首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work evaluates the potential of very high energy (50-250 MeV) electron beams for dose conformation and identifies those variables that influence optimized dose distributions for this modality. Intensity-modulated plans for a prostate cancer model were optimized as a function of the importance factors, beam energy and number of energy bins, number of beams, and the beam orientations. A trial-and-error-derived constellation of importance factors for target and sensitive structures to achieve good conformal dose distributions was 500, 50, 10 and I for the target, rectum, bladder and normal tissues respectively. Electron energies greater than 100 MeV were found to be desirable for intensity-modulated very high energy electron therapy (VHEET) of prostate cancer. Plans generated for lower energy beams had relatively poor conformal dose distributions about the target region and delivered high doses to sensitive structures. Fixed angle beam treatments utilizing a large number of fields in the range 9-21 provided acceptable plans. Using more than 21 beams at fixed gantry angles had an insignificant effect on target coverage, but resulted in an increased dose to sensitive structures and an increased normal tissue integral dose. Minor improvements in VHEET plans utilizing a 'small' number (< or =9) of beams may be achieved if, in addition to intensity modulation, energy modulation is implemented using a small number (< or =3) of beam energies separated by 50 to 100 MeV. Rotation therapy provided better target dose homogeneity but unfortunately resulted in increased rectal dose, bladder dose and normal tissue integral dose relative to the 21-field fixed angle treatment plan. Modulation of the beam energy for rotation therapy had no beneficial consequences on the optimized dose distributions. Lastly, selection of beam orientations influenced the optimized treatment plan even when a large number of beams (approximately 15) were employed.  相似文献   

2.
3.
4.
Recently, energy- and intensity-modulated electron radiotherapy (MERT) has garnered a growing interest for the treatment of superficial targets. In this work. we carried out a comparative dosimetry study to evaluate MERT, photon beam intensity-modulated radiation therapy (IMRT) and conventional tangential photon beams for the treatment of breast cancer. A Monte Carlo based treatment planning system has been investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We have compared breast treatment plans generated using this home-grown treatment optimization and dose calculation software forthese treatment techniques. The MERT plans were planned with up to two gantry angles and four nominal energies (6, 9, 12 and 16 MeV). The tangential photon treatment plans were planned with 6 MV wedged photon beams. The IMRT plans were planned using both multiple-gantry 6 MV photon beams or two 6 MV tangential beams. Our results show that tangential IMRT can reduce the dose to the lung, heart and contralateral breast compared to conventional tangential wedged beams (up to 50% reduction in high dose volume or 5 Gy in the maximum dose). MERT can reduce the maximum dose to the lung by up to 20 Gy and to the heart by up to 35 Gy compared to conventional tangential wedged beams. Multiple beam angle IMRT can significantly reduce the maximum dose to the lung and heart (up to 20 Gy) but it induces low and medium doses to a large volume of normal tissues including lung, heart and contralateral breast. It is concluded that MERT has superior capabilities to achieve dose conformity both laterally and in the depth direction, which will be well suited for treating superficial targets such as breast cancer.  相似文献   

5.
Optimization of combined electron and photon beams for breast cancer   总被引:2,自引:0,他引:2  
Recently, intensity-modulated radiation therapy and modulated electron radiotherapy have gathered a growing interest for the treatment of breast and head and neck tumours. In this work, we carried out a study to combine electron and photon beams to achieve differential dose distributions for multiple target volumes simultaneously. A Monte Carlo based treatment planning system was investigated, which consists of a set of software tools to perform accurate dose calculation, treatment optimization, leaf sequencing and plan analysis. We compared breast treatment plans generated using this home-grown optimization and dose calculation software for different treatment techniques. Five different planning techniques have been developed for this study based on a standard photon beam whole breast treatment and an electron beam tumour bed cone down. Technique 1 includes two 6 MV tangential wedged photon beams followed by an anterior boost electron field. Technique 2 includes two 6 MV tangential intensity-modulated photon beams and the same boost electron field. Technique 3 optimizes two intensity-modulated photon beams based on a boost electron field. Technique 4 optimizes two intensity-modulated photon beams and the weight of the boost electron field. Technique 5 combines two intensity-modulated photon beams with an intensity-modulated electron field. Our results show that technique 2 can reduce hot spots both in the breast and the tumour bed compared to technique 1 (dose inhomogeneity is reduced from 34% to 28% for the target). Techniques 3, 4 and 5 can deliver a more homogeneous dose distribution to the target (with dose inhomogeneities for the target of 22%, 20% and 9%, respectively). In many cases techniques 3, 4 and 5 can reduce the dose to the lung and heart. It is concluded that combined photon and electron beam therapy may be advantageous for treating breast cancer compared to conventional treatment techniques using tangential wedged photon beams followed by a boost electron field.  相似文献   

