首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well established that axons of the adult mammalian CNS are capable of regrowing only a limited amount after injury. Astrocytes are believed to play a crucial role in the failure to regenerate, producing multiple inhibitory proteoglycans, such as chondroitin sulphate proteoglycans (CSPGs). After spinal cord injury (SCI), astrocytes become hypertrophic and proliferative and form a dense network of astroglial processes at the site of lesion constituting a physical and biochemical barrier. Down-regulations of astroglial proliferation and inhibitory CSPG production might facilitate axonal regeneration. Recent reports indicated that aberrant activation of cell cycle machinery contributed to overproliferation and apoptosis of cells in various insults. In the present study, we sought to determine whether a cell cycle inhibitior, olomoucine, would decrease neuronal cell death, limit astroglial proliferation and production of inhibitory CSPGs, and eventually enhance the functional compensation after SCI in rats. Our results showed that up-regulations of cell cycle components were closely associated with neuronal cell death and astroglial proliferation as well as the production of CSPGs after SCI. Meanwhile, administration of olomoucine, a selective cell cycle kinase (CDK) inhibitor, has remarkably reduced the up-regulated cell cycle proteins and then decreased neuronal cell death, astroglial proliferation, and accumulation of CSPGs. More importantly, the treatment with olomoucine has also increased expression of growth-associated proteins-43, reduced cavity formation, and improved functional deficits. We consider that suppressing astroglial cell cycle in acute SCIs is beneficial to axonal growth. In the future, therapeutic strategies can be designed to achieve efficient axonal regeneration and functional compensation after traumatic CNS injury.  相似文献   

2.
Traumatic spinal cord injury (SCI) evokes a complex cascade of events with initial mechanical damage leading to secondary injury processes that contribute to further tissue loss and functional impairment. Growing evidence suggests that the cell cycle is activated following SCI. Up-regulation of cell cycle proteins after injury appears to contribute not only to apoptotic cell death of postmitotic cells, including neurons and oligodendrocytes, but also to post-traumatic gliosis and microglial activation. Inhibition of key cell cycle regulatory pathways reduces injury-induced cell death, as well as microglial and astroglial proliferation both in vitro and in vivo. Treatment with cell cycle inhibitors in rodent SCI models prevents neuronal cell death and reduces inflammation, as well as the surrounding glial scar, resulting in markedly reduced lesion volumes and improved motor recovery. Here we review the effects of SCI on cell cycle pathways, as well as the therapeutic potential and mechanism of action of cell cycle inhibitors for this disorder.  相似文献   

3.
One important aspect of recovery and repair after spinal cord injury (SCI) lies in the complex cellular interactions at the injury site that leads to the formation of a lesion scar. EphA4, a promiscuous member of the EphA family of repulsive axon guidance receptors, is expressed by multiple cell types in the injured spinal cord, including astrocytes and neurons. We hypothesized that EphA4 contributes to aspects of cell–cell interactions at the injury site after SCI, thus modulating the formation of the astroglial–fibrotic scar. To test this hypothesis, we studied tissue responses to a thoracic dorsal hemisection SCI in an EphA4 mutant mouse line. We found that EphA4 expression, as assessed by β-galactosidase reporter gene activity, is associated primarily with astrocytes in the spinal cord, neurons in the cerebral cortex and, to a lesser extent, spinal neurons, before and after SCI. However, we did not observe any overt reduction of glial fibrillary acidic protein (GFAP) expression in the injured area of EphA4 mutants in comparison with controls following SCI. Furthermore, there was no evident disruption of the fibrotic scar, and the boundary between reactive astrocytes and meningeal fibroblasts appeared unaltered in the mutants, as were lesion size, neuronal survival and inflammation marker expression. Thus, genetic deletion of EphA4 does not significantly alter the astroglial response or the formation of the astroglial–fibrotic scar following a dorsal hemisection SCI in mice. In contrast to what has been proposed, these data do not support a major role for EphA4 in reactive astrogliosis following SCI.  相似文献   

