首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kosaka T  Kosaka K 《Neuroscience》2005,131(3):611-625
Glomeruli of the main olfactory bulb are considered to serve as functional units in processing the olfactory information. Thus the fine tuning of the output level from each glomerulus is important to the information processing in the olfactory system. The interactions among neuronal elements in glomeruli might be one of main mechanisms regulating this output level. In the mouse main olfactory bulb neuronal connections via chemical synapses and gap junction in glomeruli were analyzed by the serial electron microscopical reconstruction. Gap junctions were encountered between diverse types of dendritic processes, between mitral/tufted cell dendrites, between mitral/tufted cell dendrites and periglomerular cell dendrites and between mitral/tufted cell dendrites and dendrites of some interneurons different from periglomerular cells. Then these morphological observations indicate that we must consider both direct coupling between mitral/tufted cells via gap junctions and indirect coupling between mitral/tufted cells via intervening interneuronal processes. One of gap junction-forming processes presynaptic in asymmetrical synapses was traced back to the soma of its origin located in the glomerular layer, which was thus identified as an external tufted cell. However, interestingly, it showed apparently different ultrastructural features from other external tufted cells located at the border between the glomerular and external plexiform layers; the latter resemble so-called mitral/tufted cells located in the external plexiform and mitral cell layers. Then external tufted cells were assumed to be heterogeneous in their ultrastructural features. We occasionally encountered several dendrites connected by gap junctions, which furthermore made chemical synapses with each other and with other surrounding processes. Thus both chemical synapses and gap junctions interconnect complexly various processes in the glomerulus, where the local circuit among intermingled olfactory nerves, mitral/tufted cell dendrites and interneuron dendrites is far more complex than previously schematized.  相似文献   

2.
In this work we have analyzed the targets of the GABAergic afferents to the main olfactory bulb originating in the basal forebrain of the rat. We combined anterograde tracing of 10 kD biotinylated dextran amine (BDA) injected in the region of the horizontal limb of the diagonal band of Broca that projects to the main olfactory bulb, with immunocytochemical detection of GABA under electron microscopy or vesicular GABA transporter (vGABAt) under confocal fluorescent microscopy. GABAergic afferents were identified as double labeled BDA-GABA boutons. Their targets were identified by their ultrastructure and GABA content. We found that GABAergic afferents from the basal forebrain were distributed all over the bulbar lamination, but were more abundant in the glomerular and inframitral layers (i.e. internal plexiform layer and granule cell layer). The fibers had thick varicosities with abundant mitochondria and large perforated synaptic specializations. They contacted exclusively GABAergic cells, corresponding to type 1 periglomerular cells in the glomerular layer, and to granule cells in inframitral layers. This innervation will synchronize the bulbar inhibition and consequently the response of the principal cells to the olfactory input. The effect of the activation of this pathway will produce a disinhibition of the bulbar principal cells. This facilitation might occur at two separate levels: first in the terminal tufts of mitral and tufted cells via inhibition of type 1 periglomerular cells; second at the level of the firing of the principal cells via inhibition of granule cells. The GABAergic projection from the basal forebrain ends selectively on interneurons, specifically on type 1 periglomerular cells and granule cells, and is likely to control the activity of the olfactory bulb via disinhibition of principal cells. Possible similarities of this pathway with the septo-hippocampal loop are discussed.  相似文献   

3.
Mitral and tufted cells constitute the primary output cells of the olfactory bulb. While tufted cells are often considered as "displaced" mitral cells, their actual role in olfactory bulb processing has been little explored. We examined dendrodendritic inhibition between tufted cells and interneurons using whole cell voltage-clamp recording. Dendrodendritic inhibitory postsynaptic currents (IPSCs) generated by depolarizing voltage steps in tufted cells were completely blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2amino-5-phosphonopentanoic acid (D,L-AP5), whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 2-3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f] quinoxaline-7-sulfonamide (NBQX) had no effect. Tufted cells in the external plexiform layer (EPL) and in the periglomerular region (PGR) showed similar behavior. These results indicate that NMDA receptor-mediated excitation of interneurons drives inhibition of tufted cells at dendrodendritic synapses as it does in mitral cells. However, the spatial extent of lateral inhibition in tufted cells was much more limited than in mitral cells. We suggest that the sphere of influence of tufted cells, while qualitatively similar to mitral cells, is centered on only one or a few glomeruli.  相似文献   

