首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The current study determined the extent to which the desorption of lipid-based formulations (LBFs) from a mesoporous magnesium aluminometasilicate (Neusilin®-US2) carrier is governed by drug properties, LBF composition, and LBF-to-adsorbent ratio. A secondary objective was to evaluate the impact of testing parameters (medium composition, pH, dilution, and agitation) on in vitro LBF performance. Two self-emulsifying LBFs, with high/low lipid–surfactant ratios were studied in detail using danazol, fenofibrate, cinnarizine, and mefenamic acid as model drugs. A wider range of 38 different danazol-containing LBF were also evaluated, where desorption was evaluated immediately after preparation and after 1 month of storage. The results revealed that incomplete desorption from Neusilin® was a feature of all drugs and LBFs tested. Desorption was insensitive to agitation but increased under conditions where ionizable drugs were charged. In addition, formulations containing a higher proportion (> 30%) of hydrophilic surfactant consistently exhibited higher desorption, and were least susceptible to decreased desorption on storage. In summary, although Neusilin® is an effective vehicle for LBF solidification, its use is accompanied by a risk of incomplete desorption of the vehicle from the carrier, irrespective of the drug. Lipid Formulation Classification System (LFCS)Type IIIB LBFs comprising higher quantities of hydrophilic surfactants appear to desorb most from Neusilin®. ©2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1734–1746, 2014  相似文献   

2.
In order to compare the effects of hydrophilic and hydrophobic solid carrier on the formation of solid self-microemulsifying drug delivery system (SMEDDS), two solid SMEDDS formulations were prepared by spray-drying the solutions containing liquid SMEDDS and solid carriers. Colloidal silica and dextran were used as a hydrophobic and a hydrophilic carrier, respectively. The liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Trasncutol HP (12.5/80/7.5%) with 2% w/v flurbiprofen, gave a z-average diameter of about 100 nm. Colloidal silica produced an excellent conventional solid SMEDDS in which the liquid SMEDDS was absorbed onto its surfaces. It gave a microemulsion droplet size similar to that of the liquid SMEDDS (about 100 nm) which was smaller than the other solid SMEDDS formulation. In the solid SMEDDS prepared with dextran, liquid SMEDDS was not absorbed onto the surfaces of carrier but formed a kind of nano-sized microcapsule with carrier. However, the drug was in an amorphous state in two solid SMEDDS formulations. Similarly, they greatly improved the dissolution rate and oral bioavailability of flurbiprofen in rats due to the fast spontaneous emulsion formation and the decreased droplet size. Thus, except appearance, hydrophilic carrier (dextran) and hydrophobic carrier (colloidal silica) hardly affected the formation of solid SMEDDS such as crystalline properties, dissolution and oral bioavailability.  相似文献   

3.
By constructing ternary phase diagrams it was possible to identify two self-microemulsifying drug delivery systems (SMEDDS) containing either medium chain triglycerides (MC-SMEDDS) or long chain triglycerides (LC-SMEDDS), with the same ratio between lipid, surfactant and co-surfactant. The SMEDDS ended up having a composition of 25% lipid, 48% surfactant and 27% co-surfactant, MC-SMEDDS: viscoleo, cremophor RH40, akoline MCM and LC-SMEDDS: sesame oil, cremophor RH40, peceol. Upon dilution with water both SMEDDS resulted in clear to bluish transparent microemulsions with a narrow droplet size of 30nm. The industrial usefulness of the developed SMEDDS was evaluated with regard to bioavailability and chemical stability using the vitamin D analogue, seocalcitol, as model compound. The absorption and bioavailability of seocalcitol in rats were approximately 45% and 18%, respectively, from both the MC-SMEDDS and LC-SMEDDS indicating similar in vivo behavior of the two formulations, despite the difference in nature of lipid component. There was no improvement in bioavailability by the use of SMEDDS, compared to the bioavailability achieved from simple MCT and LCT solutions (22-24%) (Grove, M., Pedersen, G.P., Nielsen, J.L., Mullertz, A., 2005. Bioavailability of seocalcitol. I. Relating solubility in biorelevant media with oral bioavailability in rats-effect of medium and long chain triglycerides. J. Pharm. Sci. 94, 1830-1838.). After 3 months' storage at accelerated conditions (40 degrees C/75% RH), a decrease in concentration of seocalcitol of 10-11% was found in MC-SMEDDS and LC-SMEDDS compared with a degradation of less than 3% for the simple lipid solutions of MCT and LCT. In this study the simple lipid solutions seem to be a better choice compared with the developed SMEDDS due to a slightly higher bioavailability and a better chemical stability of seocalcitol.  相似文献   