6.
Inverse planning for intensity- and energy-modulated radiotherapy (IEMRT) with proton beams involves the selection of (i) the relative importance factors to control the relative importance of the target and sensitive structures, (ii) an appropriate energy resolution to achieve an acceptable depth modulation, (iii) an appropriate beamlet width to modulate the beam laterally, and (iv) a sufficient number of beams and their orientations. In this article we investigate the influence of these variables on the optimized dose distribution of a simulated prostate cancer IEMRT treatment. Good dose conformation for this prostate case was achieved using a constellation of I factors for the target, rectum, bladder, and normal tissues of 500, 50, 15, and 1, respectively. It was found that for an active beam delivery system, the energy resolution should be selected on the basis of the incident beams' energy spread (sigmaE) and the appropriate energy resolution varied from 1 MeV at sigmaE = 0.0 to 5 MeV at sigmaE= 2.0 MeV. For a passive beam delivery system the value of the appropriate depth resolution for inverse planning may not be critical as long as the value chosen is at least equal to one-half the FWHM of the primary beam Bragg peak. Results indicate that the dose grid element dimension should be equal to or no less than 70% of the beamlet width. For this prostate case, we found that a maximum of three to four beam ports is required since there was no significant advantage to using a larger number of beams. However for a small number (< or = 4) of beams the selection of beam orientations, while having only a minor effect on target coverage, strongly influenced the sensitive structure sparing and normal tissue integral dose.  相似文献   

7.
In this study, we perform a scientific comparative analysis of using (60)Co beams in intensity-modulated radiation therapy (IMRT). In particular, we evaluate the treatment plan quality obtained with (i) 6 MV, 18 MV and (60)Co IMRT; (ii) different numbers of static multileaf collimator (MLC) delivered (60)Co beams and (iii) a helical tomotherapy (60)Co beam geometry. We employ a convex fluence map optimization (FMO) model, which allows for the comparison of plan quality between different beam energies and configurations for a given case. A total of 25 clinical patient cases that each contain volumetric CT studies, primary and secondary delineated targets, and contoured structures were studied: 5 head-and-neck (H&N), 5 prostate, 5 central nervous system (CNS), 5 breast and 5 lung cases. The DICOM plan data were anonymized and exported to the University of Florida optimized radiation therapy (UFORT) treatment planning system. The FMO problem was solved for each case for 5-71 equidistant beams as well as a helical geometry for H&N, prostate, CNS and lung cases, and for 3-7 equidistant beams in the upper hemisphere for breast cases, all with 6 MV, 18 MV and (60)Co dose models. In all cases, 95% of the target volumes received at least the prescribed dose with clinical sparing criteria for critical organs being met for all structures that were not wholly or partially contained within the target volume. Improvements in critical organ sparing were found with an increasing number of equidistant (60)Co beams, yet were marginal above 9 beams for H&N, prostate, CNS and lung. Breast cases produced similar plans for 3-7 beams. A helical (60)Co beam geometry achieved similar plan quality as static plans with 11 equidistant (60)Co beams. Furthermore, 18 MV plans were initially found not to provide the same target coverage as 6 MV and (60)Co plans; however, adjusting the trade-offs in the optimization model allowed equivalent target coverage for 18 MV. For plans with comparable target coverage, critical structure sparing was best achieved with 6 MV beams followed closely by (60)Co beams, with 18 MV beams requiring significantly increased dose to critical structures. In this paper, we report in detail on a representative set of results from these experiments. The results of the investigation demonstrate the potential for IMRT radiotherapy employing commercially available (60)Co sources and a double-focused MLC. Increasing the number of equidistant beams beyond 9 was not observed to significantly improve target coverage or critical organ sparing and static plans were found to produce comparable plans to those obtained using a helical tomotherapy treatment delivery when optimized using the same well-tuned convex FMO model. While previous studies have shown that 18 MV plans are equivalent to 6 MV for prostate IMRT, we found that the 18 MV beams actually required more fluence to provide similar quality target coverage.  相似文献   

