首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Body fat accumulation and bone loss are both often associated with estrogen deficiency following menopause. In this study, we examined whether soy isoflavone, one of the phytoestrogens, and moderate exercise interventions exhibit cooperative effects on body composition and bone mass in ovariectomized (OVX) mice. Eight-week-old female mice were assigned to 6 groups: (1) sham-operated (sham); (2) OVX; (3) OVX with received a soy isoflavone diet (OVX+ISO); (4) OVX with exercised on a treadmill (OVX+EX); (5) OVX with given both isoflavone and exercise (OVX+ISO&EX ); and (6) OVX with treated with 17 beta-estradiol subcutaneously (OVX+E2). Body composition and bone mineral density (BMD) were estimated by dual-energy x-ray absorptiometry (DXA). After the 6-week intervention, whole body fat (%) in the OVX group showed significantly higher than that in the sham group. Intervention of exercise and isoflavone alone partially inhibited OVX-induced body fat gain, and the combined intervention as well as E2 treatment completely restored fat mass to the sham level. Lean body mass in the whole body was not different in OVX group compared with that in OVX+ISO, OVX+EX, and OVX+E2 groups, but it was significantly higher in OVX+ISO&EX than in other groups. BMD of the whole body, lumbar spine, or femur showed significantly reduced by OVX, and the bone loss was partially inhibited by intervention of exercise or isoflavone alone. However, the combined intervention completely restored the bone mass to the level of sham, as did E2. Serum total cholesterol was significantly increased by OVX, which was normalized by the combined intervention or E2 treatment. These results demonstrate that combined intervention of soybean isoflavone and exercise prevented body fat accumulation in the whole body with an increase in lean body mass and restoration of bone mass, and reduced high serum cholesterol in OVX mice.  相似文献   

2.
BACKGROUND: Postmenopausal estrogen deficiency and alcohol abuse are known risk factors for osteoporosis. Previous studies of the combined effect of alcohol and ovariectomy on bone loss using chronic alcohol-feeding models have not demonstrated additional alcohol-induced bone loss in ovariectomized (OVX) animals. Binge alcohol treatment causes rapid bone loss in male rats. We hypothesized that binge alcohol would cause additional bone loss in OVX rats. METHODS: Ninety-six adult (400 g) female Sprague-Dawley rats (48 sham-operated and 48 OVX, pair fed) were randomly divided into 4 treatment groups: (a) saline-treated, (b) binge alcohol-treated (3 g/kg alcohol as a 20% weight to volume alcohol/saline solution, intraperitoneal (IP), 3 times per week), (c) parathyroid hormone (PTH)-treated (80 microg/kg, SC, 5 d/wk), and (d) binge alcohol plus PTH. Rats were treated for either 2 or 4 weeks. Following treatment periods, blood was collected for alcohol concentration (BAC) measurements; lumbar vertebrae were removed for bone mineral density (BMD) levels, trabecular microarchitecture assessment, and vertebral compressive strength analysis. RESULTS: Peak binge BACs averaged 300 mg/dL. Alcohol and OVX decreased cancellous BMD: alcohol and OVX treatment in combination caused additional cancellous BMD loss and significant cortical BMD reductions. Compressive strength was also decreased by OVX and alcohol. Combination treatment resulted in further declines in bone strength. Micro-CT analysis revealed a significant effect of combined OVX and alcohol treatment resulting in decreased trabecular bone volume/total volume (BV/TV). Intermittent PTH administration compensated for losses of BMD, compressive strength, and restored BV/TV deficits caused by OVX, alcohol, or their combination. CONCLUSIONS: Bone loss following OVX can be significantly increased by concurrent binge alcohol treatment. The effects of alcohol and OVX are compensated by concurrent intermittent treatment with PTH. These results suggest that postmenopausal women who abuse alcohol may place their skeleton at additional risk for osteoporotic fracture.  相似文献   