4.
The aim of present investigation is to improve dissolution rate of poor soluble drug Zotepine by a self-microemulsifying drug delivery system (SMEDDS). Ternary phase diagram with oil (Oleic acid), surfactant (Tween 80) and co-surfactant (PEG 400) at apex were used to identify the efficient self-microemulsifying region. Box–Behnken design was implemented to study the influence of independent variables. Principal Component Analysis was used for scrutinising critical variables. The liquid SMEDDS were characterised for macroscopic evaluation, % Transmission, emulsification time and in vitro drug release studies. Optimised formulation OL1 was converted in to S-SMEDDS by using Aerosil® 200 as an adsorbent in the ratio of 3:1. The S-SMEDDS was characterised by SEM, DSC, globule size (152.1?nm), zeta-potential (?28.1?mV), % transmission study (98.75%), in vitro release (86.57%) at 30?min. The optimised solid SMEDDS formulation showed faster drug release properties as compared to conventional tablet of Zotepine.  相似文献   

5.
Objective of this study is to develop and evaluate the new solid self-emulsifying (SE) pellets of poorly soluble nitrendipine (NTD). These pellets were prepared via extrusion/spheronization technique, using liquid SEDDS (NTD, Miglyol® 812, Cremophor® RH 40, Tween 80, and Transcutol® P), adsorbents (silicon dioxide and crospovidone), microcrystalline cellulose and lactose. The resulting SE pellets with 30% liquid SEDDS exhibited uniform size (800–1000 μm) and round shape, droplet size distribution following self-emulsification was nearly same to the liquid SEDDS (72 ± 16 nm and 64 ± 12 nm). The in vitro release was similar for the two SE formulations (over 80% within 30 min), both significantly higher than the conventional tablets (only 35% within 30 min). The oral bioavailability was evaluated for the SE pellets, liquid SEDDS and conventional tablets in fasted beagle dogs. AUC of NTD from the SE pellets showed 1.6-fold greater than the conventional tablets and no significant difference compared with the liquid SEDDS. In conclusion, our studies illustrated that extrusion/spheronization technique could be a useful large-scale producing method to prepare the solid SE pellets from liquid SEDDS, which can improve oral absorption of NTD, nearly equivalent to the liquid SEDDS, but better in the formulation stability, drugs leakage and precipitation, etc.  相似文献   

6.
The aim of this study was to develop and characterize a self-microemulsifying drug delivery system (SMEDDS) of Brucea javanica oil (BJO) and transform the liquid formulation into solid granules. Solubility studies of BJO and pseudo-ternary phase diagrams were used to identify the most efficient self-emulsification region. A methyl thiazolyl tetrazolium (MTT) assay was performed to identify cell apoptosis. Antitumor activity studies were also employed to evaluate the BJO SMEDDS. The optimized BJO SMEDDS in liquid and granule formulations rapidly formed fine oil-in-water microemulsions with particle sizes <50 nm. Additionally, the MTT assay demonstrated that BJO SMEDDS had a significant effect on cancer cells, and antitumor activity studies showed remarkable inhibition of S180 tumors. The BJO SMEDDS, optimized to have good characteristics, was successfully transformed into solid granules by adsorbing onto crospovidone. The studies of the release of the BJO SMEDDS of liquid and granules in vitro suggested that the release of BJO was enhanced by the SMEDDS. These studies revealed that the new self-microemulsifying systems of liquid and granule forms might be promising strategies for the oral delivery of the poorly water-soluble drug BJO.  相似文献   

7.
Purpose

To develop tablet formulations by adsorbing liquid self-emulsifying drug delivery systems (SEDDS) onto Neusilin®US2, a porous silicate.