4.
Vasoactive intestinal polypeptide (VIP) immunoreactivity was localized by the indirect antibody enzyme method (PAP technique) in the main olfactory bulb of the hedgehog. Most VIP-immunoreactive cells were located in the glomerular layer and throughout the external plexiform layer. Fewer cells were observed in the granule cell layer. At the morphological level they exhibit the characteristics of periglomerular, external tufted, superficial short axon, horizontal and Van Gehuchten cells. It should be mentioned that another specific neuronal type was found in the inner third of the external plexiform layer, which is not described in other animals. These results revealed that a high number of intrinsic neuronal types of the olfactory bulb of the hedgehog display a strong VIP immunoreactivity.  相似文献   

5.
The distribution and structural features of nitric oxide [corrected] synthase (NOS) containing intrinsic neurons were studied in the mouse main olfactory bulb (MOB). NOS positive neurons were heterogeneous, including some subpopulations of periglomerular cells, granule cells, interneurons in the external plexiform layer, superficial and deep short-axon cells and stellate cells. NOS positive periglomerular cells were frequently calretinin immunoreactive and, although rarely, calbindin positive. Importantly, some middle and external tufted cells were also confirmed to be NOS positive, some of which were also cholecystokinin (CCK) positive. Retrograde tracer experiments showed that some NOS positive tufted cells, which were also CCK positive, constitute the intrabulbar association system and the projection system to the olfactory tubercle. In addition, another particular subpopulation of NOS positive neurons with no or little CCK immunoreactivity appeared to project to areas covering the dorsal endopiriform nucleus, claustrum and insular cortex. Furthermore, diverse types of neurons other than mitral/tufted cells were also suggested to be projection neurons of the MOB. The present study revealed the diversity of NOS positive neurons in the mouse MOB and further revealed that they were different from those reported previously in the rat MOB in structural and chemical properties.  相似文献   

6.
Kosaka T  Deans MR  Paul DL  Kosaka K 《Neuroscience》2005,134(3):757-769
In the present study we analyzed the structural features of extraglomerular gap junction-forming processes in mouse olfactory bulb electron microscopically. This work complements a previous study in which we analyzed the structural features of neuronal gap junction-forming processes within the glomerulus itself. Furthermore we examined connexin 36 expressing cells in the mouse olfactory bulb by analyzing transgenic mice in which the connexin 36 coding sequence was replaced with histological reporters. In extraglomerular regions, the mitral/tufted cell somata, dendrites and axon hillocks made gap junctions and mixed synapses with interneuronal processes. These gap junctions and synapses were associated with various types of interneuronal processes, including a particular type of sheet-like or calyx-like process contacting the somata or large dendrites of mitral/tufted cells. In the olfactory bulbs of the transgenic mice, connexin 36 was expressed in mitral cells, tufted cells, presumed granule cells and periglomerular cells. Multiple immunofluorescent labelings further revealed that presumed interneurons expressing connexin 36 in the periglomerular region rarely expressed calbindin, calretinin or tyrosine hydroxylase and are likely to comprise a chemically uncharacterized class of neurons. Similarly, interneurons expressing connexin 36 in the granule cell layer were rarely positive for calretinin, which was expressed in numerous presumed granule cells in the mouse main olfactory bulb. In summary, these findings revealed that mitral/tufted cells make gap junctions with diverse types of neurons; in the glomeruli gap junction-forming interneuronal processes originated from some types of periglomerular cells but others from a hitherto uncharacterized neuron type(s), and in the extraglomerular region gap-junction forming processes originate mainly from a subset of cells within the granule cell layer.  相似文献   