4.
Spinal cord injury (SCI) causes not only sensorimotor and cognitive deficits, but frequently also severe chronic pain that is difficult to treat (SCI pain). We previously showed that hyperesthesia, as well as spontaneous pain induced by electrolytic lesions in the rat spinothalamic tract, is associated with increased spontaneous and sensory-evoked activity in the posterior thalamic nucleus (PO). We have also demonstrated that rodent impact SCI increases cell cycle activation (CCA) in the injury region and that post-traumatic treatment with cyclin dependent kinase inhibitors reduces lesion volume and motor dysfunction. Here we examined whether CCA contributes to neuronal hyperexcitability of PO and hyperpathia after rat contusion SCI, as well as to microglial and astroglial activation (gliopathy) that has been implicated in delayed SCI pain. Trauma caused enhanced pain sensitivity, which developed weeks after injury and was correlated with increased PO neuronal activity. Increased CCA was found at the thoracic spinal lesion site, the lumbar dorsal horn, and the PO. Increased microglial activation and cysteine–cysteine chemokine ligand 21 expression was also observed in the PO after SCI. In vitro, neurons co-cultured with activated microglia showed up-regulation of cyclin D1 and cysteine–cysteine chemokine ligand 21 expression. In vivo, post-injury treatment with a selective cyclin dependent kinase inhibitor (CR8) significantly reduced cell cycle protein induction, microglial activation, and neuronal activity in the PO nucleus, as well as limiting chronic SCI-induced hyperpathia. These results suggest a mechanistic role for CCA in the development of SCI pain, through effects mediated in part by the PO nucleus. Moreover, cell cycle modulation may provide an effective therapeutic strategy to improve reduce both hyperpathia and motor dysfunction after SCI.  相似文献   

5.
6.
7.
Injury to the adult central nervous system (CNS) results in the formation of glial scar tissues. Glial scar‐induced failure of regenerative axon pathfinding may limit axon regrowth beyond the lesion site and cause incorrect reinnervation and dystrophic appearance of stalled growth after CNS trauma. Glial scars also upregulate chondroitin sulphate proteoglycans (CSPGs) and expression of proinflammatory factor(s) that form a barrier to axonal regeneration. Therefore, interventions for glial scarring are an attractive strategy for augmenting axonal sprouting and regeneration and overcoming the physical and molecular barriers impeding functional repair. The glial reaction occurs shortly after spinal cord injury (SCI) and can persist for days or weeks with upregulation of cell cycle proteins. In this study, we utilised Beagle dogs to establish a preclinical SCI model and examine the efficacy of low‐dose fractionated irradiation (LDI) treatment, which was performed once a day for 14 days (2 Gy per dose, 28 Gy in total). Low‐dose fractionated irradiation is a stable method for suppressing cell activation and proliferation through interference in the cell cycle. Our results demonstrated that LDI could reduce astrocyte and microglia activation/proliferation and attenuate CSPGs and IL‐1β expression. Low‐dose fractionated irradiation also promoted and provided a pathway for long‐distance axon regeneration beyond the lesion site, induced reinnervation of axonal targets and restored locomotor function after SCI in Beagle dogs. Taken together, our findings suggest that LDI would be a promising therapeutic strategy for targeting glial scarring, promoting axon regeneration and facilitating reconstruction of functional circuits after SCI.  相似文献   

8.
E3 ubiquitin ligase SIAH1 is a protein associated with the onset of nontumorigenicy in revertant tumorigenic cell lines and with several apoptotic processes. However, its role in the injury of the central nervous system remains unknown. In this study, we performed acute spinal cord injury (SCI) in adult rats and investigated the protein expression and cellular localization of SIAH1 in the spinal cord. Western blot analysis revealed that SIAH1 was low expressed in normal spinal cord. It increased at 8 h after SCI, peaked at 1 day, remained for another 3 days, then declined to basal levels at 5 days after injury. Immunohistochemistry further confirmed that SIAH1 immunoactivity was expressed at low levels in gray and white matters in normal condition and increased after SCI. Double immunofluorescence staining showed that SIAH1 was coexpressed with NeuN (neuronal marker), CNPase (oligodendroglial marker), GFAP (astroglial marker), and CD11b (microglial marker) at 1 day post-injury and was also coexpressed with active caspase-3 in neurons and glial cells after injury. In addition, double immunofluorescence staining indicated that p-c-Jun NH2-kinase (JNK) coexpressed with SIAH1 in neurons and glial cells. Coimmunoprecipitation further showed that p-JNK and SIAH1 precipitated with each other in the damaged spinal cord. Taken together, these data suggest SIAH1 involvement in the injury response of the adult spinal cord of the rats.  相似文献   

9.
To determine whether olomoucine acts synergistically with bone morphogenetic protein-4 in the treatment of spinal cord injury, we established a rat model of acute spinal cord contusion by impacting the spinal cord at the T8 vertebra. We injected a suspension of astrocytes derived from glial-restricted precursor cells exposed to bone morphogenetic protein-4 (GDAsBMP) into the spinal cord around the site of the injury, and/or olomoucine intraperitoneally. Olomoucine effectively inhibited astrocyte proliferation and the formation of scar tissue at the injury site, but did not prevent proliferation of GDAsBMP or inhibit their effects in reducing the spinal cord lesion cavity. Furthermore, while GDAsBMP and olomoucine independently resulted in small improve- ments in locomotor function in injured rats, combined administration of both treatments had a significantly greater effect on the restoration of motor function. These data indicate that the combined use of olomoucine and GDAsBMP creates a better environment for nerve regeneration than the use of either treatment alone, and contributes to spinal cord repair after injury.  相似文献   