3.
Ke HZ  Foley GL  Simmons HA  Shen V  Thompson DD 《Endocrinology》2004,145(4):1996-2005
The purpose of this study was to determine the long-term effects of lasofoxifene, a new selective estrogen receptor modulator, on bone mass, bone strength, and reproductive tissues in ovariectomized (OVX) rats. Sprague Dawley female rats at 3.5 months of age were OVX and treated orally with lasofoxifene (60, 150, or 300 microg/kg x d) for 52 wk. The urinary deoxypyridinoline/creatinine ratio was significantly lower in all lasofoxifene-treated OVX rats compared with OVX controls at wk 26. Peripheral quantitative computerized tomography analysis of proximal tibial metaphysis showed that the significant loss in trabecular content and density induced by OVX was significantly prevented by lasofoxifene treatment. Proximal tibial and lumber vertebral trabecular bone histomorphometric analysis showed that all doses of lasofoxifene significantly reduced OVX-induced bone loss by decreasing bone resorption and bone turnover. The ultimate strength, energy, and toughness of the fourth lumbar vertebral body in OVX rats treated with all doses of lasofoxifene were significantly higher compared with those in OVX controls, and did not differ significantly from those in sham controls. Uterine weight in OVX rats treated with lasofoxifene was slightly, but significantly, higher when compared with that in OVX controls, but was still much less than that in sham controls. No abnormal finding associated with lasofoxifene was observed with uterine histology examination. In summary, long-term treatment with lasofoxifene preserves bone mass and bone strength and does not adversely affect the uterus in OVX rats. These data suggest that lasofoxifene is an effective antiosteoporosis agent, and its efficacy and safety can be maintained over an extended period of time.  相似文献   

4.
目的 了解选择性雌激素受体调节剂雷洛昔芬 (RLX)阻止去卵巢大鼠骨丢失的机制。对骨质疏松症模型大鼠进行雌激素及选择性雌激素受体调节剂类药物RLX治疗 ,观察其对去卵巢大鼠骨组织光镜、电镜及骨密度 (BMD)等各种指标的影响。 方法 用 3月龄雌性SD大鼠 32只 ,随机分为卵巢未切除组、卵巢切除组、雌激素治疗组、RLX治疗组 ,5个月后处死 ,检测股骨、腰椎及全身BMD、子宫重量、骨形态。 结果 卵巢切除组经RLX治疗 3个月后腰椎、股骨、全身BMD增加35 %、4 0 %、2 1% ,分别为 (0 2 5 6± 0 0 2 2 ) g/cm2 、(0 2 93± 0 0 15 ) g/cm2 和 (0 36 8± 0 0 2 5 ) g/cm2 ;RLX组大鼠骨小梁表面的破骨细胞数比卵巢切除组减少 ;与卵巢切除组相比 ,雌激素治疗组的子宫重量增加了 5 5 % ,而RLX组则对子宫无明显刺激作用。 结论 RLX及雌激素都具有防治骨质疏松的作用 ,RLX能阻止去卵巢所造成的骨丢失。  相似文献   