8.
The authors present a comparative study of intensity modulated proton therapy (IMPT) treatment planning employing algorithms of three-dimensional (3D) modulation, and 2.5-dimensional (2.5D) modulation, and intensity modulated distal edge tracking (DET) [A. Lomax, Phys. Med. Biol. 44, 185-205 (1999)] applied to the treatment of head-and-neck cancer radiotherapy. These three approaches were also compared with 6 MV photon intensity modulated radiation therapy (IMRT). All algorithms were implemented in the University of Florida Optimized Radiation Therapy system using a finite sized pencil beam dose model and a convex fluence map optimization model. The 3D IMPT and the DET algorithms showed considerable advantages over the photon IMRT in terms of dose conformity and sparing of organs at risk when the beam number was not constrained. The 2.5D algorithm did not show an advantage over the photon IMRT except in the dose reduction to the distant healthy tissues, which is inherent in proton beam delivery. The influences of proton beam number and pencil beam size on the IMPT plan quality were also studied. Out of 24 cases studied, three cases could be adequately planned with one beam and 12 cases could be adequately planned with two beams, but the dose uniformity was often marginally acceptable. Adding one or two more beams in each case dramatically improved the dose uniformity. The finite pencil beam size had more influence on the plan quality of the 2.5D and DET algorithms than that of the 3D IMPT. To obtain a satisfactory plan quality, a 0.5 cm pencil beam size was required for the 3D IMPT and a 0.3 cm size was required for the 2.5D and the DET algorithms. Delivery of the IMPT plans produced in this study would require a proton beam spot scanning technique that has yet to be developed clinically.  相似文献   

9.
Chibani O  Ma CM 《Medical physics》2003,30(8):1990-2000
The dose from photon-induced nuclear particles (neutrons, protons, and alpha particles) generated by high-energy photon beams from medical linacs is investigated. Monte Carlo calculations using the MCNPX code are performed for three different photon beams from two different machines: Siemens 18 MV, Varian 15 MV, and Varian 18 MV. The linac head components are simulated in detail. The dose distributions from photons, neutrons, protons, and alpha particles are calculated in a tissue-equivalent phantom. Neutrons are generated in both the linac head and the phantom. This study includes (a) field size effects, (b) off-axis dose profiles, (c) neutron contribution from the linac head, (d) dose contribution from capture gamma rays, (e) phantom heterogeneity effects, and (f) effects of primary electron energy shift. Results are presented in terms of absolute dose distributions and also in terms of DER (dose equivalent ratio). The DER is the maximum dose from the particle (neutron, proton, or alpha) divided by the maximum photon dose, multiplied by the particle quality factor and the modulation scaling factor. The total DER including neutrons, protons, and alphas is about 0.66 cSv/Gy for the Siemens 18 MV beam (10 cm x 10 cm). The neutron DER decreases with decreasing field size while the proton (or alpha) DER does not vary significantly except for the 1 cm x 1 cm field. Both Varian beams (15 and 18 MV) produce more neutrons, protons, and alphas particles than the Siemens 18 MV beam. This is mainly due to their higher primary electron energies: 15 and 18.3 MeV, respectively, vs 14 MeV for the Siemens 18 MV beam. For all beams, neutrons contribute more than 75% of the total DER, except for the 1 cm x 1 cm field (approximately 50%). The total DER is 1.52 and 2.86 cSv/Gy for the 15 and 18 MV Varian beams (10 cm x 10 cm), respectively. Media with relatively high-Z elements like bone may increase the dose from heavy charged particles by a factor 4. The total DER is sensitive to primary electron energy shift. A Siemens 18 MV beam with 15 MeV (instead of 14 MeV) primary electrons would increase by 40% the neutron DER and by 210% the proton + alpha DER. Comparisons with measurements (neutron yields from different materials and neutron dose equivalent) are also presented. Using the NCRP risk assessment method, we found that the dose equivalent from leakage neutrons (at 50-cm off-axis distance) represent 1.1, 1.1, and 2.0% likelihood of fatal secondary cancer for a 70 Gy treatment delivered by the Siemens 18 MV, Varian 15 MV, and Varian 18 MV beams, respectively.  相似文献   