Methods

Nine SEDDS were prepared by combining a medium chain monoglyceride, Capmul MCM EP, a medium chain triglyceride, Captex 355 EP/NF, or their mixtures with a surfactant Cremophor EL, and a model drug, probucol, was then dissolved. The solutions were directly adsorbed onto Neusilin®US2 at 1:1 w/w ratio. Content uniformity, bulk and tap density, compressibility index, Hausner ratio and angle of repose of the powders formed were determined. The powders were then compressed into tablets. The dispersion of SEDDS from tablets was studied in 250 mL of 0.01NHCl (USP dissolution apparatus; 50 RPM; 37°C) and compared with that of liquid SEDDS.

Results

After adsorption of liquid SEDDS onto Neusilin®US2, all powders demonstrated acceptable flow properties and content uniformity for development into tablet. Tablets with good tensile strength (>1 MPa) at the compression pressure of 45 to 135 MPa were obtained. Complete drug release from tablets was observed if the SEDDS did not form gels in contact with water; the gel formation clogged pores of the silicate and trapped the liquid inside pores.

Conclusion

Liquid SEDDS were successfully developed into tablets by adsorbing them onto Neusilin®US2. Complete drug release from tablets could be obtained.

  相似文献   

8.
A solid self emulsifying formulation (S-SEF) has been developed with an intention to improve the dissolution characteristics of poorly water soluble lercanidipine hydrochloride (LH). Suitable components for the formulation of liquid self emulsifying drug delivery systems (SEDDS) were selected after screening various vehicles via solubility studies. Formulations were designed with Gelucire® 44/14 as oil, labrasol as surfactant and transcutol-P as co surfactant. The prepared formulations were evaluated for self emulsifying efficiency and ternary phase diagram was used to designate optimum systems in the emulsifying domain. These systems were further investigated for robustness towards different pH conditions, globule size, thermodynamic stability, surface morphology, cloud point and in vitro drug release. The optimized LH loaded formulation possessed a mean globule size of 142.5 ± 5.37 nm and cloud point of 72 ± 2.66 °C. The liquid SEDDS was transformed into free flowing S-SEF by adsorbing on to an inert carrier, Neusilin US2®. The results revealed no difference in globule size and emulsification characteristics between liquid SEDDS and S-SEF. The solid state characterization studies indicated loss of crystallinity for the drug. Significant improvement in dissolution characteristics of LH for prepared S-SEF was observed compared with pure drug.  相似文献   

9.
This study describes the development and characterization of self-microemulsifying drug delivery systems (SMEDDS) in liquid and pellet forms that result in improved solubility, dissolution, and in vivo oral absorption of the poorly water-soluble compound curcumin. Solubility of curcumin was determined in various vehicles, including oils, surfactants and co-surfactants. Pseudo-ternary phase diagrams were constructed to identify the most efficient self-emulsification region. The optimized SMEDDS used for curcumin formulations in liquid and pellet forms contained 70% mixtures of two surfactants: Cremophor EL and Labrasol (1:1), and 30% mixtures of oil: Labrafac PG and Capryol 90 (1:1). The curcumin-SMEDDS in liquid and pellet formulations rapidly formed fine oil-in-water microemulsions, with particle size ranges of 25.8–28.8 nm and 29.6–32.8 nm, respectively. The in vitro rate and extent of release of curcumin from liquid SMEDDS and SMEDDS pellets was about 16-fold higher than that of unformulated curcumin. Plasma concentration–time profiles from pharmacokinetic studies in rats dosed with liquid and pelleted SMEDDS showed 14- and 10-fold increased absorption of curcumin, respectively, compared to the aqueous suspensions of curcumin. Curcumin-SMEDDS liquid and curcumin-SMEDDS pellets were found to be stable up to 6 months under intermediate and accelerated conditions. These studies demonstrate that the new self-microemulsifying systems in liquid and pellet forms are promising strategies for the formulation of poorly soluble lipophilic compounds with low oral bioavailability.  相似文献   

