,82(6):754-765
It is accepted that the immune system responds to pathogens with activation of antigen-independent innate and antigen-dependent adaptive immunity. However many immune events do not fit or are even inconsistent with this notion. We developed a new homeostatic model of the immune response. This model consists of four units: a sensor, a regulator, an effector and a rehabilitator. The sensor, macrophages or lymphocytes, recognize pathogenic cells and generate alarm signals. The regulator, antigen-presenting cells, Тregs and myeloid-derived suppressor cells, evaluate the signals and together with sensor cells program the effector. The effector, programmed macrophages and lymphocytes, eliminate the pathogenic cells. The rehabilitator, M2 macrophages, restrict inflammation, provide angiogenesis and reparation of tissue damage, and restore the homeostasis. We suggest the terms “immune matrix” for a biological template of immune responses to pathogens and “matrix reprogramming” for the interdependent reprogramming of different cells in the matrix. In an adequate immune response, the matrix forms a negative feedback mechanism to support the homeostasis. We defined the cellular and phenotypic composition of a tumor immune matrix. A tumor reprograms the homeostatic negative feedback mechanism of matrix into a pathogenic positive feedback mechanism. M2 macrophages play a key role in this transformation. Therefore, macrophages are an attractive target for biotechnology. Based on our hypotheses, we are developing a cell biotechnology method for creation of macrophages with a stable antitumor phenotype. We have shown that such macrophages almost doubled the survival time of mice with tumor.  相似文献   

4.
The oculomotor accessory nucleus, often referred to as the Edinger–Westphal nucleus [EW], was first identified in the 17th century. Although its most well known function is the control of pupil diameter, some controversy has arisen regarding the exact location of these preganglionic neurons. Currently, the EW is thought to consist of two different parts. The first part [termed the preganglionic EW—EWpg], which controls lens accommodation, choroidal blood flow and pupillary constriction, primarily consists of cholinergic cells that project to the ciliary ganglion. The second part [termed the centrally projecting EW—EWcp], which is involved in non-ocular functions such as feeding behavior, stress responses, addiction and pain, consists of peptidergic neurons that project to the brainstem, the spinal cord and prosencephalic regions. However, in the literature, we found few reports related to either ascending or descending projections from the EWcp that are compatible with its currently described functions. Therefore, the objective of the present study was to systematically investigate the ascending and descending projections of the EW in the rat brain. We injected the anterograde tracer biotinylated dextran amine into the EW or the retrograde tracer cholera toxin subunit B into multiple EW targets as controls. Additionally, we investigated the potential EW-mediated innervation of neuronal populations with known neurochemical signatures, such as melanin-concentrating hormone in the lateral hypothalamic area [LHA] and corticotropin-releasing factor in the central nucleus of the amygdala [CeM]. We observed anterogradely labeled fibers in the LHA, the reuniens thalamic nucleus, the oval part of the bed nucleus of the stria terminalis, the medial part of the central nucleus of the amygdala, and the zona incerta. We confirmed our EW–LHA and EW–CeM connections using retrograde tracers. We also observed moderate EW-mediated innervation of the paraventricular nucleus of the hypothalamus and the posterior hypothalamus. Our findings provide anatomical bases for previously unrecognized roles of the EW in the modulation of several physiologic systems.  相似文献   

5.
Formalin fixed and paraffin embedded tissue (FFPE) collections in pathology departments are the largest resource for retrospective biomedical research studies. Based on the literature analysis of FFPE related research, as well as our own technical validation, we present the Translational Research Arrays (TRARESA), a tissue microarray centred, hospital based, translational research conceptual framework for both validation and/or discovery of novel biomarkers. TRARESA incorporates the analysis of protein, DNA and RNA in the same samples, correlating with clinical and pathological parameters from each case, and allowing (a) the confirmation of new biomarkers, disease hypotheses and drug targets, and (b) the postulation of novel hypotheses on disease mechanisms and drug targets based on known biomarkers. While presenting TRARESA, we illustrate the use of such a comprehensive approach. The conceptualisation of the role of FFPE-based studies in translational research allows the utilisation of this commodity, and adds to the hypothesis-generating armamentarium of existing high-throughput technologies.  相似文献   

