首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Both [Leu5]- and [Met5]-enkephalin have been localized immunohistochemically in nerve fibres and in small, intensely fluorescent cells of adult human sympathetic ganglia. The nerve fibres showing enkephalin-like immunoreactivity formed a network varying in density around the sympathetic neurons, some being closely related to the perikarya. No labelled neuronal cell bodies were found. No structures within the ganglion were labelled after reaction with antibodies to vasoactive intestinal polypeptide, adrenocorticotrophin or substance P. No differences between the distributions of [Leu5]-and [Met5]-enkephalin-like immunoreactivities were found.The physiological roles of enkephalins are still unknown, but it is possible that they might act as neurotransmitters or neuromodulators in the human sympathetic nervous system.  相似文献   

2.
The identification of opiate-like substances in extracts of the gastrointestinal tract and nervous system of vertebrates suggests that the known endogenous opiate-like peptides [Met5]- and [Leu5]-enkephalin might have a role in neurotransmission. In this study the gastrointestinal tract of guinea-pigs, rats and hamsters was examined by the immunoperoxidase-bridge method using specific antisera raised against [Met5]- and [Leu5]-enkephalin. Immunostained nerve fibers were most numerous in Meissner's plexus of the duodenum and in the circular muscle layer of the stomach and rectum of the guinea-pig. Nerve fibers in the guinea-pig esophagus and cardia of the stomach stained with [Met5]- but not with [Leu5]-enkephalin antiserum. Staining was not observed in any epithelial cells. The regional distribution of these peptides was also examined by radioimmunoassay of extracts of the gut of guinea-pigs and rats. The highest concentrations of [Met5]- and [Leu5]-enkephalin were found in extracts of guinea-pig duodenum at a ratio of 11:1, respectively.These findings provide evidence for an enkephalinergic nervous system in the gastrointestinal tract.  相似文献   

3.
Using an indirect immunofluorescence method the distribution of vasoactive intestinal peptide (VIP) immunoreactivity was studied in human foetus and newborn infant spinal cord and dorsal root ganglia. Further, for comparison some newborn infant brains were also investigated. Vasoactive intestinal peptide-like immunoreactive fibres were exclusively found in the caudal spinal cord and corresponding dorsal root ganglia. No immunoreactive cell bodies were detected. The first appearance of VIP-like immunoreactive fibres in both spinal cord and dorsal root ganglia was suggested during the fourth month of foetal life. Most immunolabelled fibres, concentrated in the sacral segment, were distributed in the Lissauer tract, along the dorsolateral gray border, in the intermediolateral areas and near the central canal in the dorsolateral commissure. A few VIP-like immunoreactive fibres were also seen in the dorsal funiculus and occasionally in the ventral gray horn and ventral roots. Further, a large population of VIP-like immunoreactive fibres occurs longitudinally in dorsal root, in ganglia and in the spinal nerve exit zone. These findings indicate the early appearance of VIP-like immunoreactive fibres in the human foetus spinal cord and corresponding ganglia. Moreover, they emphasize that in both foetus and newborn infant spinal cord VIP-like immunoreactive fibre distribution is limited to the lumbosacral segment.  相似文献   

4.
We have examined the possible origin of vasoactive intestinal polypeptide (VIP) and substance P-containing axons and the synapses formed by these axons in the celiac ganglion of the cat, by means of ultrastructural immunohistochemistry combined with various surgical lesions.Axons containing VIP as well as those immunopositive for substance P, formed axo-dendritic and axosomatic synapses with principal ganglion cells. After transaction of the superior mesenteric nerve numerous degenerated axonal profiles could be found in the celiac ganglion. Some of these contained VIP immunoreactivity. By contrast in alternate sections stained with substance P antibody only intact axons were labelled.Bilateral vagotomy resulted in the appearance of degenerating axonal profiles in the celiac ganglion, some of which could be stained with substance P antiserum but not with VIP antiserum. Following removal of dorsal root ganglia (Th6-Th12) from both sides, a large number of degenerated axons were found, many of which were immunopositive for substance P but not for VIP.We conclude that the peripheral input to the celiac ganglion contains VIP fibers which form synapses with principal ganglion cells. Substance P-containing fibers reach the celiac ganglion via the vagal nerve as well as from the dorsal root ganglia, and they form synapses with the principal ganglion cells. It is proposed that the VIP and the substance P-containing axons are involved in two different peripheral reflex loops.  相似文献   