10.
Lipid-based formulations have established a significant role in the formulation of poorly soluble drugs for oral administration. In order to better understand their potential advantages over solid oral dosage forms, we studied the solubility and dissolution/precipitation characteristics of three self-microemulsifying drug delivery system (SMEDDS) formulations and one suspension of micronized fenofibrate in lipid excipients, for which pharmacokinetic studies had already been reported in the open literature. The in vitro dispersion/dissolution studies were carried out in biorelevant media using USP II apparatus. These were followed up by in silico simulations using STELLA® software, in which not only dispersion/dissolution, but also the precipitation and re-dissolution of fenofibrate was taken into account. While unformulated drug exhibited poor solubility (0.22 μg/mL in FaSSGF and 4.31 μg/mL in FaSSIF-V2(PO4)) and dissolved less than 2% in dissolution tests, the solubility of fenofibrate in the presence of the lipid excipients increased dramatically (e.g., to 65.44 μg/mL in the presence of the Myritol 318/TPGS/Tween 80 SMEDDS) and there was an attendant increase in the dissolution (over 80% from capsules containing the Myritol 318/TPGS/Tween 80 SMEDDS and about 20% from the dispersion of fenofibrate in lipid excipients). For the four lipid-based fenofibrate formulations studied, combining in vitro data in biorelevant media with in silico simulation resulted in accurate prediction of the in vivo human plasma profiles. The point estimates of Cmax and AUC ratio calculated from the in silico and in vivo plasma profiles fell within the 0.8–1.25 range for the SMEDDS solution and capsule formulations, suggesting an accurate simulation of the in vivo profiles. This similarity was confirmed by calculation of the respective f2 factors. Sensitivity analysis of the simulation profiles revealed that the SMEDDS formulations had virtually removed any dependency of absorption on the dissolution rate in the small intestine, whereas for the dispersion in lipid excipients, this barrier remained. Such results pave the way to optimizing the performance of oral lipid-based formulations via an in vitroin silicoin vivo approach.  相似文献   

11.
Cilostazol is practically insoluble in water and thus results in poor bioavailability. Only a few approaches have been reported for improving the bioavailability of cilostazol. Solid dispersion technique via solvent evaporation method was applied to improve the solubility and dissolution of cilostazol. Various polymers, mixture of polymer and surfactant, and mixture of polymers were screened as a carrier for the solid dispersion. Solubility of cilostazol was improved significantly when Eudragit® L100 was used as a carrier. However, addition of surfactant to Eudragit® L100 decreased the solubility slightly. Whereas, the mixture of Eudragit® L100 and Eudragit® S100 as a carrier system further increased the solubility. Based on the highest solubility obtained among the carriers screened, 1:1 ratio of Eudragit® L100 and Eudragit® S100 was selected as a carrier, and drug to carrier ratio was optimized to 1:5. Differential scanning calorimetry and X-ray diffraction studies showed that the characteristic peak of cilostazol disappeared in the solid dispersion, indicating that cilostazol existed in amorphous form in this formulation. Spray drying method was superior to vacuum drying method in terms of dissolution rate. Meanwhile, it was observed that the disintegration rate and the concentration of polymer had some effect on the crystallization of cilostazol in dissolution medium. Tablet formulation containing spray dried solid dispersion showed significant improvement in dissolution as compared to the commercial tablet.  相似文献   