6.
《Acta histochemica》2014,116(8):1374-1381
In order to evaluate the function of the repaired or regenerated eccrine sweat glands, we must first localize the proteins involved in sweat secretion and absorption in normal human eccrine sweat glands. In our studies, the cellular localization of Na+–K+-ATPase α/β, Na+–K+–2Cl-cotransporter 1 (NKCC1) and aquaporin-5 (AQP5) in eccrine sweat glands were detected by immunoperoxidase labeling. The results showed that Na+–K+-ATPase α was immunolocalized in the cell membrane of the basal layer and suprabasal layer cells of the epidermis, the basolateral membrane of the secretory coils, and the cell membrane of the outer cells and the basolateral membrane of the luminal cells of the ducts. The localization of Na+–K+-ATPase β in the secretory coils was the same as Na+–K+-ATPase α, but Na+–K+-ATPase β labeling was absent in the straight ducts and epidermis. NKCC1 labeling was seen only in the basolateral membrane of the secretory coils. AQP5 was strongly localized in the apical membrane and weakly localized in the cytoplasm of secretory epithelial cells. The different distribution of these proteins in eccrine sweat glands was related to their functions in sweat secretion and absorption.  相似文献   

7.
Resistance to respiratory pathogens, including coronavirus-induced infection and clinical illness in chickens has been correlated with the B (MHC) complex and differential ex vivo macrophage responses. In the current study, in vitro T lymphocyte activation measured by IFNγ release was significantly higher in B2 versus B19 haplotypes. AIV infection of macrophages was required to activate T lymphocytes and prior in vivo exposure of chickens to NP AIV plasmid enhanced responses to infected macrophages. This study suggests that the demonstrated T lymphocyte activation is in part due to antigen presentation by the macrophages as well as cytokine release by the infected macrophages, with B2 haplotypes showing stronger activation. These responses were present both in CD4 and CD8 T lymphocytes. In contrast, T lymphocytes stimulated by ConA showed greater IFNγ release of B19 haplotype cells, further indicating the greater responses in B2 haplotypes to infection is due to macrophages, but not T cells. In summary, resistance of B2 haplotype chickens appears to be directly linked to a more vigorous innate immune response and the role macrophages play in activating adaptive immunity.  相似文献   

8.
W D Rawlinson 《Pathology》1999,31(2):109-115
Human cytomegalovirus (CMV) remains an important cause of illness in immunocompromised individuals and the most common viral cause of congenital malformation. The tests available for diagnosis of CMV include serology, antigen detection, virus culture, tissue histopathology and nucleic acid detection. The diagnosis of CMV remains difficult because of the issues of virus latency, virus infection versus clinical disease and virus reactivation. The tests available and the use of these tests are undergoing significant changes. This Broadsheet presents a review of these tests, particularly in the diagnosis of congenital infection and infection in pregnant women and immunocompromised individuals.  相似文献   

9.
Orexin is a neuropeptide that has been implicated in several processes, such as induction of appetite, arousal and alertness and sleep/wake regulation. Multiple lines of evidence also suggest that orexin is involved in the stress response. When orexin is administered intracerebroventricular it activates the hypothalamic pituitary adrenal (HPA)-axis, which is the main regulator of the stress response. The HPA-axis is not the only player in the stress response evidence suggests that urocortin 1 (Ucn1), a member of the corticotropin releasing factor (CRF) neuropeptide family, also plays an important role in the stress response adaptation. Ucn1 is primarily synthetized in the centrally projecting Edinger–Westphal nucleus (EWcp), which also receives dense innervation by orexin terminals. In this study we tested the hypothesis that orexin would directly shape the response of EWcp-Ucn1 neurons to acute cold stress. To test this hypothesis, we first assessed whether orexinergic axon terminals would innervate EWcp-Ucn1/CART neurons, and next we exposed orexin deficient (orexin-KO) male mice and their male wild-type (WT) littermates to acute cold stress for 2 h. We also assessed stress-associated changes in plasma corticosterone (CORT), as well as the activation of Ucn1/CART neurons in the EWcp nucleus. We found that orexin immunoreactive axon terminals were juxtaposed to EWcp-Ucn1/CART neurons, which also expressed orexin receptor 1 mRNA. Furthermore, acute stress strongly activated the EWcp-Ucn1/CART neurons and increased plasma CORT in both WT littermates and orexin-KO mice, however no genotype effect was found on these indices. Taken together our data show that orexin in general is not involved in the animal's acute stress response (plasma CORT) and it does not play a direct role in shaping the response of EWcp-Ucn1 neurons to acute stress either.  相似文献   

