首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xie D  Chung ID  Wu W  Lemons J  Puckett A  Mays J 《Biomaterials》2004,25(10):1825-1830
It is known that unreacted 2-hydroxyethyl methacrylate (HEMA) in current resin modified glass ionomer cements (RMGICs) shows potential cytotoxicity to pulp and surrounding tissues. Elimination of HEMA could make RMGICs more attractive for dental applications. In this research, novel six acrylate and methacrylate derivatives of amino acids were synthesized, characterized and used for replace HEMA in RMGICs. The experimental RMGICs were formulated with vinyl-containing polymer, amino acid derivative, water, and commercial Fuji II LC glass. Among all the derivatives, methacryloyl beta-alanine (MBA) was selected for further formulations due to its relatively low solution viscosity and high CS. Effects of polymer content and powder/liquid, P/L, ratio were significant. The formulation with liquid composition of 50/25/25 (polymer/MBA/water) and P/L ratio of 2.7/1 was found the optimal. It appears that this novel non-HEMA-containing RMGIC system based on amino acid derivatives will be a better dental restorative because it demonstrated improved mechanical strengths and may eliminate potential cytotoxicity in current RMGICs caused by leached HEMA. The optimal MBA-modified GIC were 20% higher in CS, 70% higher in DTS and 93% higher in FS, compared to Fuji II LC.  相似文献   

2.
The elution of fluoride, sodium and silica from a glass-ionomer cement was studied for 598 days. It was found that these species were still being released when the experiments were concluded, however, the rate of release was much diminished. The release of fluoride, sodium and silica was incongruent. Only fluoride associated with sodium appeared to be available for release.  相似文献   

3.
D Wood  R Hill 《Biomaterials》1991,12(2):164-170
Glass-ionomer dental cements have potential as bone cements in joint replacement surgery. However, commercially available glasses used in dental cements suffer from the loss of fluorine during the melting procedure and from phase separation of the glass upon quenching, giving rise to inter- and intra-batch variation. A model glass was examined in which minimal loss of fluorine is observed. This results in a glass whose composition is reproducible between batches. This glass will crystallize both above and below the glass transition temperature following heat treatments. Cements can be produced whose properties vary with the degree of crystallinity of the glass-ceramic. A commercial glass was also examined and was found to crystallize to an apatite phase.  相似文献   

4.
Frequently, bone cement strengths are evaluated from uniaxial tests, such as three- or four-point flexure. Measurement of material strength in this manner may not provide an accurate characterisation of a bone cements true load-bearing capacity. In most orthopaedic applications, there exists a state of biaxial stress and so biaxial strength information is most useful. To address this issue, the biaxial flexure strength of two polymethylmethacrylate orthopaedic (PMMA) bone cements and two glass-ionomer dental cements have been determined. The biaxial strength of orthopaedic bone cements have been compared to the three-point bending strength. Furthermore, the calculated theoretical biaxial strength was compared with a value of biaxial strength utilising the finite element method. For all materials tested the calculated biaxial strength is significantly greater than the three-point bending strength. The biaxial test offers several advantages over three-point bending because it critically explores surface flaws--as it does not matter in which orientation the crack lies. However, it does minimise the volume or surface area investigated and also the edge effect. The difference in strength calculated for the two testing methods can be explained quantitatively in terms of the volume of material under stress. This work has demonstrated that the biaxial flexure test can be used for the testing of orthopaedic bone cements.  相似文献   