12.
Solid self-microemulsifying drug delivery systems (SMEDDS) have received considerable attention in recent times attempting to overcome the drawbacks of liquid SMEDDS. Earlier literature reports on solid SMEDDS have focussed on formulation development; however, the digestibility and propensity for self-assembly of the digested components with endogenous bile salts and phospholipids are unknown. Therefore, as a starting point, previously reported solid SMEDDS containing Gelucire® 44/14 (GEL) and the non-digestible surfactants, Vitamin E TPGS (TPGS) and Lutrol® F 127 (F 127), were prepared, and their dispersion and digestion behaviours were studied using an in vitro lipolysis model, coupled with small-angle X-ray scattering (SAXS) to determine the formed colloidal structures during digestion in real time. GEL alone was digested (89%) and formed a lamellar phase (Lα). When surfactants were added at a 40:60%?w/w lipid to surfactants ratio, digestion was inhibited with a significant lag time being evident. However, increasing the fraction of GEL to 50%?w/w enabled digestion with reduced lag time. The substitution of the non-digestible surfactants with digestible surfactants, sucrose esters S-1670 (S-1670) and Span® 60 (S-60), eliminated the digestion lag time, and the formation of colloidal structures was more similar to that of GEL alone.  相似文献   

13.
Vinpocetine, a widely used neurotropic agent, has low oral bioavailability due to its poor solubility and extensive hepatic first-pass metabolism. In the present work, self-microemulsifying drug delivery systems (SMEDDS) employing long chain triglycerides (LCT) were successfully developed to increase vinpocetine’s solubility and reduce its hepatic first pass metabolism, thus enhancing its overall oral bioavailability. Maisine?35-1 was chosen as the lipid component in the formulated SMEDDS as it showed the maximal vinpocetine solubility within different LCT tested. Feasibility of obtaining SMEDDS, containing Maisine?35-1, together with Transcutol®HP and either Cremophor®EL or Tween 80, was evaluated using ternary phase diagrams. In vitro release studies performed in phosphate buffer of pH 7.4 illustrated that extent of vinpocetine release from SMEDDS was drastically higher than that obtained from commercial Cavinton® tablets. The industrial usefulness of the developed SMEDDS was evaluated regarding their moisture sorption isotherms when filled into gelatin capsules and stored at different relative humidity. Vinpocetine’s optimal SMEDDS did not induce gross changes in the gastrointestinal mucosa of rats at the investigated dose. Moreover, it significantly improved the relative oral bioavailability of vinpocetine compared to Cavinton® tablets. Accordingly, this study suggests that SMEDDS containing LCT under proper optimization and safety assessment can be effectively utilized for oral bioavailability enhancement of vinpocetine.  相似文献   

14.
Abstract

Solid self-nanoemulsifying (S-SNEDDS) asymmetrically coated osmotic tablets of the poorly water-soluble drug Vinpocetine (VNP) were designed. The aim was to control the release of VNP by the osmotic technology taking advantage of the solubility and bioavailability-enhancing capacity of S-SNEDDS. Liquid SNEDDS loaded with 2.5?mg VNP composed of Maisine? 35-1, Transcutol® HP, and Cremophor® EL was adsorbed on the solid carrier Aeroperl®. S-SNEDDS was mixed with the osmotic tablet excipients (sodium chloride, Avicel®, HPMC-K4M, PVP-K30, and Lubripharm®), then directly compressed to form the core tablet. The tablets were dip coated and mechanically drilled. A 32*21 full factorial design was adopted. The independent variables were: type of coating material (X1), concentration of coating solution (X2), and number of drills (X3). The dependent variables included % release at 2?h (Y1), at 4?h (Y2), and at 8?h (Y3). The in vivo performance of the optimum formula was assessed in rabbits. Zero-order VNP release was obtained by the single drilled 1.5% Opadry® CA coated osmotic tablets and twofold increase in VNP bioavailability was achieved. The combination of SNEDDS and osmotic pump tablet system was successful in enhancing the solubility and absorption of VNP as well as controlling its release.  相似文献   