10.
《Seminars in immunology》2015,27(5):315-321
Adipose tissue is composed of many functionally and developmentally distinct cell types, the metabolic core of which is the adipocyte. The classification of “adipocyte” encompasses three primary types – white, brown, and beige – with distinct origins, anatomic distributions, and homeostatic functions. The ability of adipocytes to store and release lipids, respond to insulin, and perform their endocrine functions (via secretion of adipokines) is heavily influenced by the immune system. Various cell populations of the innate and adaptive arms of the immune system can resist or exacerbate the development of the chronic, low-grade inflammation associated with obesity and metabolic dysfunction. Here, we discuss these interactions, with a focus on their consequences for adipocyte and adipose tissue function in the setting of chronic overnutrition. In addition, we will review the effects of diet composition on adipose tissue inflammation and recent evidence suggesting that diet-driven disruption of the gut microbiota can trigger pathologic inflammation of adipose tissue.  相似文献   

11.
Eukaryotic Initiation Factor 6 (eIF6) is required for 60S ribosomal subunit biogenesis and efficient initiation of translation. Intriguingly, in both mice and humans, endogenous levels of eIF6 are detrimental as they act as tumor and obesity facilitators, raising the question on the evolutionary pressure that maintains high eIF6 levels. Here we show that, in mice and humans, high levels of eIF6 are required for proper immune functions. First, eIF6 heterozygous (het) mice show an increased mortality during viral infection and a reduction of peripheral blood CD4+ Effector Memory T cells. In human CD4+ T cells, eIF6 levels rapidly increase upon T-cell receptor activation and drive the glycolytic switch and the acquisition of effector functions. Importantly, in CD4+ T cells, eIF6 levels control interferon-γ (IFN−γ) secretion without affecting proliferation. In conclusion, the immune system has a high evolutionary pressure for the maintenance of a dynamic and powerful regulation of the translational machinery.  相似文献   

12.
Activation of innate immune receptors by exogenous substances is crucial for the detection of microbial pathogens and a subsequent inflammatory response. The inflammatory response to microbial lipopolysaccharide via Toll-like receptor 4 (TLR4) is facilitated by soluble accessory proteins, but the role of such proteins in the activation of other pathogen recognition receptors for microbial nucleic acid is not well understood. Here we demonstrate that RNase4 and RNase5 purified from bovine milk bind to Salmonella typhimurium DNA and stimulate pro-inflammatory responses induced by nucleic acid mimetics and S. typhimurium DNA in an established mouse macrophage cell culture model, RAW264.7, as well as in primary bovine mammary epithelial cells. RNase4 and 5 also modulated pro-inflammatory signalling in response to nucleic acids in bovine peripheral blood mononuclear cells, although producing a distinct response. These results support a role for RNase4 and RNase5 in mediating inflammatory signals in both immune and epithelial cells, involving mechanisms that are cell-type specific.  相似文献   

13.
Myeloid progenitors reside within specific hematopoietic organs and commit to progenitor lineages bearing megakaryocyte/erythrocyte (MEP) or granulocyte/macrophage potentials (GMP) within these sites. Unlike other vertebrates, the amphibian Xenopus laevis committed macrophage precursors are absent from the hematopoietic subcapsular liver and instead reside within their bone marrow. Presently, we demonstrate that while these frogs’ liver-derived cells are unresponsive to recombinant forms of principal X. laevis macrophage (colony-stimulating factor-1; CSF-1) and granulocyte (CSF-3) growth factors, bone marrow cells cultured with CSF-1 and CSF-3 exhibit respectively archetypal macrophage and granulocyte morphology, gene expression and functionalities. Moreover, we demonstrate that liver, but not bone marrow cells possess erythropoietic capacities when stimulated with a X. laevis erythropoietin. Together, our findings indicate that X. laevis retain their MEP within the hematopoietic liver while sequestering their GMP to the bone marrow, thus marking a very novel myelopoietic strategy as compared to those seen in other jawed vertebrate species.  相似文献   