5.
3,4-Methylenedioxymethamphetamine (MDMA) selectively releases serotonin (5-HT) from neurons after uptake by the serotonin transporter (SERT) and causes psychostimulant effects accompanied by hyperthermia. Since rapid increases in CNS lactate levels are suggested in response to MDMA, we investigated the effects of the physiologically-relevant increase in H(+) concentration on the two conducting states of SERT expressed in Xenopus oocytes. Perfusion with SERT substrates at pH 7.4 dose-dependently evoked a transport-associated inward current response with the following rank order of potency: 5-HT>MDMA>dopamine>norepinephrine. In the absence of transport substrates, a step hyperpolarization pulse activated a transient Na(+) leak current, which was inhibited by SERT substrates with the same rank, as well as by a SERT inhibitor, citalopram. At pH 6.4, the K(m) values of 5-HT and dopamine for the transport-associated current were not altered, while that of MDMA was three-fold lower. In contrast, the K(i) values of all these substrates for transient leak current were unchanged at pH 6.4, suggesting that the affinities to SERT binding sites are not influenced. These results suggest that the effect of MDMA on SERT is enhanced by acidic conditions.  相似文献   

6.
Oxalic acid and its metal oxalate salts have been used extensively in dentistry in a range of applications: as desensitisers, in cavity preparation, and as bonding agents. This study investigated the influence of oxalic acid upon the working time, initial setting time, 24-h hardness and compressive strength of a glass-ionomer cement. Conventional glass-ionomer liquids were prepared from polyacrylic acid, tartaric acid, water, and oxalic acid at concentrations of 0-7% w/w. Liquids were dosed into capsules with a commercial glass-ionomer powder, activated and mixed. The resultant pastes were assessed for working time, initial setting time, 24-h hardness and 24-h compressive strength. Liquids containing 0.5-1% oxalic acid lengthened the working time and initial setting time. At concentrations greater than 2%, both working and initial setting times decreased with increasing oxalic acid. Surface hardness values using liquids with 3% and 7% oxalic acid were less hard than the control. Compressive strength was unchanged over the concentrations tested. Oxalic acid may be a useful reaction modifier in glass-ionomer systems. It accelerated the setting reaction without affecting strength, but was limited to low concentrations because of its relatively poor solubility in water.  相似文献   

7.
Supercritical (sc-) fluids (such as sc-CO2) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO2 has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO2/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO2 mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO2/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO2/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO2/methanol were comparable and better than the values of those for polymers synthesized in water.  相似文献   

8.
Fleming GJ  Farooq AA  Barralet JE 《Biomaterials》2003,24(23):4173-4179
The influence of powder/liquid mixing regime on the performance of a hand-mixed restorative glass-ionomer cement (GIC) was evaluated in terms of compressive strength, working characteristics and the porosity distribution.Mean compressive fracture strengths, standard deviations and associated Weibull moduli (m) were determined from series of 20 cylindrical specimens (6mm height, 4mm diameter) prepared by hand-mixing the relative proportions of the powder and liquid constituents. Working characteristics were assessed using an oscillating rheometer whilst scanning electron microscopy and image analysis were used to investigate the influence of the mixing regime on pore distribution.For a constant volume of liquid (1ml) the mean compressive strength decreased from 102.1+/-23.1MPa for 7.4g of powder, to 93.8+/-22.9, 82.6+/-18.5 and 55.7+/-17.2MPa for 6.66, 5.94 and 3.7g of powder, respectively. A concomitant increase in both the working and setting times was also observed.GICs manipulated to a powder/liquid mixing consistency below the manufacturers' recommend ratio, for a constant volume of liquid, resulted in reduced porosity levels in the cement mass and extended working and setting times. Unfortunately, a reduction in the concentration of reinforcing glass particles in the set material below that specified by the manufacturers decreases the cements' load bearing capacity so that they fail at lower compressive stress levels in the posterior region of the mouth.  相似文献   