10.
Intensity-modulated photon-electron radiation therapy (IMPERT) takes advantage of the high conformity of photon intensity-modulated radiation therapy (IMRT) and low distal dose of electrons to reduce the total energy delivered to healthy tissue, potentially reducing serious side effects including secondary malignancies. This theoretical study was undertaken to elucidate basic principles of IMPERT planning and to help quantify the advantage of IMPERT over photon IMRT. Plans using 6 MV x-rays alone (IMRT) or in combination with 6-21 MeV electron beams (IMPERT) were developed for digital cylindrical water phantoms that included an organ at risk (OAR) situated 0.25 cm below a 5 cm thick planning target volume (PTV), with the top of the PTV positioned up to 4 cm below the surface. Electron beam energy and percentage dose contribution of the electron beam to the total dose were investigated with a flat-bottom PTV. The effect of target shape was investigated with a concave- or convex-bottom PTV positioned at the surface. Air or bone cavities were embedded in the PTV to investigate the effect of tissue inhomogeneity. Dose variations in the electron dose distribution due to tissue inhomogeneity were accurately calculated with Monte Carlo simulation. The preferred electron dose contribution was approximately 50% of the total dose. For all the PTV-OAR scenarios, IMPERT was able to achieve comparable PTV coverage and OAR sparing as IMRT while reducing the energy deposited to the healthy tissue by 6-25%. The IMPERT technique is a clinically viable approach for reducing serious side effects in radiotherapy.  相似文献   

11.
12.
In some linear accelerators, the charge collected by the monitor ion chamber is partly caused by backscattered particles from accelerator components downstream from the chamber. This influences the output of the accelerator and also has to be taken into account when output factors are derived from Monte Carlo simulations. In this work, the contribution of backscattered particles to the monitor ion chamber response of a Varian 2100C linac was determined for photon beams (6, 10 MV) and for electron beams (6, 12, 20 MeV). The experimental procedure consisted of charge integration from the target in a photon beam or from the monitor ion chamber in electron beams. The Monte Carlo code EGS4/BEAM was used to study the contribution of backscattered particles to the dose deposited in the monitor ion chamber. Both measurements and simulations showed a linear increase in backscatter fraction with decreasing field size for photon and electron beams. For 6 MV and 10 MV photon beams, a 2-3% increase in backscatter was obtained for a 0.5 x 0.5 cm2 field compared to a 40 x 40 cm2 field. The results for the 6 MV beam were slightly higher than for the 10 MV beam. For electron beams (6, 12, 20 MeV), an increase of similar magnitude was obtained from measurements and simulations for 6 MeV electrons. For higher energy electron beams a smaller increase in backscatter fraction was found. The problem is of less importance for electron beams since large variations of field size for a single electron energy usually do not occur.  相似文献   

13.
The aim of this investigation was the evaluation of the usefulness of N-vinyl pyrrolidone argon (VIPAR) polymer gel dosimetry for relative dose measurements using the majority of types and energies of radiation beams used in clinical practice. For this reason, VIPAR polymer gels were irradiated with the following beams: 6 and 23 MV photons (maximum dose: 15 Gy) and 6, 9, 12, 15, 18 and 21 MeV electrons (90% dose: 15 Gy). Using 6 MV x-rays, a linear gel dose response was verified for doses up to 20 Gy. Assuming linearity of response for the rest of the photon and electron beams used in this study, percentage depth dose measurements were derived. For all beams used and the range of relative doses studied, a satisfying agreement was observed between percentage depth dose measurements performed using the VIPAR gel-MRI method and an ion chamber, validating the assumption that a linear gel dose response holds for all photon and electron beams studied. VIPAR gels, therefore, can be used for relative dose distribution measurements using photons or electrons of any typical energy used in external radiotherapy applications. It is also demonstrated that two-dimensional dose distribution measurements through an irradiated (9 MeV electrons, 3 cm x 3 cm cone) VIPAR gel volume can be easily obtained.  相似文献   