7.
The olfactory input to the brain is carried out by olfactory nerve axons that terminate in the olfactory bulb glomeruli and make synapses onto dendrites of glutamatergic projection neurons, mitral and tufted cells, and GABAergic interneurons, periglomerular cells. The dendrites are reciprocally connected through asymmetric synapses of mitral/tufted cells with periglomerular cells and symmetric synapses of the opposite direction. Transmission at the first synapse in the olfactory pathway is regulated presynaptically, and this regulation is mediated, in part, by metabotropic GABAB receptors that, when activated, inhibit transmitter release from the olfactory nerve. Functional GABAB receptors are heterodimers composed of the GABAB1 and GABAB2 subunits. Studies using double immunofluorescence have shown colocalization of both subunits in the glomerular neuropil, and ultrastructural studies have localized GABAB1 to extrasynaptic, synaptic, and perisynaptic sites on the plasma membrane of olfactory nerve terminals. We studied the subcellular localization of GABAB2 in the mouse olfactory glomeruli using a subunit-specific antibody and preembedding immunogold labeling. Immunoreactivity for GABAB2 was associated with symmetric dendrodendritic synapses of periglomerular cells with mitral/tufted cells and was localized to the extrasynaptic plasma membrane of presynaptic dendrites, and extrasynaptic, synaptic, and perisynaptic sites on the plasma membrane of postsynaptic dendrites. The results suggest that postsynaptic, and perhaps presynaptic, GABAB receptors may be expressed at GABAergic synapses between dendrites of periglomerular interneurons and projection neurons. Immunolabeling was observed at junctions of the olfactory nerve with mitral/tufted cell dendrites, providing ultrastructural evidence for the expression of the GABAB2 subunit at the primary olfactory synapse.  相似文献   

8.
The structural features of neuronal gap junction-forming processes in the rat olfactory bulb were analyzed electron microscopically. Gap junctions were present in glomeruli and extraglomerular regions. In extraglomerular regions, mitral/tufted cell somata, dendrites and axon hillock-initial segments made gap junctions and mixed synapses with interneuronal processes, some of which were confirmed to be GABA positive. In glomeruli gap junctions were encountered mainly between mitral/tufted cell dendrites and diverse types of processes; a small population of them were conclusively identified as periglomerular cell dendrites. Gap junction-forming processes frequently received synapses from olfactory nerve terminals, suggesting that they could be type 1 periglomerular cells. However, the majority were GABA negative or only faintly positive and none were tyrosine hydroxylase positive, indicating that they were different from previously reported type 1 periglomerular cells. Furthermore serial sectioning analyses revealed that the majority of those processes forming gap junctions with mitral/tufted dendrites were smooth cylindrical and had few presynaptic sites, indicating that they were different from previously described periglomerular cells. These findings revealed that mitral/tufted cells make gap junctions with diverse types of neurons; and some of these gap junction-forming processes originated from some types of periglomerular cells but others from hitherto uncharacterized neuron type(s).  相似文献   

9.
The olfactory bulb of the rat contains chromogranin A at a similar level as the adrenal gland or the hypophysis as revealed by immunoblots. Olfactory chromogranin A also displays the same size as chromogranin A of endocrine cells. In the hippocampus and other brain regions, we could not detect chromogranin A by immunoblotting. In contrast, chromogranin A messenger ribonucleic acid (using S1 nuclease protection assays) was observed in all brain regions examined, including the olfactory bulb. By in situ hybridization histochemistry with a complementary ribonucleic acid probe (280 nucleotides), and by immunocytochemistry, chromogranin A synthesis could be localized to cell bodies of the mitral cell layer, of the external plexiform layer and of the periglomerular region of the olfactory bulb. Immunocytochemically, chromogranin A was also detected in the central projection areas of mitral and tufted cells in the primary olfactory cortex and the anterior amygdaloid area but not in the olfactory glomeruli, where the incoming olfactory nerve fibers of the primary olfactory neurons establish synaptic contacts. Taken together the data show that chromogranin A, following biosynthesis in the perikarya of the mitral and tufted cells, is specifically transported into their axonal terminals but not into their primary dendrites. We propose that the rat olfactory system could serve as a model for the study of chromogranin A regulation and function in neurons.  相似文献   