5.
Recent studies have suggested possible adverse effects of thiazolidinediones on bone metabolism. However, the detailed mechanism by which the activity of PPAR affects bone formation has not been elucidated. Impaired osteoblastic function due to cytokines is critical for the progression of inflammatory bone diseases. In the present study, we investigated the cellular mechanism by which PPAR actions interact with osteoblast differentiation regulated by BMP and TNF-α using mouse myoblastic C2C12 cells. BMP-2 and -4 potently induced the expression of various bone differentiation markers including Runx2, osteocalcin, type-1 collagen and alkaline phosphatase (ALP) in C2C12 cells. When administered in combination with a PPARα agonist (fenofibric acid) but not with a PPARγ agonist (pioglitazone), BMP-4 enhanced osteoblast differentiation through the activity of PPARα. The osteoblastic changes induced by BMP-4 were readily suppressed by treatment with TNF-α. Interestingly, the activities of PPARα and PPARγ agonists reversed the suppression by TNF-α of osteoblast differentiation induced by BMP-4. Furthermore, TNF-α-induced phosphorylation of MAPKs, NFκB, IκB and Stat pathways was inhibited in the presence of PPARα and PPARγ agonists with reducing TNF-α receptor expression. In view of the finding that inhibition of SAPK/JNK, Stat and NFκB pathways reversed the TNF-α suppression of osteoblast differentiation, we conclude that these cascades are functionally involved in the actions of PPARs that antagonize TNF-α-induced suppression of osteoblast differentiation. It was further discovered that the PPARα agonist enhanced BMP-4-induced Smad1/5/8 signaling through downregulation of inhibitory Smad6/7 expression, whereas the PPARγ agonist impaired this activity by suppressing BMPRII expression. On the other hand, BMPs increased the expression levels of PPARα and PPARγ in the process of osteoblast differentiation. Thus, PPARα actions promote BMP-induced osteoblast differentiation, while both activities of PPARα and PPARγ suppress TNF-α actions. Collectively, our present data establishes that PPAR activities are functionally involved in modulating the interaction between the BMP system and TNF-α receptor signaling that is crucial for bone metabolism.  相似文献   

6.
目的观察柚皮苷(NG)联合中强度跑台运动对去势大鼠骨质疏松模型的治疗效果。方法2月龄雌性SD大鼠80只,用随机数字法分为假手术组(SHAM)、去势组(OVX)、去势+不同浓度(40、100、200 mg/kg)柚皮苷组(OVX+NG)、去势+跑台+柚皮苷组(OVX+EX+NG)、去势+跑台组(OVX+EX)、雌激素组(OVX+E2),每组10只。大鼠切除卵巢2个月后开始给药,给药60 d后观察各组大鼠股骨骨密度(BMD),Micro-CT参数,血清生化指标及及股骨力学性能与组织学改变。结果柚皮苷与跑台运动干预60 d后,OVX+EX+NG组大鼠股骨颈力学强度、股骨BMD、BV/TV、Tb.N、Tb.Th等均高于单纯去势组(P〈0.05),OVX+EX+NG组治疗效果与柚皮苷浓度呈正相关,以200 mg/kg柚皮苷效果最佳;200 mg/kg柚皮苷联合中强度跑台运动可进一步提高治疗效果。OVX+NG组大鼠血清骨钙素升高,Ⅰ型胶原C端肽(CTX-1)降低;OVX+EX组大鼠骨钙素与CTX-1均降低;OVX+EX+NG组大鼠骨钙素水平与柚皮苷组(200 mg/kg)无差异,但高于OVX+EX。OVX+EX+NG组CTX-1水平低于单纯柚皮苷组和单纯跑台组(P〈0.05)。结论柚皮苷联合中强度跑台运动可提高去势大鼠股骨BMD,增加骨小梁数目,改善骨代谢指标,提高股骨力学性能。  相似文献   

7.
目的探讨甲状旁腺素134(hPTH134)对骨质疏松的治疗作用以及与血钙、磷、维生素D代谢和生长因子的关系。方法用摘除大鼠双侧卵巢的方式制备骨质疏松模型(OVX),实验动物分为4个组:模型对照组(OVX组,摘除大鼠双侧卵巢不作任何处理);hPTH134治疗组(PTH组,摘除大鼠双侧卵巢12w后用hPTH134治疗8w);盐酸雷洛昔芬治疗组(摘除大鼠双侧卵巢12w后用雷洛昔芬治疗8w);假手术组(Sham组,仅切除卵巢周围的脂肪组织约3g,术后12w纳入实验)。应用HOLOGIC第4代双能X线4500W骨密度仪测大鼠腰椎、股骨上段骨密度值(BMD);以骨形态计量学测股骨骨小梁面积、矿化沉积率;用ELISA法测定血清IGF1水平和血清25OHVitD浓度以及血淋巴细胞VitD受体(VDR)含量。结果hPTH134治疗组、盐酸雷洛昔芬治疗组均较OVX组腰椎、股骨上段骨密度增高,组间比较差异有显著性(P<0.01)。hPTH134治疗组较盐酸雷洛昔芬治疗组股骨上段骨密度增高,两组之间差异有显著性(P<0.01)。hPTH134治疗组骨小梁面积明显增加、矿化沉积率增高。hPTH134治疗组、盐酸雷洛昔芬治疗组血清IGF1浓度值、血清25OHVitD浓度值升高,与OVX组比较差异有显著性(P<0.01)。各组血淋巴细胞VDR含量无明显变化,与OVX组比较差异无显著性(P>0.05)。结论hPTH134能够预防腰椎、股骨上段骨密度丢失,使骨小梁面积明显增加、矿化沉积率增高并且血清IGF1及血清25OHVitD浓度值升高,但对VDR含量无明显作用。  相似文献   