9.
10.
Kobayashi M  Kon M  Miyai K  Asaoka K 《Biomaterials》2000,21(20):2051-2058
The purpose of this study was to determine if short fibres of CaO-P2O5-SiO2-Al2O3 (CPSA) glass possessing a particular aspect ratio (length/diameter) could be used as a reinforcing agent for glass-ionomer cement. The powder of a commercial glass-ionomer cement (not resin modified) was mixed with variously sized CPSA glass short fibres before mixing with the liquid of the glass-ionomer cement. The mixed powders containing 60 mass% CPSA glass short fibres (diameter, 9.7 +/- 2.1 microm, aspect ratio, 5.0 +/- 0.9) obtained maximum values of 18 and 35 MPa for the diametral tensile strength (DTS) and flexural strength (FS) of set cements, respectively, after 24 h. These DTS and FS values were 1.8 and 4.5 times larger, respectively, than those of the set glass-ionomer cement not containing short fibres. Moreover, it was found that the addition of CPSA glass short fibres was remarkably more effective in the strengthening than electric glass (a typical glass fibre) short fibres. The results suggested that the CPSA glass short fibres acted as a reinforcing agent for strengthening the glass-ionomer cement, because of the shape of short fibres and reactivity between the mixing liquid and short fibres.  相似文献   

11.
We made a new type of collagen gel by gamma-ray irradiation of an acidic solution of type-I collagen, and performed comparative studies on a conventional gel and the new type of gel. The neutral gel, a conventional 0.3% (w/v) collagen gel, was formed at neutral pH and then irradiated by gamma-rays. The acidic gel, a 0.3% (w/v) collagen gel, was formed directly from the acidic solution of collagen by y-ray irradiation. Both types of gel were prepared, swollen in water and then dried for the measurement of specific water content. The neutral gel showed a relatively high specific water content and shrunk moderately, depending on the dose, while the acidic gel showed lower specific water content and shrunk clearly by y-ray irradiation. A three-dimensional tangled network of microfibrils was clearly observed in the neutral gels by scanning electron microscopy, but not in the acidic gels. From these results, we concluded that the acidic gel was quite different from a conventional collagen gel. Sodium dodecylsulfate-polyacrylamide gel electrophoresis showed that the alpha1 subunit and alpha2 subunit of the collagen molecule were cross-linked. The triple-helical structure of collagen was only partially perturbed, but not denatured completely, because the circular dichroism spectrum of the collagen solution irradiated at 1.3 kGy was similar to that of native collagen solution. Amino-acid analysis revealed that tyrosine, phenylalanine and histidine decreased by irradiation in the neutral gel. In the case of the acidic gel, these three amino acids and methionine decreased. We considered that these amino acids were cross-linking points between the collagen subunits during the gamma-ray irradiation.  相似文献   

12.
Polymethylmethacrylate (PMMA) cements are widely used in spinal surgery. Nevertheless, these types of cements present some documented drawbacks. Therefore, efforts have been made to improve the properties and biological performance of solid PMMA. A porous structure would seem to be advantageous for anchoring purposes. This work studied the bulk physicochemical, mechanical and interconnectivity properties of porous PMMA cements loaded with various amounts of calcium phosphate (CaP). As a measure of bioactivity, changes of PMMA cements under simulated physiological conditions were studied in a calcium phosphate solution for 0, 3, 7, 14, 21 and 28 days. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), micro-computed tomography (μ-CT) and mechanical compression tests were performed to characterize the morphology, crystallographic and chemical composition, interconnectivity and mechanical properties, respectively. SEM allowed observing the result of loading CaP into the porous PMMA, which was corroborated by XRD, FTIR and μ-CT. No interference of the CaP with the PMMA was detected. μ-CT described similar interconnectivity and pore distribution for all CaP percentages. Mechanical properties were not significantly altered by the CaP percentages or the immersion time. Hence, porous PMMA was effectively loaded with CaP, which provided the material with properties for potential osteoconductivity.  相似文献   