10.
F Lafay  P Coulon  L Astic  D Saucier  D Riche  A Holley  A Flamand 《Virology》1991,183(1):320-330
After intranasal instillation in the mouse, rabies virus (CVS strain) selectively infected olfactory receptor cells. In the main olfactory bulb (MOB), infection was observed in periglomerular, tufted, and mitral cells and in interneurons located in the internal plexiform layer. Beyond the MOB, CVS spread into the brain along the olfactory pathways. This infection is specific to chains of functionally related neurons but at the death of the animal some nuclei remain uninfected. CVS also penetrated the trigeminal system. The avirulent mutant AvO1, carrying a mutation in position 333 of the glycoprotein, infected the olfactory epithelium and the trigeminal nerve as efficiently as CVS. During the second cycle of infection, the mutant was able to infect efficiently periglomerular cells in the MOB and neurons of the horizontal limb of the diagonal band, which indicates that maturation of infective particles is not affected in primarily infected neuronal cells. On the other hand, other neuronal cells permissive for CVS, such as mitral cells or the anterior olfactory nucleus, are completely free of infection with the mutant, indicating that restriction is related to the ability of AvO1 to penetrate several categories of neurons. From these observations, we concluded that CVS should be able to bind several different receptors to penetrate neurons, while the mutant would be unable to recognize some of them.  相似文献   

11.
The olfactory bulb of the musk shrew, Suncus murinus, is characterized by the presence of various interneurons. Our previous report (Kakuta et al., 2001) demonstrated that positive immunoreactions for calretinin were observed in periglomerular and perinidal cells in the glomerular layer, small ovoid neurons in the external plexiform layer, and granule cells in the granule cell layer of the olfactory bulb in the musk shrew aged 1 to 5 weeks, in addition to calretinin-immunoreactive bipolar cells distributed in the anterior subependymal layer and in each layer of the olfactory bulb. To examine the origin and migration of interneurons of the olfactory bulb, we labeled generated cells by injecting 28-day-old musk shrews with 5-bromo-2'-deoxyuridine (BrdU), and detected the labeled progeny cells that survived after several intervals. BrdU-labeled cells originated in the subependymal layer around the anterior horn of the lateral ventricle, and rostrally migrated in the subependymal layer from the anterior wall of the lateral ventricle into the center of the olfactory bulb, where they radially migrated into the granule cell layer, external plexiform layer, and glomerular layer. It took 2 days to migrate rostrally in the subependymal layer from the anterior lateral ventricle to the center of the olfactory bulb, and 2 to 6 days to migrate radially from the bulbar subependymal layer into the three layers mentioned. The rate of rostralward migration of the labeled cells was estimated to be 38 microm/h, while that of radial migration, 7 to 25 microm/h. The present BrdU-labeling study, together with our previous immunohistochemical study (Kakuta et al., 2001), indicates that anterior subependymal cells differentiate into granule cells in the granule cell layer, into Van Gehuchten cells in the external plexiform layer, and into periglomerular and perinidal cells in the glomerular layer of the olfactory bulb in the musk shrew.  相似文献   