5.
The ontogeny and distribution of nerve cell bodies and fibres which contain vasoactive intestinal polypeptide-, substance P-, enkephalin- and neurotensin-like immunoreactivity have been studied in the chicken gastrointestinal tract, using immunocytochemistry. All four peptides were found in nerve fibres, with characteristic distribution patterns, which, in the cases of vasoactive intestinal polypeptide, substance P and methionine enkephalin were similar to those described for the mammalian gut. In addition, many of these fibres were shown to arise from intrinsic neurons, since immunoreactive nerve cell bodies for each of the peptides studied were observed. Neurotensin-immunoreactive nerves were confined to the upper part of the tract and neurotensin immunoreactive cell bodies were only observed in embryonic and newly hatched chicken gut. All four peptides were first observed at 11 days of incubation, or Hamburger-Hamilton stage 37,20 in the upper part of the tract, particularly in the gizzard. Substance P and methionine enkephalin were subsequently seen in more caudal regions, while vasoactive intestinal polypeptide developed from each end of the tract. Adult patterns of immunoreactivity in nerve fibres were achieved during the first week after hatching. A striking observation was that immunoreactive neuronal cell bodies were much more abundant in the gut of young chickens and chicken embryos than in that of adult birds.  相似文献   

6.
应用乙酰胆碱酯酶(AChE)组织化学和PAP免疫组织化学方法,比较观察P物质(SP)、血管活性肠肽(VIP)和AChE三种阳性神经元在大鼠十二指肠、空肠、回肠、结肠和直肠内的分布特征及其相互关系。结果显示:SP、VIP、AChE阳性神经神经元和纤维均分布于肠壁各层,从十二指肠、空肠到回肠逐渐增多,但从结肠到直肠则逐渐减少;AChE阳性神经元或纤维在肠壁各层最丰富,其中VIP以粘膜层和粘膜下神经丛较丰富,SP以肠肌丛较丰富;三者的分布密度为AChE>VIP>SP。AChE、SP和VIP阳性神经元胞体及神经纤维在不同肠段的分布密度有明显差异(P<0.05),提示可能与不同肠段肠动力调节功能有关。  相似文献   

7.
8.
The development of vasoactive intestinal peptide, substance P and calcitonin gene-related peptide in parotid, submandibular and sublingual glands of the male rat was followed by immunochemistry and immunocytochemistry. The total amounts of these peptides increased in surges during the first 8 weeks of the animal's life; one within 2–4 weeks and the other beginning 1–2 weeks later. Nerve fibres containing these peptides were present at birth showing a pattern of distribution similar to that in adults. During the first 4 weeks the nerve fibres increased in number.  相似文献   

9.
After different denervation procedures the guinea-pig inferior mesenteric ganglion was analysed by immunohistochemistry using antisera to substance P, enkephalin, vasoactive intestinal polypeptide, cholecystokinin and bombesin. The results demonstrate that each of the nerve trunks connected to the ganglion carries specific peptidergic pathways. Thus, the lumbar splachnic nerves contain substance P-immunoreactive primary afferent neurons, which to a large extent traverse the ganglion, and enkephalin-immunoreactive preganglionic neurons; the colonie nerves carry vasoactive intestinal polypeptide-, cholecystokinin- and bombesin-immunoreactive fibers from the distal colon to the ganglion; the hypogastric nerves contain vasoactive intestinal polypeptide-positive fibers from the pelvic plexus; and the intermesenteric nerve contains vasoactive intestinal polypeptide, cholecystokinin, substance P and enkephalin from divergent sources. By studying accumulations of peptides in ligated lumbar splanchnic, intermesenteric, hypogastric and colonic nerves the existence of these major peptidergic pathways was confirmed and evidence was obtained for additional, not so prominent, peptidergic projections. The results are discussed in view of earlier morphological and physiological studies.  相似文献   