10.
Matrix metalloproteinases (MMPs) are a large family of proteolytic enzymes involved in inflammation, wound healing and other pathological processes after neurological disorders. MMP-2 promotes functional recovery after spinal cord injury (SCI) by regulating the formation of a glial scar. In the present study, we aimed to investigate the expression and/or activity of several MMPs, after SCI and human umbilical cord blood mesenchymal stem cell (hUCB) treatment in rats with a special emphasis on MMP-2. Treatment with hUCB after SCI altered the expression of several MMPs in rats. MMP-2 is upregulated after hUCB treatment in spinal cord injured rats and in spinal neurons injured either with staurosporine or hydrogen peroxide. Further, hUCB induced upregulation of MMP-2 reduced formation of the glial scar at the site of injury along with reduced immunoreactivity to chondroitin sulfate proteoglycans. Blockade of MMP-2 activity in hUCB cocultured injured spinal neurons reduced the protection offered by hUCB which indicated the involvement of MMP-2 in the neuroprotection offered by hUCB. Based on these results, we conclude that hUCB treatment after SCI upregulates MMP-2 levels and reduces the formation of the glial scar thereby creating an environment suitable for endogenous repair mechanisms.  相似文献   

11.
The formation of glial scars impedes growth of regenerating axons after CNS injuries such as spinal cord injury (SCI). Hepatocyte growth factor (HGF), originally identified as a mitogen for hepatocytes, exerts pleiotropic functions in the nervous system. HGF has been implicated in peripheral wound healing via regulation of the transforming growth factor beta (TGFβ), which is also a potent inducer of glial scar formation in CNS. In the present study, we found that HGF completely blocked secretion of TGFβ1 and β2 from activated astrocytes in culture. HGF also prevented expression of specific chondroitin sulfate proteoglycan (CSPG) species. To determine whether HGF inhibits glial scar formation in an in vivo SCI model, HGF overexpressing mesenchymal stem cells (HGF-MSCs) were transplanted into hemisection spinal cord lesions at C4. Transplantation of HGF-MSCs markedly diminished TGFβ isoform levels and reduced the extent of astrocytic activation. In addition, HGF-MSCs also significantly decreased neurocan expression and glycosaminoglycan chain deposition around hemisection lesions. Furthermore, animals treated with HGF-MSCs showed increased axonal growth beyond glial scars and improvement in recovery of forepaw function. Our results indicate that anti-glial scar effects of HGF, together with its known neurotrophic functions, could be utilized to ameliorate functional deficits following SCI.  相似文献   

12.
The cell division cycle 6 (CDc6) protein has been primarily investigated as a component of the pre-replicative complex for the initiation of DNA replication. Some studies have shown that CDc6 played a critical role in the development of human carcinoma. However, the expression and roles of CDc6 in the central nervous system remain unknown. We have performed an acute spinal cord injury (SCI) model in adult rats and investigated the dynamic changes of CDc6 expression in spinal cord. Western blot have found that CDc6 protein levels first significantly increase, reach a peak at day 3, and then gradually return to normal level at day 14 after SCI. Double immunofluorescence staining showed that CDc6 immunoreactivity was found in neurons, astrocytes, and microglia. Additionally, colocalization of CDc6/active caspase-3 has been detected in neurons and colocalization of CDc6/proliferating cell nuclear antigen has been detected in astrocytes and microglial. In vitro, CDc6 depletion by short interfering RNA inhibits astrocyte proliferation and reduces cyclin A and cyclin D1 protein levels. CDc6 knockdown also decreases neuronal apoptosis. We speculate that CDc6 might play crucial roles in CNS pathophysiology after SCI.  相似文献   