12.
Summary Numerous myelinated perikarya occur in different layers of the olfactory bulbs of a chimpanzee and two species of New World primates, that is, the squirrel and the Cebus monkey. It appears that somata of all established neuron categories, except for the mitral cells, can become ensheathed in myelin. Myelinated dendritic segments are found in the periglomerular region and in the external plexiform layer; tufted and periglomerular cells most likely to give rise to these myelinated dendrites. The myelin sheath is predominantly of the compact C.N.S. type. Perikaryal and dendritic myelin often ends in typical feet of glial cytoplasm. The termination site of dendritic myelin is a preferred site of synaptic contacts.Myelinated profiles are more numerous in the two monkey species than in the chimpanzee.  相似文献   

13.
Taurine is abundant in the main olfactory bulb, exceeding glutamate and GABA in concentration. In whole-cell patch-clamp recordings in rat olfactory bulb slices, taurine inhibited principal neurons, mitral and tufted cells. In these cells, taurine decreased the input resistance and caused a shift of the membrane potential toward the chloride equilibrium potential. The taurine actions were sustained under the blockade of transmitter release and were reversible and dose-dependent. At a concentration of 5 mM, typically used in this study, taurine showed 90% of its maximal effect. GABA(A) antagonists, bicuculline and picrotoxin, blocked the taurine actions, whereas the glycine receptor antagonist strychnine and GABA(B) antagonists, CGP 55845A and CGP 35348, were ineffective. These findings are consistent with taurine directly activating GABA(A) receptors and inducing chloride conductance. Taurine had no effect on periglomerular and granule interneurons. The subunit composition of GABA(A) receptors in these cells, differing from those in mitral and tufted cells, may account for taurine insensitivity of the interneurons. Taurine suppressed olfactory nerve-evoked monosynaptic responses of mitral and tufted cells while chloride conductance was blocked. This action was mimicked by the GABA(B) agonist baclofen and abolished by CGP 55845A; CGP 35348, which primarily blocks postsynaptic GABA(B) receptors, was ineffective. The taurine effect most likely was due to GABA(B) receptor-mediated inhibition of presynaptic glutamate release. Neither taurine nor baclofen affected responses of periglomerular cells. The lack of a baclofen effect implies that functional GABA(B) receptors are absent from olfactory nerve terminals that contact periglomerular cells. These results indicate that taurine decreases the excitability of mitral and tufted cells and their responses to olfactory nerve stimulation without influencing periglomerular and granule cells. Selective effects of taurine in the olfactory bulb may represent a physiologic mechanism that is involved in the inhibitory shaping of the activation pattern of principal neurons.  相似文献   

14.
Olfactory information is initially processed through intricate synaptic interactions between glutamatergic projection neurons and GABAergic interneurons in the olfactory bulb. Although bulbar neurons and networks have been reported to develop even postnatally, much is yet unknown about the glutamatergic neuron development. To address this issue, we studied the postnatal ontogeny of vesicular glutamate transporters (VGLUT1 and VGLUT2) in the main olfactory bulb of rats, using in situ hybridization, immunohistochemistry, and their combination. In situ hybridization data showed that VGLUT1 mRNA is intensely expressed in differentiating mitral cells and smaller cells of the mitral cell layer (MCL) on postnatal day 1 (P1), and also at lower levels in small- and medium-sized cells, presumably tufted cell populations, of the external plexiform layer (EPL) from P5 onward. VGLUT2 mRNA was expressed in many MCL cell populations on P1, also in small- and medium-sized cells of the EPL at almost the same level as MCL cells between P5 and P7, and became apparently less intense in the MCL than in the EPL from P10 onward. The expression, unlike VGLUT1 mRNA, was also found in small-sized cells of the interglomerular region. In partial agreement with these data, immunohistochemical analyses demonstrated that subsets of mitral and EPL cells are stained for VGLUT1 or VGLUT2, with the former cells coexpressing both subtypes until P5. Moreover, a combined fluorescence in situ hybridization–immunohistochemical dual labeling of the P10 bulb revealed that neither VGLUT1 nor VGLUT2 mRNA is expressed in GABAergic or dopaminergic periglomerular cells, implying their expression in other periglomerular cell subclasses, external tufted cells and/or short-axon cells. Thus, the present study suggests that early in the postnatal development distinct glutamatergic bulbar neurons of rats express spatiotemporally either or both of the two VGLUT subtypes as a specific vesicular transport system, specifically contributing to glutamate-mediated neurobiological events.  相似文献   