10.
The distribution of the neuropeptides vasoactive intestinal polypeptide, cholecystokinin octapeptide, substance P, neurotensin, methionine-enkephalin and somatostatin has been mapped immunocytochemically in the bed nucleus of the stria terminalis, one of the major sites of termination for efferent projections from the amygdala. Immunoreactive fibres and terminals were distributed more or less topographically and largely in accordance with the previously described localization of peptide-containing cell bodies in the amygdala and the amygdaloid projection fields in the bed nucleus as described by neuroanatomical techniques. Thus, vasoactive intestinal polypeptide, which was found in some of the lateral amygdaloid nuclei, had a substantial projection to the lateral bed nucleus. The lateral bed nucleus also contained cholecystokinin-octapeptide, substance P, neurotensin and methionine-enkephalin immunoreactivity which probably derived from the central amygdaloid nucleus, whilst cholecystokinin-octapeptide, and especially substance P-containing fibres, were found in the medial bed nucleus and probably arise from cells in the medial amygdala. Reciprocal amygdalopetal projections were suggested by the presence of substance P- and somatostatin-containing cell bodies in the mediodorsal bed nucleus and vasoactive intestinal polypeptide cells in the lateral bed nucleus, but somatostatin otherwise had a widespread distribution. Numerous local peptidergic connections were also noted both within the bed nucleus and between it and adjacent structures, especially the preoptic area, hypothalamus and the basal ganglia. These data provide further evidence that neuropeptides play a major role in the connectivity of the limbic system and show that the bed nucleus of the stria terminalis is an important relay station, particularly between amygdaloid efferents and other forebrain areas.  相似文献   

11.
The distribution of peptide-containing neurons in the oesophagus, stomach and small and large intestine of the rat and the guinea-pig has been studied with the indirect immunofluorescence technique ofCoons &; Co-workers (1958) using antisera to substance P, vasoactive intestinal polypeptide (VIP), enkephalin, somatostatin, gastrin and neurotensin. (The gastrin antiserum is to the C-terminal portion and consequently reacts also with cholecystokinin (CCK)-like peptides.) For comparison, the noradrenergic innervation was visualized with antiserum to dopamine β-hydroxylase. For improved visualization of peptide-containing cell bodies, a mitotic inhibitor (colchicine or vinblastine) was applied locally on the different parts of the gastro-intestinal tract of several animals.Substance P-, VIP-, enkephalin- and somatostatin-like immunoreactivity was observed in all parts of the gastro-intestinal tract studied. Gastrin/CCK had a more limited distribution, especially in the guinea-pig and neurotensin was seen only in certain regions and layers of the rat gastro-intestinal tract.Immunoreactivity to all peptides except neurotensin was observed both in cell bodies and fibres; immunoreactivity to neurotensin has so far only been seen in nerve fibres. Substance P and enkephalin immunoreactive cells were often numerous in the myenteric plexus, whereas VIP and somatostatin immunoreactive cells were preferentially located in the submucous plexus. Some VIP immunoreactive cells were observed in the lamina propria. Large numbers of especially substance P-, VIP- and enkephalin-containing fibres were often seen in the circular muscle layer and in the two ganglionic plexuses. Substance P immunoreactive fibres formed the densest network in the ganglionic plexuses, whereas VIP immunoreactive fibres constituted the most impressive network in the lamina propria and often extended into the most superficial parts of the mucosa. Enkephalin immunoreactive structures were mainly confined to the circular and longitudinal muscle layers and the myenteric plexus. Somatostatin immunoreactive fibres were mainly found in the ganglionic plexuses.Peptide-containing fibres, particularly these containing substance P and VIP were often seen along blood vessels, but never with such a density as the noradrenergic (dopamine β-hydroxylase immunoreactive) fibres. No somatostatin or neurotensin immunoreactive fibres were observed in relation to clearly identifiable blood vessels.The possible coexistence of two peptides in one neuron was studied. For this part of the study the proximal colon and five antisera, namely substance P, VIP, enkephalin. somatostatin and gastrin/CCK antisera were selected. Evidence was obtained for the occurrence of a somatostatin-like and a gastrin/ CCK-like peptide in the same neurons. This may indicate a common precursor for the two peptides in these particular neurons. Each of the substance P-, VIP- and enkephalin-like peptides. on the other hand, seem to be present in different neuronal populations, which were themselves distinct from the somatostatin-gastrin/CCK immunoreactive neurons. In addition, somatostatin immunoreactive neurons different from the gastrin/CCK immunoreactive ones seem to exist. The gastrin/CCK immunoreactive fibres around blood vessels may represent a further, separate population of fibres, since no somatostatin immunoreactive fibres were seen at this location.The findings indicate the existence of numerous subpopulations of enteric neurons, each characterized by its content of a certain peptide (or peptides). The axons of most of these neurons probably terminate in the wall of the gastro-intestinal tract, but some seem to project to other organs. In addition, some peptide-containing fibres in the gastro-intestinal wall may have an extrinsic origin. The relationship between these peptide-containing neurons and the cholinergic enteric neurons and any of the other non-cholinergic. non-adrenergic inhibitory and excitatory neurons present in the enteric nervous system is not known. It is, however, noteworthy that a somatostatin-like peptide seems to be present in noradrenergic neurons of prevertebral ganglia that project to the intestine. The possibility must be kept in mind that one or more of the peptides in the gut could be localized in neurons that contain other potential transmitters, e.g. acetylcholine.The wide variety of pharmacological actions of these neuronal peptides on smooth muscle and neurons in the gut and on its blood vessels raises the possibility that some of them may be neurotransmitters.  相似文献   