15.
《Drug delivery》2013,20(6):675-690
Abstract

Self-microemulsifying drug delivery system (SMEDDS) has emerged as a vital strategy to formulate poor water soluble compounds for bioavailability enhancement. However, certain limitations are associated with SMEDDS formulations which include in vivo drug precipitation, formulation handling issues, limited lymphatic uptake, lack of predictive in vitro tests and oxidation of unsaturated fatty acids. These limitations restrict their potential usage. Inclusion of polymers or precipitation inhibitors within lipid based formulations helps to maintain drug supersaturation after dispersion. This, thereby, improves the bioavailability and reduces the variability on exposure. Also, formulating solid SMEDDS helps to overcome liquid handling and stability problems. Usage of medium chain triglycerides (MCT) and suitable antioxidants to minimize oxidation of unsaturated fatty acids are few of the steps to overcome the limitations associated with SMEDDS. The review discussed here, in detail, the limitations of SMEDDS and suitable measures that can be taken to overcome them.  相似文献   

16.
A simple and rapid high-performance liquid chromatographic (HPLC) method for simultaneous determination and quantification of pyramethamine, sulfadoxine, mefloquine HCl and ibuprofen was developed. The chromatographic system consisted of a Shimadzu LC-10 AT VP pump, SPD-10 AV VP UV visible detector, and CBM-102 Bus Module integrator. Separation was achieved on a μBondapak 125 A, C-18, 10-μm column at room temperature. The sample was introduced through an injector valve with a 10-μL sample loop. Acetonitrile/water (50:50, v/v) was used as the mobile phase, with a flow rate of 2 mL/min. The pH was adjusted to 2.6 with phosphoric acid. UV detection was performed at 220 nm. The results obtained showed good agreement with the declared content. Recovery values were from 99.43 to 101.52% for mefloquine (250 mg in Fansimef® tablet), from 99.32 to 100.7% for pyrimethamine (25 mg in Fansimef® tablet), from 99.29 to 100.21% for sulfadoxine (500 mg in Fansimef® tablet), and from 99.96 to 100.04% for ibuprofen (400 mg Dolofen® tablet). The proposed method is rapid, accurate, and selective; it may be used for quantitative analysis of pyramethamine, sulfadoxine, mefloquine HCl, and ibuprofen from raw materials, in bulk drugs, and from dosage formulations.  相似文献   

17.
Oral paclitaxel (PTXL) formulations freed from cremophor® EL (CrEL) is always in utmost demand by the cancerous patients due to toxicities associated with the currently marketed formulation. In our previous investigation [Int. J. Pharm. 2014; 460:131], we have developed an oral oil based nanocarrier for the lipophilic drug, PTXL to target bioavailability issue and patient compliance. Here, we report in vivo antitumor activity and 28-day sub-chronic toxicity of the developed PTXL nanoemulsion. It was observed that the apoptotic potential of oral PTXL nanoemulsion significantly inhibited the growth of solid tumor (59.2 ± 7.17%; p < 0.001) without causing any explicit toxicity. The 6.5 mg/kg and 3 mg/kg oral PTXL nanoemulsion dose did not cause any notable alteration in haematological, biochemical/structural characteristics during 28-day sub-chronic toxicity studies in the experimental mice. Whereas, the toxicity of 12.8 mg/kg body weight dose showed decrease in RBC, haemoglobin and neutrophil counts. In contrast, marketed PTXL (Taxol®) was found to be comparatively more toxic to the experimental animals. Taxol® treatment resulted glomerulonephritis in histopathological examination, which could be correlated with increased level of creatinine and associated nephrotoxicity. This investigations conclude that the developed oral nanoemulsion presents a viable therapeutics bio-system to step towards clinical application as well as substitute CrEL based PTXL formulations.  相似文献   