13.
Wallerian degeneration in the dorsal columns (DC) after spinal cord injury (SCI) is associated with microglial activation and prolonged oligodendrocyte (OL) apoptosis that may contribute to demyelination and dysfunction after SCI. But, there is an increase in OL lineage cells after SCI that may represent a reparative response, and there is evidence for remyelination after SCI. To assess the role of axonal degeneration per se in OL apoptosis and proliferation, we cut the L2‐S2 dorsal roots producing massive axonal degeneration and microglial activation in the DC, and found no evidence of OL loss or apoptosis. Rather, the numbers of OL‐lineage cells positive for NG2 and APC (CC1) increased, and BrdU studies suggested new OL formation. We then tested contusion SCI (cSCI) that results in comparable degeneration in the DC rostral to the injury, microglial activation, and apoptosis of DC OLs by eight days. NG2+ cell proliferation and oligodendrogenesis was seen as after rhizotomy. The net result of this combination of proliferation and apoptosis was a reduction in DC OLs, confirming earlier studies. Using an antibody to oxidized nucleic acids, we found rapid and prolonged RNA oxidation in OLs rostral to cSCI, but no evidence of oxidative stress in DC OLs after rhizotomy. These results suggest that signals associated with axonal degeneration are sufficient to induce OL proliferation, and that secondary injury processes associated with the central SCI, including oxidative stress, rather than axonal degeneration per se, are responsible for OL apoptosis. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Astroglial proliferation and delayed neuronal death are two common pathological processes in the ischemic brain. However, it is not clear if astrogliosis causes delayed neuronal death. In this study, we addressed this potential linkage by examining the relationship between attenuated astrocyte proliferation, induced by cyclin-dependent kinase (CDK) inhibition, and delayed neuronal death in rat ischemic hippocampus. Our results show that following middle cerebral artery occlusion (MCAO), astrocyte hypertrophy and proliferation were closely associated with delayed neuronal death. Importantly, administration of olomoucine, a selective CDK inhibitor, not only suppressed astroglial proliferation and glial scar formation, but also decreased neuronal cell death in the ischemic boundary zone and hippocampal CA1 region at days 1 and 30 after MCAO. These results indicate that reactive astrogliosis and delayed neuronal death, at least in rat hippocampus, are sequential pathological events following MCAO. Therefore, suppressing astroglial cell cycle progression in acute focal cerebral ischemia may be beneficial to neuronal survival. Our study also implies that cell cycle regulation should be considered as a promising future therapeutic intervention in treating those neurological diseases characterized by an excessive astrocyte proliferation.  相似文献   

15.
Bone morphogenetic proteins (BMPs) are a large class of secreted factors, which serve as modulators of development in multiple organ systems, including the CNS. Studies investigating the potential of stem cell transplantation for restoration of function and cellular replacement following traumatic spinal cord injury (SCI) have demonstrated that the injured adult spinal cord is not conducive to neurogenesis or oligodendrogenesis of engrafted CNS precursors. In light of recent findings that BMP expression is modulated by SCI, we hypothesized that they may play a role in lineage restriction of multipotent grafts. To test this hypothesis, neural stem or precursor cells were engineered to express noggin, an endogenous antagonist of BMP action, prior to transplantation or in vitro challenge with recombinant BMPs. Adult rats were subjected to both contusion and focal ischemic SCI. One week following injury, the animals were transplanted with either EGFP- or noggin-expressing neural stem or precursor cells. Results demonstrate that noggin expression does not antagonize terminal astroglial differentiation in the engrafted stem cells. Furthermore, neutralizing endogenous BMP in the injured spinal cord significantly increased both the lesion volume and the number of infiltrating macrophages in injured spinal cords receiving noggin-expressing stem cell grafts compared with EGFP controls. These data strongly suggest that endogenous factors in the injured spinal microenvironment other than the BMPs restrict the differentiation of engrafted pluripotent neural stem cells as well as suggest other roles for BMPs in tissue protection in the injured CNS.  相似文献   

16.
17.
Microglial cells are among the first and dominant cell types to respond to CNS injury. Following calcium influx, microglial activation leads to a variety of cellular responses, such as proliferation and release of cytotoxic and neurotrophic mediators. Allograft inflammatory factor-1, AIF-1 is a highly conserved EF-handed, putative calcium binding peptide, associated with microglia activation in the brain. Here, we have analyzed the expression of AIF-1 following spinal cord injury at the lesion site and at remote brain regions. Following spinal cord injury, AIF-1+ cells accumulated in parenchymal pan-necrotic areas and perivascular Virchow-Robin spaces. Subsequent to culmination at day 3--a situation characterized by infiltrating blood borne macrophages and microglia activation--AIF-1+ cell numbers decreased until day 7. In remote areas of Wallerian degeneration and delayed neuronal death, a more discrete and delayed activation pattern of AIF-1+ microglia/macrophages reaching maximum levels at day 14 was observed. There was a considerable match between AIF-1+ cells and PCNA (proliferating cell nuclear antigen) or Ki-67+ labeled cells. AIF-1 expression preceded the expression of ED1, thus indicating a pre-phagocytic role. It appears that AIF-1+ microglia/macrophages are among the earliest cells to respond to spinal cord injury. Our results suggest a role of AIF-1 in the initiation of the early microglial response leading to activation and proliferation essential for the acute response to CNS injury. AIF-1 might modulate microgliosis influencing the efficacy of tissue debris removal, myelin degradation, recruitment of oligodendrocytes and re-organisation of the CNS architecture.  相似文献   