8.
Clinical studies have revealed a blunting of the bone anabolic effects of parathyroid hormone treatment in osteoporotic patients in the setting of pre- or cotreatment with the antiresorptive agent alendronate (ALN). Sclerostin monoclonal antibody (Scl-Ab) is currently under clinical investigation as a new potential anabolic therapy for postmenopausal osteoporosis. The purpose of these experiments was to examine the influence of pretreatment or cotreatment with ALN on the bone anabolic actions of Scl-Ab in ovariectomized (OVX) rats. Ten-month-old osteopenic OVX rats were treated with ALN or vehicle for 6 wk, before the start of Scl-Ab treatment. ALN-pretreated OVX rats were switched to Scl-Ab alone or to a combination of ALN and Scl-Ab for another 6 wk. Vehicle-pretreated OVX rats were switched to Scl-Ab or continued on vehicle to serve as controls. Scl-Ab treatment increased areal bone mineral density, volumetric bone mineral density, trabecular and cortical bone mass, and bone strength similarly in OVX rats pretreated with ALN or vehicle. Serum osteocalcin and bone formation rate on trabecular, endocortical, and periosteal surfaces responded similarly to Scl-Ab in ALN or vehicle-pretreated OVX rats. Furthermore, cotreatment with ALN did not have significant effects on the increased bone formation, bone mass, and bone strength induced by Scl-Ab in the OVX rats that were pretreated with ALN. These results indicate that the increases in bone formation, bone mass, and bone strength with Scl-Ab treatment were not affected by pre- or cotreatment with ALN in OVX rats with established osteopenia.  相似文献   

9.
The study was designed 1) to determine whether treatment with basic fibroblast growth factor (bFGF) and PTH is more efficacious than treatment with PTH alone for increasing bone mass and strength and improving trabecular microarchitecture in osteopenic ovariectomized rats, and 2) to assess whether prior and concurrent administration of the antiresorptive agents estrogen and risedronate suppresses the bone anabolic response to treatment with bFGF alone and sequential treatment with bFGF and PTH. Three-month-old female Sprague Dawley rats were ovariectomized (OVX) or sham-operated (sham) and maintained untreated for 1 yr. Baseline sham and OVX rats were killed at this time (15 months of age). Groups of rats were injected sc with estrogen (10 microg/kg, 4 d/wk), risedronate (5 microg/kg, 2 d/wk), or vehicle. At the end of the second week of antiresorptive treatment, catheters were inserted into the jugular veins of all rats, and vehicle or bFGF at a dose of 250 microg/kg was injected daily for 14 d. Three groups of rats were killed at the end of bFGF treatment. The remaining rats were continued on their respective antiresorptive therapy and injected sc with vehicle or synthetic human PTH-(1-34) at a dose of 80 microg/kg, 5 d/wk, for 8 wk. Lumbar vertebrae were processed for cancellous bone histomorphometry and biomechanical testing. Ovariectomy resulted in a decrease in vertebral bone mass and strength. Treatment of OVX rats for 14 d with bFGF markedly increased osteoblast surface, osteoid surface, and osteoid volume compared with vehicle treatment of sham and OVX rats. Furthermore, osteoid bridges were observed extending between preexisting trabeculae in bFGF-treated OVX rats. Prior and concurrent administration of estrogen and risedronate did not suppress these bone anabolic effects of bFGF. Treatment of OVX rats with PTH alone increased vertebral cancellous bone mass and strength to the level of vehicle-treated sham rats. Sequential treatment of OVX rats with bFGF and PTH further augmented vertebral bone mass and strength to a level above that observed in OVX rats treated with PTH alone. The improvements in bone mass and strength were associated with an increase in trabecular thickness in OVX rats treated with PTH alone and with an increase in trabecular thickness and node to terminus ratio, an index of trabecular connectivity, in OVX rats treated sequentially with bFGF and PTH. Cotreatment with estrogen and risedronate did not suppress the anabolic response of bone to bFGF and PTH. In fact, a trend for an even greater increase in cancellous bone mass and node to terminus ratio was observed in OVX rats treated with risedronate, bFGF, and PTH. These findings indicate that sequential treatment with bFGF and PTH is more efficacious than treatment with PTH alone for increasing bone mass and strength and improving trabecular microarchitecture in osteopenic OVX rats.  相似文献   