15.
The glomerular layer of the olfactory bulb (OB) contains synaptic connections between olfactory sensory neurons and OB neurons as well as connections among OB neurons. A subpopulation of external tufted cells and periglomerular cells (juxtaglomerular neurons) expresses dopamine, and recent reports suggest that dopamine can inhibit olfactory sensory neuron activation of OB neurons. In this study, whole cell electrophysiological and primary culture techniques were employed to characterize the neuromodulatory properties of dopamine on glutamatergic transmission between rat OB mitral/tufted (M/T) cells and interneurons. Immunocytochemical analysis confirmed the expression of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, in a subpopulation of cultured neurons. D2 receptor immunoreactivity was also observed in cultured M/T cells. Dopamine reduced spontaneous excitatory synaptic events recorded in interneurons. Although the D1 receptor agonist SKF38393 and the D2 receptor agonist bromocriptine mesylate mimicked this effect, evoked excitatory postsynaptic potentials (EPSPs) recorded from monosynaptically coupled neuron pairs were attenuated by dopamine and bromocriptine but not by SKF38393. Neither glutamate-evoked currents nor the membrane resistance of the postsynaptic interneuron were affected by dopamine. However, evoked calcium channel currents in the presynaptic M/T cell were diminished during the application of either dopamine or bromocriptine, but not SKF38393. Dopamine suppressed calcium channel currents even after nifedipine blockade of L-type channels, suggesting that inhibition of the dihydropyridine-resistant high-voltage activated calcium channels implicated in transmitter release may mediate dopamine's effects on spontaneous and evoked synaptic transmission. Together, these data suggest that dopamine inhibits excitatory neurotransmission between M/T cells and interneurons via a presynaptic mechanism.  相似文献   

16.
The laminar distribution and morphological features of parvalbumin-immunoreactive [PV(+l)] neurons, one of the subpopulations of GABAergic neurons, were studied in the rat olfactory bulb at a light microscopic level. In the main olfactory bulb of adult rats, PV(+) neurons were mainly located in the external plexiform layer (EPL), and a few were scattered in the glomerular layer (GL), mitral cell layer (ML), and granule cell layer (GRL); whereas PV(+) neurons were rarely seen in the accessory olfactory bulb. The inner and outer sublayers of the EPL (ISL and OSL) appeared to be somewhat different in the distribution of PV(+) somata and features of PV(+) processes. PV(+) somata were located throughout the OSL, and PV(+) processes intermingled with one another, making a dense meshwork in the OSL; whereas, in the ISL, PV(+) somata were mainly located near the inner border of the EPL, and PV(+) processes made a sparser meshwork than that in the OSL. PV(+) neurons in the EPL were apparently heterogeneous in their structural features and appeared to be classifiable into several groups. Among them there appeared five distinctive types of PV(+) neurons. The most prominent group of PV(+) neurons in the OSL were superficial short-axon cells, located in the superficial portion of this sublayer and giving rise to relatively thick processes, in horizontal or oblique directions, which usually bore spines and varicosities. Another prominent group of PV(+) neurons extended several short, branched dendrites with spines and varicosities, which appeared to intermingle with one another, making a relatively small, spherical or ovoid dendritic field around the cell bodies; most of them resembled Van Gehuchten cells reported in previous Golgi studies. A third distinctive and most numerous group of PV(+) neurons were of the multipolar type; their somata and processes were located throughout the EPL. Their relatively smooth processes with frequent varicosities and a few spines were extended horizontally or diagonally throughout the EPL. A fourth group, which could be a subtype of the multipolar type, were located in or just above th ML and extended several thin, smooth dendrites in the EPL, some of which appeared to reach the border between the GL and EPL. Occasionally, axonlike processes arose from their cell bodies and extended into the ML. This fourth type of PV(+) neuron was named inner short-axon cells. A fifth group of neuron was located in the ML; processes of these neurons were extended horizontally, so they were named inner horizontal cells. PV(+) processes from the fourth and the fifth group of cells appeared to make contacts on mitral cell somata. In the GL some presumably periglomerular cells were also PV(+). In the GRL, PV(+) neurons were small in number, but they were also heterogeneous in their structural features; Some were identified as Golgi cells. This study shows a tremendous heterogeneity in morphological features of a chemically defined subpopulation of GABAergic interneurons in the olfactory bulb.  相似文献   