12.
In immunohistochemical studies on rat two types of nerve fibres, both showing substance P and calcitonin gene-related peptide-like immunoreactivity, have been localized in the sphenopalatine ganglion, the principal cells of which contain both vasoactive intestinal polypeptide and choline acetyltransferase. One fine-calibre fibre type forms basket-like arrangements around approximately 3–5% of the principal neurons, whereas another, more coarse type traverses the ganglion without making contacts with the ganglion cells. By transection of nerves connecting with the ganglion, in combination with retrograde tracing experiments, it was concluded that the fine-calibre fibres exclusively come from the trigeminal ganglion, whereas the second type in addition, and mainly, originate in the internal carotid ganglion which is situated along the greater superficial petrosal nerve and the pterygoid nerve at their junction with the internal carotid nerve. The brain vasculature was shown to be one target structure for the innervated principal cells in the sphenopalatine ganglion.

The arrangement provides the functional possibility for a modulatory interaction between the autonomie and sensory systems, thus resembling an axon reflex mechanism in the peripheral nervous system.  相似文献   


13.
The distribution of immunoreactive cholecystokinin, substance P, [Met]enkephalin, [Leu]-enkephalin and dynorphin was determined in the cerebral cortex of the human brain post mortem. Peptide radioimmunoassays in three selected zones of the cortical gray mantle (frontal, temporal, occipital) revealed significant regional differences, prompting to the development of a new dissection procedure for the complete mapping of peptide-like materials throughout the entire cerebral cortex. For this purpose, frozen cerebral hemispheres were cut rostrocaudally in 21 verticofrontal serial sections, from which the cortical gray matter was divided into 4-5 distinct zones. The peptides could be measured in each of the 93 dissected pieces of tissue, but their distribution was uneven. The most abundant was cholecystokinin, particularly in the anterior part of the frontal lobe and in the temporal cortex, where its levels reached 0.5 ng/mg of tissue. The regional distribution of cholecystokinin resembled that of substance P with a decreasing gradient from the frontal to the occipital pole, but absolute levels of substance P were hardly one tenth of cholecystokinin levels. The mean concentrations of the three opioid peptides were even less than those of substance P, and their regional distributions were markedly different. [Met]Enkephalin was concentrated in the occipital cortex, and [Leu]enkephalin in the temporal cortex. Dynorphin was the least abundant, even in the temporal cortex where the highest levels were found. The widespread and heterogeneous distribution of these peptides strongly suggests that each of them exerts specific functions in the human cerebral cortex.  相似文献   