10.
目的探讨仙灵骨葆对骨质疏松(OP)大鼠骨量、骨代谢和生物力学性能的影响。方法 3月龄雌性SD大鼠24只分为3组,每组8只:正常对照组(N)、卵巢切除组(OVX)、卵巢切除+仙灵骨葆治疗组(XLGB)。除N组外,其余两组行卵巢切除术,6 w后XLGB组给予药物干预:250 mg.kg-1.d-1,OVX组给予等量生理盐水,8 w后处死所有大鼠。留取尿液、血清检测血PINP值、尿DPYD/Cr、NTX/Cr值。取左侧股骨行骨密度测定,取左侧胫骨制备硬组织不脱钙切片,备行骨组织形态计量学检测,取右侧股骨行三点弯曲试验,检测其最大载荷。结果 OVX组血PINP、尿DPYD/Cr、尿NTX/Cr值显著高于N组,XLGB能显著降低血PINP、尿DPYD/Cr、尿NTX/Cr值,但仍显著高于N组。OVX组股骨全长及近、中、远三段骨密度均显著低于N组,XLGB组近、远端骨密度显著高于OVX组。BV/TV在OVX组显著低于N组,XLGB组显著高于OVX组;OVX、XLGB组骨吸收指标Oc.N、Er.Pm均显著高于N组,XLGB组Oc.N、Er.Pm显著低于OVX组,BFR/BV显著高于OVX组。最大载荷三组之间无显著差别。结论仙灵骨葆灌胃可抑制卵巢切除大鼠骨量丢失,其机制与促进骨形成、抑制骨吸收,降低骨转换水平,进而维持骨量及微观结构有关。  相似文献   