14.
Muzik J  Soukup M  Alber M 《Medical physics》2008,35(4):1580-1592
A growing number of advanced intensity modulated treatment techniques is becoming available. In this study, the specific strengths and weaknesses of four techniques, static and dynamic multileaf collimator (MLC), conventional linac-based IMRT, helical tomotherapy (HT), and spot-scanning proton therapy (IMPT) are investigated in the framework of biological, EUD-based dose optimization. All techniques were implemented in the same in-house dose optimization tool. Monte Carlo dose computation was used in all cases. All dose-limiting, normal tissue objectives were treated as hard constraints so as to facilitate comparability. Five patient cases were selected to offer each technique a chance to show its strengths: a deep-seated prostate case (for 15 MV linac-based IMRT), a pediatric case (for IMPT), an extensive head-and-neck case (for HT), a lung tumor (for HT), and an optical neurinoma (for noncoplanar linac-based IMRT with a miniMLC). The plans were compared by dose statistics and equivalent uniform dose metrics. All techniques delivered results that were comparable with respect to target coverage and the most dose-limiting normal tissues. Static MLC IMRT struggled to achieve sufficient target coverage at the same level of dose homogeneity in the lung case. IMPT gained the greatest advantage when lung sparing was important, but did not significantly reduce the risk of nearby organs. Tomotherapy and dynamic MLC IMRT showed mostly the same performance. Despite the apparent conceptual differences, all four techniques fare equally well for standard patient cases. The absence of relevant differences is in part due to biological optimization, which offers more freedom to shape the dose than do, e.g., dose volume histogram constraints. Each technique excels for certain classes of highly complex cases, and hence the various modalities should be viewed as complementary, rather than competing.  相似文献   

15.
The dose due to Bremsstrahlung in stationary electron beams of nominal energies in the range 6-20 MeV is typically between 1-7% of the maximum dose and is usually not clinically significant. However, in treatments using rotational or multiple electron beams where the x-ray dose from several beams is added the x-ray dose will reach much higher proportions and will be of clinical significance. Moreover, this dose often is located in normal tissue beyond the target volume. Reduction of this x-ray dose is therefore desirable. In the present study a reduction of the x-ray component of electron beams produced by a Clinac 2100C accelerator by a change of the transmission ion chamber and scattering foils is reported. A reduction in Bremsstrahlung of up to 50% can be achieved.  相似文献   

16.
In treatment planning for conformal radiotherapy, it is possible to attain high accuracy in contouring the outline of the target volume and organs at risk by giving contrast agents (CAs) during the CT scan. In order to calculate the dose from the CT scans, Hounsfield units (HUs) are converted into the parameters of a standard set of tissues with given atomic composition and density. Due to the high atomic number of contrast media, high HU values are obtained during CT scanning. The Helax treatment planning system, for instance, erroneously takes them for high density tissue. This misinterpretation results in high absorption of high-energy photon beams and thus affects the dose calculation significantly. A typical bolus diameter of 3 cm and HU values of 1,400 cause an overdose of up to 7.4% and 5.4% for 6 MV and 25 MV photon beams, respectively. However, since the CA concentration and its expansion are rather low the effect on dose calculation in treatment planning is negligible.  相似文献   

17.
Basic dosimetric properties of 6 MV and 18 MV photon beams from a Varian Clinac 21EX accelerator operating without the flattening filter have been measured. These include dose rate data, depth dose dependencies and lateral profiles in a water phantom, total scatter factors and transmission factors of a multileaf collimator. The data are reviewed and compared with measurements for the flattened beams. The unflattened beams have the following: a higher dose rate by factors of 2.3 (6 MV) and 5.5 (18 MV) on the central axis; lower out-of-field dose due to reduced head scatter and softer spectra; less variation of the total scatter factor with field size; and less variation of the shape of lateral dose profiles with depth. The findings suggest that with a flattening filter free accelerator better radiation treatments can be developed, with shorter delivery times and lower doses to normal tissues and organs.  相似文献   