18.
The repulsive guidance molecule (RGM) is involved in the formation of the central nervous system (CNS) during development by modulating guidance of growing axons. However, a role of RGM in CNS injury remains to be established. We studied the expression of RGM in the spinal cord of rats with spinal cord injury (SCI). After SCI, RGM+ cells accumulated in lesions and peri-lesional areas. During the first days after SCI, RGM expression was confined to neurons, ballooned neurite fibers/retraction bulbs, smooth muscle/endothelial cells, and to leucocytes infiltrating the lesion. Lesional RGM expression was frequently confined to hypertrophic beta-APP+ and RhoA+ neurites/retraction bulbs. With maturation of the lesion, we observed RGM expression by components of the developing scar tissue (cicatrix), such as fibroblastoid cells, reactive astrocytes and in addition a pronounced extracellular RGM deposition resembling neo-laminae. Frequent RGM+, RhoA+ coexpression by lesional retraction bulbs represent first preliminary evidence of RGM to exert growth inhibitory effects by the second messenger system RhoA. To date, RGM is one of the most potent axonal growth inhibitors identified and present in axonal growth impediments (i) oligodendrocytes; (ii) the plexus choroideus and (iii) components of the developing scar.  相似文献   

19.
Endogenous neural stem/progenitor cells (NSPCs) have recently been shown to differentiate exclusively into astrocytes, the cells that are involved in glial scar formation after spinal cord injury (SCI). The microenvironment of the spinal cord, especially the inflammatory cytokines that dramatically increase in the acute phase at the injury site, is considered to be an important cause of inhibitory mechanism of neuronal differentiation following SCI. Interleukin-6 (IL-6), which has been demonstrated to induce NSPCs to undergo astrocytic differentiation selectively through the JAK/STAT pathway in vitro, has also been demonstrated to play a critical role as a proinflammatory cytokine and to be associated with secondary tissue damage in SCI. In this study, we assessed the efficacy of rat anti-mouse IL-6 receptor monoclonal antibody (MR16-1) in the treatment of acute SCI in mice. Immediately after contusive SCI with a modified NYU impactor, mice were intraperitoneally injected with a single dose of MR16-1 (100 microg/g body weight), the lesions were assessed histologically, and the functional recovery was evaluated. MR16-1 not only suppressed the astrocytic diffentiation-promoting effect of IL-6 signaling in vitro but inhibited the development of astrogliosis after SCI in vivo. MR16-1 also decreased the number of invading inflammatory cells and the severity of connective tissue scar formation. In addition, we observed significant functional recovery in the mice treated with MR16-1 compared with control mice. These findings suggest that neutralization of IL-6 signaling in the acute phase of SCI represents an attractive option for the treatment of SCI.  相似文献   

20.
Cytokines play an important role in the onset, regulation, and propagation of immune and inflammatory responses within the central nervous system (CNS). The main source of cytokines in the CNS are microglial cells. Under inflammatory conditions, microglial cells are capable of producing pro- and antiinflammatory cytokines, which convey essential impact on the glial and neuronal environment. One paramount functional feature of astrocytes is their ability to form a functionally coupled syncytium. The structural link, which is responsible for the syncytial behavior of astrocytes, is provided by gap junctions. The present study was performed to evaluate the influence of inflammation related cytokines on an astroglial/microglial inflammatory model. Primary astrocytic cultures of newborn rats were cocultured with either 5% (M5) or 30% (M30) microglial cells and were incubated with the following proinflammatory cytokines: tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), interleukin-6 (IL-6), interferon-gamma (IFN-gamma), and the antiinflammatory cytokines transforming growth factor-beta1 (TGF-beta1) and IFN-beta. Under these conditions, i.e., incubation with the inflammatory cytokines and the high fraction of microglia (M30), microglial cells revealed a significant increase of activated round phagocytotic cells accompanied by a reduction of astroglial connexin 43 (Cx43) expression, a reduced functional coupling together with depolarization of the membrane resting potential (MRP). When the antiinflammatory mediator TGF-beta1 was added to proinflammatory altered M30 cocultures, a reversion of microglial activation and reconstitution of functional coupling together with recovery of the astroglial MRP was achieved. Finally IFN-beta, added to M5 cocultures was able to prevent the effects of the proinflammatory cytokines TNF-alpha, IL-1beta, and IFN-gamma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号