11.
Estrogen replacement therapy is reported to reduce the incidence of vertebral fractures in postmenopausal women, however, its compliance is limited because of side effects and safety concerns. Estrogen’s side effects on breast and uterine tissues leading to the potential increased risk of uterine and breast cancer limit widespread estrogen usage. Thus, there is a significant medical need for a therapy that protects against postmenopausal bone loss but is free of estrogen’s negative effects on reproductive tissues. Selective estrogen receptor modulators (SERMs) have been investigated as an alternative to hormone replacement therapy. One such compound, raloxifene, has been approved for the prevention and treatment of osteoporosis. Lasofoxifene (LAS), a new, nonsteroidal, and potent SERM, is an estrogen antagonist or agonist depending on the target tissue. LAS selectively binds with high affinity to human estrogen receptors. In ovariectomized (OVX) rat studies, LAS prevented the decrease in femoral bone mineral density, tibial and lumbar vertebral trabecular bone mass at an ED100 of about 60 μg/kg/day. LAS inhibited the activation of trabecular and endocortical bone resorption and bone turnover in tibial metaphyses and diaphyses, and lumbar vertebral body in OVX rats. In addition, LAS decreased total serum cholesterol, inhibited body weight gain and increased soleus muscle weight in OVX rats. Similarly, LAS prevented bone loss induced by orchidectomy or aging in male rats by decreasing bone resorption and bone turnover while it had no effect in the prostate. Further, LAS decreased total serum cholesterol in intact aged male rats or in orchidectomized male rats. Synergestic skeletal effects were found with LAS in combination with bone anabolic agents such as prostaglandin E2 (PGE2), parathyroid hormone (PTH) or a growth hormone secretagoue (GHS) in OVX rats. In combination with estrogen, LAS inhibited the uterine stimulating effects of estrogen but did not block the bone protective effects of estrogen. In immature and aged female rats, LAS did not affect the uterine weight and uterine histology. In OVX adult female rats, LAS slightly but significantly increased uterine weight. These results demonstrated that LAS produced effects on the skeleton indistinguishable from estrogen in female and male rats. However, unlike estrogen, LAS had little effect on uterine weight and cellular proliferation of uterus in female rats. In preclinical anti-tumor studies, LAS inhibited human breast cancer growth in mice bearing MCF7 tumors, prevented NMU-induced mammary carcinomas and possessed chemotherapeutic effects in NMU-induced carcinomas in rats. Therefore, we conclude that LAS possesses the antiestrogenic effects in breast tissue and estrogenic effects in bone and serum cholesterol, but lacks estrogen’s side effects on uterine tissue. These data support the therapeutic potential of LAS for the prevention and treatment of postmenopausal bone loss and mammary carcinomas in humans.  相似文献   

12.
Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.  相似文献   

13.
14.
AIM: Peroxisome proliferator-activated receptor γ (PPARγ)is known to regulate growth arrest and terminal differentiation of adipocytes and is used clinically as a new class of antidiabetic drugs. Recently, several studies have reported that treatment of cancer cells with PPARγ ligands could induce cell differentiation and apoptosis, suggesting a potential application as chemopreventive agents against carcinogenesis. In the present study, 3 different kinds of PPARγ ligands were subjected to the experiments to confirm their suppressive effects on liver carcinogenesis.METHODS: Three PPARγ ligands, pioglitazone (Pio) (200 ppm),rosiglitazone (Rosi) (200 ppm), and troglitazone (Tro)(1 000 ppm) were investigated on the induction of the placental form of rat glutathione S-transferase (rGST P)positive foci, a precancerous lesion of the liver, and liver cancer formation using a diethylnitrosamine-induced liver cancer model in Wistar rats, and dose dependency of a PPARγ ligand was also examined.RESULTS: PPARγ ligands reduced the formation of rGST P-positive foci by diethylnitrosamine and induction of liver cancers was also markedly suppressed by a continuous feeding of Pio at 200 ppm.CONCLUSION: PPARγ ligands are potential chemopreventive agents for liver carcinogenesis.  相似文献   

15.
Amylin inhibits ovariectomy-induced bone loss in rats   总被引:5,自引:0,他引:5  
Amylin (AMY), a peptide co-secreted with insulin by pancreatic beta-cells, inhibits bone resorption and stimulates osteoblastic activity. The ovariectomized (OVX) rat is an established animal model for human osteoporosis. Thus, the present experiment was performed to study the effects of AMY on estrogen deficiency-induced bone loss in rats. Thirty-one 6-month-old Wistar rats were randomized by body weight (BW) into two groups. The first underwent surgical OVX (n=21). The second was sham-operated (SH; n=10). Sixty days after surgery, 11 OVX rats were s.c. injected with rat AMY (3 microg/100 g BW/day, for 30 days; OVX+AMY), and 10 with solvent alone in the same way (0.15 ml/100 g BW; OVX). Each rat, housed in an individual cage, was fed daily the mean quantity of diet consumed the day before by SH rats. This diet contained 0.24% calcium and 0. 16% phosphorus. The 31 animals were killed on day 90. No difference in daily weight gain and BW was observed between groups. Neither AMY treatment nor OVX had any significant effect upon femoral morphology, femoral failure load, diaphyseal femoral density (representative of cortical bone) and total femoral calcium content. Nevertheless, both distal metaphyseal (representative of cancellous bone) and total femoral bone densities were higher in SH and OVX+AMY than in OVX rats. The highest plasma osteocalcin concentration was measured in OVX+AMY rats. Simultaneously, urinary deoxypyridinoline excretion was lower in OVX+AMY than in OVX rats. These results indicate that in OVX rats, AMY treatment inhibited trabecular bone loss both by inhibiting resorption and by stimulating osteoblastic activity.  相似文献   