18.
The dose distribution in small lung tumors (coin lesions) is affected by the combined effects of reduced attenuation of photons and extended range of electrons in lung. The increased range of electrons in low-density tissues can lead to loss of field flatness and increased penumbra width, especially at high energies. The EGSNRC Monte Carlo code, together with DOSXYZNRC, a three-dimensional voxel dose calculation module has been used to study the characteristics of the penumbra in the region of the target-lung interfaces for various radiation beam energies, lung densities, target-field edge distances, target size, and depth. The Monte Carlo model was validated by film measurements made in acrylic (simulating a tumor) imbedded in cork (simulating the lung). Beam profiles that are deemed to be acceptable are defined as those in which no point within the planning target volume (target volume plus 1 cm margin) received less than 95% of the dose prescribed to the center of the target. For parallel opposed beams and 2 cm cube target size, 6 MV photons produce superior dose distribution with respect to penumbra at the lateral, anterior, and posterior surfaces and midplane of the simulated target, with a target-field edge distance of 2.5 cm. A lesser target-field edge distance of 2.0 cm is required for 4 MV photons to produce acceptable dose distribution. To achieve equivalent dose distribution with 10 and 18 MV photons, a target-field edge distance of 3.0 and 3.5 cm, respectaively, is required. For a simulated target size of 4 cm cube, a target-field edge distance of 2, 2.5, and 3 cm is required for 6, 10, and 18 MV photons, respectively, to yield acceptable PTV coverage. The effect, which is predominant in determining the target dose, depends on the beam energy, target-field edge distance, lung density, and the depth and size of the target.  相似文献   

19.
Intensity modulated proton therapy (IMPT) offers the possibility of generating excellent target coverage while sparing the neighbouring organs at risk. However, treatment plans optimized for IMPT may be very sensitive to range and setup uncertainties. We developed a method to deal with these uncertainties in the dose optimization. This method aims at two objectives: one for maintaining the dose coverage within the target, and the other for preventing undesired exposure to organs at risk. The former objective was achieved by the algorithm described in our previous paper to suppress the in-field dose gradient within the target. In this study, the latter objective was achieved by a novel algorithm in which we suppressed pencil beams with high risk to deliver undesired doses to organs at risk under conditions where range and setup uncertainties occur. We defined the risk index that quantifies the likelihood of each pencil beam delivering high doses to organs at risk, and introduced it into the objective function of dose optimizations. In order to test the algorithm's performance, this method was applied to an RTOG benchmark phantom geometry and to a cervical chordoma case. These simulations demonstrated that our method provides IMPT plans that are more robust against range and setup errors compared to conventional IMPT plans. Compared to the conventional IMPT plan, the optimization time for the robust plan increased by a factor of only 3, from 4 to 11 min.  相似文献   

20.
A recent mice study demonstrated that gold nanoparticles could be safely administered and used to enhance the tumour dose during radiation therapy. The use of gold nanoparticles seems more promising than earlier methods because of the high atomic number of gold and because nanoparticles can more easily penetrate the tumour vasculature. However, to date, possible dose enhancement due to the use of gold nanoparticles has not been well quantified, especially for common radiation treatment situations. Therefore, the current preliminary study estimated this dose enhancement by Monte Carlo calculations for several phantom test cases representing radiation treatments with the following modalities: 140 kVp x-rays, 4 and 6 MV photon beams, and 192Ir gamma rays. The current study considered three levels of gold concentration within the tumour, two of which are based on the aforementioned mice study, and assumed either no gold or a single gold concentration level outside the tumour. The dose enhancement over the tumour volume considered for the 140 kVp x-ray case can be at least a factor of 2 at an achievable gold concentration of 7 mg Au/g tumour assuming no gold outside the tumour. The tumour dose enhancement for the cases involving the 4 and 6 MV photon beams based on the same assumption ranged from about 1% to 7%, depending on the amount of gold within the tumour and photon beam qualities. For the 192Ir cases, the dose enhancement within the tumour region ranged from 5% to 31%, depending on radial distance and gold concentration level within the tumour. For the 7 mg Au/g tumour cases, the loading of gold into surrounding normal tissue at 2 mg Au/g resulted in an increase in the normal tissue dose, up to 30%, negligible, and about 2% for the 140 kVp x-rays, 6 MV photon beam, and 192Ir gamma rays, respectively, while the magnitude of dose enhancement within the tumour was essentially unchanged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号