14.
Control of tuberculosis, the single largest killer among the infectious diseases, has been threatened by the emergence of multidrug-resistant Mycobacterium tuberculosis (MDRTB) infection due to the limited treatment options. Rifampicin (RIF) resistance is considered as a marker for MDRTB. The aim of this study was the detection of rpoB gene mutations and rifabutin resistance in MDRTB strains recently isolated in Australia by a line probe assay (INNO-LiPA Rif. TB, Innogenetics). Rifabutin and RIF susceptibility of 20 MDRTB and 16 RIF-sensitive M. tuberculosis complex clinical isolates were studied. The overall concordance of the line probe assay (LiPA) with phenotypic RIF susceptibility test was 96%. Seven distinct nucleotide substitutions were identified in 21 of 22 RIF-resistant isolates of diverse geographical origins, but in none of the RIF-sensitive strains. The majority (71%) of mutations occurred in the 526-533 codons and were associated with resistance to rifabutin and RIF. Of the RIF-resistant MDRTB strains, 18% appeared to be rifabutin-sensitive and produced delta S2 and delta S3 INNO-LiPA patterns. We conclude that amino acid substitutions at Asp516 and Ser522 in the rpoB gene in RIF-resistant M. tuberculosis predict rifabutin susceptibility for MDRTB. Use of the LiPA for RIF and rifabutin resistance may facilitate the rapid response required to limit the extent and severity of MDRTB transmission and infection.  相似文献   

15.
Larsen S  Lewis ID 《Pathology》2011,43(6):592-604
Mesenchymal stromal cells (MSCs) are a non-homogeneous population of plastic-adherent cells which were initially isolated from post-natal bone marrow. They have the capacity to differentiate to multiple mesodermal lineages including bone, cartilage and adipose tissue. In stringent culture conditions, MSCs can also be induced to differentiate into different cell types of endoderm and neuroectoderm lineages. To date, no specific marker identifies MSCs, although a number of cell surface antigens have been described which enrich for MSCs. Mesenchymal stromal cells possess a number of properties which have generated considerable interest in diverse cellular therapeutic applications. The capacity of MSCs to differentiate into multiple different cell lineages has seen them actively explored for tissue repair, particularly in cardiac, orthopaedic and neurological applications. A large body of data indicates that MSCs possess immunomodulatory properties. Mesenchymal stromal cells are immunosuppressive, interacting with T lymphocytes, antigen presenting cells, B lymphocytes, and natural killer cells. In addition, they are immunoprivileged, allowing transplantation across allogeneic barriers. These immunomodulatory properties have seen infusion of MSCs for the treatment of steroid refractory graft versus host disease, a life threatening complication of haemopoietic cell transplantation, with promising results. Furthermore, these immune functions may lead to roles in the facilitation of engraftment, induction of tolerance and as therapy in autoimmune disease.  相似文献   

16.
《Seminars in immunology》2016,28(4):343-350
Immunological memory mediated by antigen-specific T and B cells is the foundation of adaptive immunity and is fundamental to the heightened and rapid protective immune response induced by vaccination or following re-infection with the same pathogen. While the innate immune system has classically been considered to be non-specific and devoid of memory, it now appears that it can be trained following exposure to microbes or their products and that this may confer a form of memory on innate immune cells. The evidence for immunological memory outside of T and B cells has been best established for natural killer (NK) cells, where it has been known for decades that NK cells have heighten responses following immunological re-challenge. Furthermore, recent studies have demonstrated that monocyte/macrophages, and probably dendritic cells, can be re-programmed through epigenetic modification, following exposure to pathogens or their products, resulting in heighted responses following a second stimulation. Unlike antigen-specific memory of the adaptive immune system, the second stimulation does not have to be with the same pathogen or antigen. Indirect evidence for this comes from reports on the non-specific beneficial effect of certain live vaccines, such as Bacillus Calmette Guerin (BCG) against unrelated childhood infectious diseases. It also appears that certain pathogen or pathogen-derived molecules can prime immune cells, especially macrophages, to secrete more anti-inflammatory and less pro-inflammatory cyokines, thus opening up the possibility of exploiting innate immune training as a new therapeutic approach for inflammatory diseases.  相似文献   