16.
Peroxisome proliferator-activated receptor (PPAR)-gamma agonists are insulin sensitizers, whereas PPAR alpha agonists are lipid-lowering agents in humans. Chronic treatment with PPAR gamma agonists has been shown to prevent the onset of diabetes in young Zucker diabetic fatty (ZDF) rats; however, the effects of PPAR alpha agonists have not been well characterized in this model. Here we investigated chronic efficacy of PPAR alpha and nonthiazolidinedione (nTZD) PPAR gamma agonists on the onset of diabetes in 6-wk-old male ZDF rats. Whereas treatment with the nTZD PPAR gamma agonist completely prevented development of hyperglycemia, PPAR alpha activation was associated with lowering of food intake and body weight and reductions in fed and fasting hyperglycemia, with prevention of the hyperinsulinemic peak preceding the development of hyperglycemia in ZDF rats. Both compounds improved glucose tolerance during an oral glucose tolerance test with concomitant increases in insulin response. Such improvements of insulin secretion were associated with increased islet to total pancreatic area ratio and pancreatic insulin contents. Hyperinsulinemic-euglycemic clamp studies demonstrated that nTZD PPAR gamma reduced basal endogenous glucose production and increased insulin-stimulated glucose disposal, consistent with an improved insulin action as a cause of the improved glucose homeostasis. In contrast, activation of PPAR alpha did not significantly improve glucose metabolism during the hyperinsulinemic-euglycemic clamp. In conclusion, chronic treatment of ZDF rats with a PPAR gamma agonist completely prevented the onset of diabetes by improving both insulin action and secretion, whereas PPAR alpha agonism was partially effective, primarily by improving the pancreatic islet insulin response. Unlike the PPAR gamma agonist, the PPAR alpha agonist demonstrated efficacy without inducing body weight gain and cardiomegaly. This study suggests a possible role for PPAR alpha agonists in the prevention of type 2 diabetes mellitus.  相似文献   

17.
OBJECTIVE: To assess structural changes, especially structural anisotropy, of rat bone trabecular system 6 months after ovariectomy followed by low-calcium diet. METHOD: The study was carried out on the group of 32 female rats, half of which were ovariectomized at the age of 75 days. The animals were divided into 4 groups: one receiving a normal diet (N), another receiving a low-calcium diet (LCa), ovariectomized rats receiving a normal diet (OVX), and ovariectomized animals receiving a low-calcium diet (OVX+LCa). After 6 months the animals were killed, bone specimens were collected and cut into sections of 6 microm thickness. Digital images of the sections were analyzed using a software package enabling analysis of the transversal and longitudinal trabeculae. RESULTS: Significant changes in trabecular structure due to a low-calcium diet (trabecular bone volume loss of 19%), ovariectomy (53%) and ovariectomy combined with low-calcium diet (71%) were observed. In all the analyzed groups, the percentage loss (as compared with controls) of transversal trabeculae was more significant than the loss of longitudinal trabeculae. In the LCa group, transversal trabecular loss was 39%, longitudinal 25%, in (Ovx): 63% and 54%, respectively, and in OVX + LCa: 77% and 72%. The structural anisotropy coefficient, defined as the ratio of transversal to longitudinal trabecular surface area was 0.64 for (N), 0.50 for LCa, 0.49 for OVX, and 0.54 for OVX+LCa groups. CONCLUSIONS: The effect of ovariectomy and low-calcium diet on trabecular structure can be assessed quantitatively by means of analysis of transversal and longitudinal trabeculae associated with the main direction of strain. The degree of transversal trabecular loss is much higher than the longitudinal trabecular loss; the difference becomes smaller with the progress of bone destruction, being greatest in the LCa group, the smallest in the (OVX+ LCa) group.  相似文献   