14.
Anatomical and functional studies on the autonomic innervation as well as the location of airway receptors in the air-bladder of lepisosteids are very fragmentary. These water-breathing fishes share in common with the bichirs the presence of a glottis (not a ductus pneumaticus) opening into the esophagus. In contrast to a high concentration of neuroepithelial cells (NECs) contained in the furrowed epithelium in the lung of Polypterus, these cells are scattered as solitary cells in the glottal epithelium, and grouped to form neuroepithelial bodies (NEBs) in the mucociliated epithelium investing the main trabeculae in the air-bladder of Lepisosteus osseus and L. oculatus. The present immunohistochemical studies also demonstrated the presence of nerve fibers in the trabecular striated musculature and a possible relation to NEBs in these species, and identified immunoreactive elements of this innervation. Tyrosine hydroxylase (TH), choline acetyltransferase (ChAT), 5-HT and neuropeptide immunoreactivities were detected in the intramural nerve fibers. 5-HT and VIP immunopositive nerve fibers are apparently associated with NEBs. TH, VIP and SP immunoreactivities are also present in nerve fibers coursing in the radially arranged striated muscle surrounding the glottis and its submucosa. 5-HT positive neurons are also found in submucosal and the muscle layers of the glottis. The physiological function of the adrenergic and inhibitory innervation of the striated muscle as well as the neurochemical coding and morphology of the innervation of the NEBs are not known. Future studies are needed to provide evidence for these receptors with the capacity of chemoreceptors and/or mechanoreceptors.  相似文献   

15.
The carotid labyrinth is an enigmatic endocrine structure of unknown chemosensory function lying in the gill region of the catfishes. The carotid body is found at the carotid bifurcation of amphibians and all mammalian vertebrates on the evolutionary tree. It is a vascular expansion comprised of a cluster of glomus cells with associated (afferent and efferent) innervations. In the catfish species studied (Clarias batrachus) a neurosecretory cell system consisting of pseudobranchial neurosecretory cells connect the carotid labyrinth or large vessels (both the efferent branchial artery and dorsal aorta), and is likely akin to the glomus cells, but comparing these structures in widely divergent vertebrate species, the conclusion is that the structural components are more elaborate than those of terrestrial vertebrates. However, these cells reveal both an endocrine phenotype (such as the association with capillaries and large vessels) and the presence of regulatory substances such as neurotransmitters and neuropeptides producing good evidence for high levels of conservation of these substances that are present in the glomus cells of mammalian vertebrates. VIP-immunopositive neuronal cell bodies are detected in the periphery of the carotid labyrinth. They are presumptive local neurons that differ from pseudobranchial neurosecretory cells, the latter failing to express VIP in their soma.  相似文献   

16.
Swim bladders and lungs are homologous structures. Phylogenetically ancient actinopterygian fish such as Cladistians (Polypteriformes), Ginglymods (Lepisosteids) and lungfish have primitive lungs that have evolved in the Paleozoic freshwater earliest gnathostomes as an adaptation to hypoxic stress. Here we investigated the structure and the role of autonomic nerves in the physostome swim bladder of the cyprinid goldfish (Carassius auratus) and the respiratory bladder of lepisosteids: the longnose gar and the spotted gar (Lepisosteus osseus and L. oculatus) to demonstrate that these organs have different innervation patterns that are responsible for controlling different functional aspects. The goldfish swim bladder is a richly innervated organ mainly controlled by cholinergic and adrenergic innervation also involving the presence of non-adrenergic non-cholinergic (NANC) neurotransmitters (nNOS, VIP, 5-HT and SP), suggesting a simple model for the regulation of the swim bladder system. The pattern of the autonomic innervation of the trabecular muscle of the Lepisosteus respiratory bladder is basically similar to that of the tetrapod lung with overlapping of both muscle architecture and control nerve patterns. These autonomic control elements do not exist in the bladders of the two species studied since they have very different physiological roles. The ontogenetic origin of the pulmonoid swim bladder (PSB) of garfishes may help understand how the expression of these autonomic control substances in the trabecular muscle is regulated including their interaction with the corpuscular cells in the respiratory epithelium of this bimodal air-breathing fish.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号