13.
F1F0-ATPase has been identified as an operon directly involved in the tolerance of probiotic bacteria towards a hostile acidic environment encountered in the stomach. Expression of atpD (a key part of the F1F0-ATPase operon) gene of the two putative probiotic Lactobacillus plantarum isolates (Lp9 and Lp91) under different in vitro pH conditions which closely mimic the physiological environment prevalent in the human gut was investigated by quantitative real-time PCR (RT-qPCR). A battery of housekeeping genes, i.e. gapB, dnaG, gyrA, ldhD, rpoD and 16S rRNA, were evaluated using geNorm 3.4 Excel-based application for normalizing atpD gene expression in Lp9 and Lp91. The most stably expressed genes were found to be gapB, gyrA and ldhD. Although both putative probiotic L. plantarum isolates investigated in this study were able to survive acid stress under in vitro conditions, amongst the two, Lp91 exhibited relatively greater acid tolerance, as revealed by 4.7-fold upregulation of the atpD gene as well as higher log counts at pH 2.5 after 90 min These results clearly demonstrate that expression of the ‘atp’ operon was chiefly instrumental in in vitro survival and tolerance of test cultures at acidic conditions encountered in the stomach.  相似文献   

14.
Specimens of three conventional and one resin-modified glass-ionomer cement were prepared for both compressive strength and biaxial flexure strength determination. They were stored either in neutral media (water, saline, unstimulated whole saliva or stimulated parotid saliva) or in acidic beverages (apple juice, orange juice or Coca-Cola) for time periods ranging from 1 day to 1 year. In neutral media, the compressive and biaxial flexural strengths of all cements studied showed similar results, with significant increases apparent in compressive strengths at 6 months and which continued to 1 year, but no significant differences between the media; and no significant differences with time for biaxial flexure strength in all media. These findings show that interactions of these cements with saliva, which are known to result in deposition of calcium and phosphate, do not affect strength. Results for specimens stored in Coca-Cola were the same as for those stored in neutral media. By contrast, in orange and apple juice specimens underwent severe erosion resulting in dissolution of the conventional glass-ionomers after 3-6 months, and/or significant loss of strength at 1-3 months. Erosion of the resin-modified glass-ionomer, Vitremer, led to a significant reduction in strength, but not in dissolution, even after 12 months. The chelating carboxylic acids in these fruit juices were assumed to be responsible for these effects.  相似文献   

15.
Heat-conduction isothermal microcalorimetry was used to measure the exothermic heat flow rate (Q) from the powder of a widely used commercially-available acrylic bone cement, Palacos R, when it interacted with ambient laboratory air, as a function of time, t, in the calorimeter, for up to 200 h. Four variants of the powder were used, these being unsterilized, sterilized using ethylene oxide gas, gamma-irradiated, in ambient air, with a minimum dosage of 2.5 Mrad, and gamma-irradiated, in ambient air, with a minimum dosage of 4.5 Mrad. In each case, the powder variant was tested after being stored on the shelf, under ambient conditions, for 2 days, 3 weeks and 9 months immediately following sterilization. Best-fit correlations between Q and t for each powder variant were determined. Then, this relationship was integrated over the period 14 h< or =t< or =200 h to give an estimate of the "effective" heat flow, Q(eff). For powder variants tested 2 days after being sterilized, the difference in their thermal stabilities (Qeff ranged from 0.19+/-0.01 to 0.62+/-0.03 microJ/g, respectively) was significant in the case of some pairs and not for others. However, for powders tested either 3 weeks or 9 months following sterilization, there was no significant difference between the means of Qeff (they ranged from 0.18+/-0.01 to 0.31+/-0.07 microJ/g) for any pair. These results suggest that an acrylic bone cement in which the powder is EtO-sterilized may be mixed with the liquid monomer for use in cemented arthroplasties after any length of time of shelf storage of the powder, under ambient conditions, whereas, for powders that are gamma-irradiated and then stored under the same conditions, at least 3 weeks should elapse before they are used in these procedures.  相似文献   