18.
To develop a novel flurbiprofen-loaded solid self-microemulsifying drug delivery system (solid SMEDDS) with improved oral bioavailability using gelatin as a solid carrier, the solid SMEDDS formulation was prepared by spray-drying the solutions containing liquid SMEDDS and gelatin. The liquid SMEDDS, composed of Labrafil M 1944 CS/Labrasol/Transcutol HP (12.5/80/7.5%) with 2% w/v flurbiprofen, gave a z-average diameter of about 100?nm. The flurbiprofen-loaded solid SMEDDS formulation gave a larger emulsion droplet size compared to liquid SMEDDS. Unlike conventional solid SMEDDS, it produced a kind of microcapsule in which liquid SMEDDS was not absorbed onto the surfaces of carrier but formed together with carrier in it. However, the drug was in an amorphous state in it like conventional solid SMEDDS. It greatly improved the oral bioavailability of flurbiprofen in rats. Thus, gelatin could be used as a carrier in the development of solid SMEDDS with improved oral bioavailability of poorly water-soluble drug.  相似文献   

19.
《Saudi Pharmaceutical Journal》2021,29(10):1143-1154
Gastroretentive raft-forming formulations were developed in liquid and chewable tablet dosage forms to achieve prolonged delivery of quercetin in the stomach. The formulations contained a solid dispersion of quercetin and polyvinylpyrrolidone (PVP K 30) at a 1:10 w/w ratio to improve the solubility of the flavonoid. The formulations also contained sodium alginate as a gel forming agent, calcium carbonate as a calcium source and carbon dioxide producer and hydroxypropyl methylcellulose K100M as a drug release retarding polymer. The chewable tablets incorporated mannitol as a diluent. Both liquid and chewable tablet formulations exhibited rapid floating behaviour (lag time < 1 min) and long floating duration (>24 h) in 0.1 N HCl. The optimized liquid formulation showed superior characteristics based on high raft strength (10.4 g) and sustained release of quercetin (93 % over 8 h) whereas the optimized chewable tablet formulation exhibited lower raft strength (7.2 g) and lower drug release (79 % in 8 h). The optimized liquid and chewable tablet formulations were found to induce anti-inflammatory activity in cell culture using RAW 264.7 cells macrophages and enhance the migration of human gastric adenocarcinoma (AGS) epithelial cells in vitro, indicating wound healing potential for treatment of gastric ulcers.  相似文献   

20.

Purpose

The present work reports rationalized development and characterization of solidified self-nanoemulsifying drug delivery system for oral delivery of combinatorial (tamoxifen and quercetin) therapeutic regimen.

Methods

Suitable oil for the preparation of liquid SNEDDS was selected based on the maximum saturation solubility of both the drugs while surfactant and co-surfactant were selected based on their emulsification ability. Extreme vertices mixture design and 32 full factorial design were implemented for optimization of liquid SNEDDS and concentration of solid carrier in lyophilization mixture. Finally, extensive characterization of the developed formulation was performed and in vitro cellular uptake was evaluated in Caco-2 cell culture model.

Results

Extreme vertices mixture design indicated the desirability of 0.663, corresponded to 40:30:30 w/w as optimum ratio of oil (Capmul® MCM), surfactant (Cremophor RH 40) and co-surfactant (Labrafil 1944CS) in liquid SNEDDS, which solubilized high amount of tamoxifen (10 mg/g) and quercetin (19.44 mg/g). A, 32 full factorial design revealed the optimum concentration of the selected solid carrier (Aerosil 200) of 5.24% w/w and 1.61, when measured in terms of total solid content and liquid SNEDDS: Aerosil 200 ratio, respectively. The developed formulation revealed instantaneous emulsification (in?<?2 min), while maintaning all the quality attributes even after storage at accelerated stability condition for 6 months. Finally, the developed formulation revealed 9.63-fold and 8.44-fold higher Caco-2 uptake of tamoxifen and quercetin, respectively in comparison with free drug counterparts.

Conclusions

The developed formulation strategy revealed a great potential for oral delivery of combination drugs having utmost clinical relevance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号