18.
Peroxisome proliferator-activated receptors (PPAR)α have been shown to exert immunomodulatory effects in autoimmune disorders; no study evaluated the effect of PPARα activation in Graves’ ophthalmopathy (GO).We show the presence of PPARα, δ and γ in GO fibroblasts and preadipocytes. PPARα activators have a potent inhibitory action on the secretion of CXCL9 and CXCL11 chemokines (induced by IFNγ and TNFα) in fibroblasts and preadipocytes. The potency of the used PPARα agonists was maximum on the secretion of CXCL11 (67% inhibition by fenofibrate) in fibroblasts. The relative potency of the compounds in GO fibroblasts was different with each chemokine. PPARα agonists were stronger inhibitors of CXCL9 and CXCL11 (in GO fibroblasts and preadipocytes) than PPARγ activators.This study first shows that PPARα activators inhibit CXCL9 and CXCL11 chemokines in normal and GO fibroblasts and preadipocytes, suggesting that PPARα may be involved in the modulation of the immune response in GO.  相似文献   

19.
Female Sprague-Dawley rats were subjected to bilateral ovariectomy (OVX) or sham surgery (control). Groups of ovariectomized (OVX) and control rats were injected daily with low, medium, or high doses of 17 beta-estradiol (10, 25, or 50 micrograms/kg BW, respectively). An additional group of OVX and control rats was injected daily with vehicle alone. All rats were killed 35 days after OVX, and their proximal tibiae were processed undecalcified for quantitative bone histomorphometry. Trabecular bone volume was markedly reduced in vehicle-treated OVX rats relative to that in control rats (12.1% vs. 26.7%). This bone loss was associated with a 2-fold increase in osteoclast surface and a 4-fold increase in osteoblast surface. The bone formation rate, studied with fluorochrome labeling, was also significantly elevated in vehicle-treated OVX rats (0.111 vs. 0.026 micron3/micron2.day). In contrast, treatment of OVX rats with the three doses of estradiol resulted in normalization of tibial trabecular bone volume and a decline in histomorphometric indices of bone resorption and formation. Our results indicate that estrogen treatment provides complete protection against osteopenia in OVX rats. The protective mechanism involves estrogenic suppression of bone turnover. These findings are consistent with the skeletal effects of estrogen therapy in postmenopausal women.  相似文献   

20.
To further elucidate the processes involved in the physiology of bone-protection by estrogens, ovariectomized (OVX) rats were treated subcutaneously with 17beta-estradiol (E(2)), the ERalpha-specific agonist (16alpha-LE2) and the ERbeta-specific agonist (8beta-VE2). OVX and intact animals served as controls. Biomarkers of bone-formation (osteocalcin (OC), osteopontin (OPN)) and bone-resorption (telopeptides of collagen type I (CTx), pyridinoline cross-links (Pyd)) were quantified. Bone mineral density was measured by computed tomography. OVX-induced bone loss could be antagonized by subcutaneous administration of 17beta-estradiol and 16alpha-LE2. Serum levels of CTx, OC and OPN were significantly elevated in OVX compared to intact animals and reduced by 17beta-estradiol and 16alpha-LE2. Treatment of OVX rats with 8beta-VE2 did not affect bone mineral density (BMD) or bone-marker serum levels. Taken together, the complex expression pattern of bone-markers in OVX rats following subcutaneous administration of ER subtype-specific agonists indicates that 17beta-estradiol exerts its bone-protective effects by modulating the activity of osteoclasts and osteoblasts via ERalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号