17.
《Molecular immunology》2015,66(2):416-428
The “A Disintegrin And Metalloproteinases” (ADAMs) form a subgroup of the metzincin endopeptidases. Proteolytically active members of this protein family act as sheddases and govern key processes in development and inflammation by regulating cell surface expression and release of cytokines, growth factors, adhesion molecules and their receptors. In T lymphocytes, ADAM10 sheds the death factor Fas Ligand (FasL) and thereby regulates T cell activation, death and effector function. Although FasL shedding by ADAM10 was confirmed in several studies, its regulation is still poorly defined. We recently reported that ADAM10 is highly abundant on T cells whereas its close relative ADAM17 is expressed at low levels and transiently appears at the cell surface upon stimulation. Since FasL is also stored intracellularly and brought to the plasma membrane upon stimulation, we addressed where the death factor gets exposed to ADAM proteases. We report for the first time that both ADAM10 and ADAM17 are associated with FasL-containing secretory lysosomes. Moreover, we demonstrate that TCR/CD3/CD28-stimulation induces a partial positioning of both proteases and FasL to lipid rafts and only the activation-induced raft-positioning results in FasL processing. TCR/CD3/CD28-induced FasL proteolysis is markedly affected by reducing both ADAM10 and ADAM17 protein levels, indicating that in human T cells also ADAM17 is implicated in FasL processing. Since FasL shedding is affected by cholesterol depletion and by inhibition of Src kinases or palmitoylation, we conclude that it requires mobilization and co-positioning of ADAM proteases in lipid raft-like platforms associated with an activation of raft-associated Src-family kinases.  相似文献   

18.
《Seminars in immunology》2015,27(5):334-342
The bidirectional communication between innate immune cells and energy metabolism is now widely appreciated to regulate homeostasis as well as chronic diseases that emerge from dysregulated inflammation. Macronutrients-derived from diet or endogenous pathways that generate and divert metabolites into energetic or biosynthetic pathways – regulate the initiation, duration and cessation of the inflammatory response. The NLRP3 inflammasome is an important innate sensor of structurally diverse metabolic damage-associated molecular patterns (DAMPs) that has been implicated in a wide range of inflammatory disorders associated with caloric excess, adiposity and aging. Understanding the regulators of immune-metabolic interactions and their contribution towards chronic disease mechanisms, therefore, has the potential to reduce disease pathology, improve quality of life in elderly and promote the extension of healthspan. Just as specialized subsets of immune cells dampen inflammation through the production of negative regulatory cytokines; specific immunoregulatory metabolites can deactivate inflammasome-mediated immune activation. Here, we highlight the role of energy substrates, alternative fuels and metabolic DAMPs in the regulation of the NLRP3 inflammasome and discuss potential dietary interventions that may impact sterile inflammatory disease.  相似文献   

19.
Heavy metals can accumulate in organisms via various pathways, including respiration, adsorption and ingestion. They are known to generate free radicals and induce oxidative and/or nitrosative stress with depletion of anti-oxidants. Tuna by-product meal (TBM) is rich in proteins and can, therefore, offer an attractive protein source for animals. This study was undertaken to assess the effects of metals present in TBM, namely cadmium (Cd), lead (Pb), and mercury (Hg), separately or in combination with oxidative stress, on cell viability. Three cell models: rat liver FTO2B, human hepatoma HepG2, and human hepatic WRL-68, were used. Cell viability was determined following exposure to various concentrations of the metals. Two antioxidant genes, catalase (CAT) and superoxide dismutase (SOD), were measured to obtain a better understanding of oxidative stress-associated gene expression. Among the metals present in TBM, only Cd at a concentration of 30 μM was noted to exhibit cytotoxic effects. This cytotoxicity was even more pronounced after co-stimulation with H2O2, used to mimic systemic oxidative stress. At non-toxic concentrations, Hg and Pb were noted to aggravate oxidative stress toxicity. The results further revealed that exposure to Cd, Pb, and a co-stimulation of H2O2 with Hg resulted in the increased expression of antioxidant gene SOD. A risk assessment of toxic contaminants in TBM indicated that food safety objectives should consider the human health impacts of foods derived from animals fed on contaminated meal and that much care should be taken when TBM is used in animal diet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号