16.
Fano L  Fano V  Ma WY  Yang GW  Zhu F 《Biomaterials》2001,22(17):2353-2358
The microstructure of four cements, setting by different mechanisms (acid-base, dual cure, triple cure), was studied. The porosity of unpolymerized materials was detected by stereomicroscopy. After polymerization and storage in water or lactic acid solution, the porosity, filler distribution and gel layer, which was formed at the filler/matrix interface of polymerized materials, were examined by confocal laser microscopy. For this purpose, the specimens were treated with fluorescent dye solution before the test. The results showed that hydrolytic degradation (pH 7) mainly involved the resin matrix, and the acid erosion (pH 3.5) involved the gel layer too. As regards the filler, materials with different setting mechanism released the glass particles in different times. The loss of the filler particles occurred quicker in acid-base setting cements, and slower in triple-cured material.  相似文献   

17.
Lai PH  Sielaff TD  Hu WS 《Tissue engineering》2005,11(3-4):427-437
Bioartificial liver (BAL) devices employing xenogeneic hepatocytes are being developed as a temporary support of liver failure. For clinical applications, transporting such a device from the manufacturing site to the hospital is necessary. We investigated the effect of hypothermic treatment on the performance of the collagen-entrapment BAL device developed at the University of Minnesota. A number of chemical protectants were examined for their effectiveness in minimizing damage to hepatocytes. Preincubation with protectant (tauroursodeoxycholic acid, TUDCA) before hypothermic treatment improved posttreatment BAL performance. Oxygen consumption and albumin and urea synthesis all resumed at levels comparable to pretreatment levels. The method described will facilitate the application of BAL in the treatment of liver failure.  相似文献   

18.
In order to minimize the problems associated with implant fixation using acrylic bone cement, we studied a new adhesive bone cement that consists of 4-methacryloyloxyethyl trimellitate anhydryde (4-META) and methylmethacrylate (MMA) as monomers, tri-n-butylborane (TBB) as an initiator, and PMMA powder (4-META/MMA-TBB cement). It shows remarkable adhesive properties to metal and bone in vitro. The purpose of this study was to evaluate the strength of the bond of the cement to both metal and bone in vivo under weight-bearing conditions. Metal prostheses were implanted in the right femora of 12 rabbits using either adhesive 4-META/MMA-TBB cement or the conventional PMMA cement, as the control, for fixation. After 4 and 12 weeks, both femora were excised and the same operations were performed in the left femora in vitro. Eighteen femora were sectioned for the mechanical assessment of the bone-cement and cement-implant interfaces. 4-META/MMA-TBB cement had a significantly higher interfacial shear strength than the conventional PMMA cement: 201 N and 90 N, on average, for the implant-cement interface (p<0.01); and 138 N and 89 N, on average, for the bone-cement interface (p<0.01), at 12 weeks. The present results suggest the efficacy of 4-META/MMA-TBB cement in providing greater fixation of implants to bone and promise a firmer intramedullary fixation than the control conventional PMMA cement.  相似文献   

19.
Pycnoporus sanguineus is a white‐rot fungus that produces ligninolytic enzymes such as laccases. These enzymes can endure temperatures as high as 60 °C and are useful for pulp bleaching, dye decolorization and phenolic degradation. Laccase production by fungi depends not only on the carbon and nitrogen sources but also on the nitrogen concentration of the culture medium. In this work, we examined the effect of four carbon sources (maltose, glucose, fructose and sucrose) and four nitrogen sources (ammonium tartrate, sodium nitrate, asparagine and yeast extract) on the activity of laccase from Pycnoporus sanguineus. All carbon and nitrogen sources exhibited a strong influence on laccase activity, a sucrose–asparagine medium providing the best results (320 mU/ml). Moreover, using an asparagine concentration 5 times higher than the reference level increased laccase activity to 820 mU/ml. Higher asparagine concentrations, however, resulted in no further increase in activity. Consistent with previous results, the carbon and nitrogen sources, and the nitrogen concentration, had a strong impact on laccase activity, the optimum conditions depending on the particular fungus. The conditions of the culture medium had a marked effect on laccase activity, which increased up to 820 mU/ml. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号