17.
Previous data suggest that cyclic GMP (cGMP) signaling can play key roles in the circuitry of the olfactory bulb (OB). Therefore, the expression of cGMP-selective subunits of the cyclic nucleotide-gated ion channels (CNGs) can be expected in this brain region. In the present study, we demonstrate a widespread expression of the cGMP-selective A3 subunit of the cyclic nucleotide-gated ion channels (CNGA3) in the rat OB. CNGA3 appears in principal cells, including mitral cells and internal, medium and external tufted cells. Moreover, it appears in two populations of interneurons, including a subset of periglomerular cells and a group of deep short-axon cells. In addition to neurons, CNGA3-immunoreactivity is found in the ensheathing glia of the olfactory nerve. Finally, an abundant population of CNGA3-containing cells with fusiform morphology and radial processes is found in the inframitral layers. These cells express doublecortin and have a morphology similar to that of the undifferentiated cells that leave the rostral migratory stream and migrate radially through the layers of the OB. Altogether, our results suggest that CNGA3 can play important and different roles in the OB. Channels composed of this subunit can be involved in the processing of the olfactory information taking place in the bulbar circuitry. Moreover, they can be involved in the function of the ensheathing glia and in the radial migration of immature cells through the bulbar layers.  相似文献   

18.
In the mammalian olfactory bulb, glomeruli are surrounded by a heterogeneous population of interneurons called juxtaglomerular neurons. As they receive direct input from olfactory receptor neurons and connect with mitral cells, they are involved in the initial stages of olfactory information processing, but little is known about their detailed physiological properties. Using whole cell patch-clamp techniques, we recorded from juxtaglomerular neurons in rat olfactory bulb slices. Based on their response to depolarizing pulses, juxtaglomerular neurons could be divided into two physiological classes: bursting and standard firing. When depolarized, the standard firing neurons exhibited a range of responses: accommodating, nonaccommodating, irregular firing, and delayed to firing patterns of action potentials. Although the firing pattern was not rigorously predictive of a particular neuronal morphology, most short axon cells fired accommodating trains of action potentials, while most delayed to firing cells were external tufted cells. In contrast to the standard firing neurons, bursting neurons produced a calcium-channel-dependent low-threshold spike when depolarized either by current injection or by spontaneous or evoked postsynaptic potentials. Bursting neurons also could oscillate spontaneously. Most bursting cells were either periglomerular cells or external tufted cells. Based on their mode of firing and placement in the bulb circuit, these bursting cells are well situated to drive synchronous oscillations in the olfactory bulb.  相似文献   

19.
Microcircuits composed of principal neuron and interneuron dendrites have an important role in shaping the representation of sensory information in the olfactory bulb. Here we establish the physiological features governing synaptic signaling in dendrodendritic microcircuits of olfactory bulb glomeruli. We show that dendritic gamma-aminobutyric acid (GABA) release from periglomerular neurons mediates inhibition of principal tufted cells, retrograde inhibition of sensory input and lateral signaling onto neighboring periglomerular cells. We find that L-type dendritic Ca(2+) spikes in periglomerular cells underlie dendrodendritic transmission by depolarizing periglomerular dendrites and activating P/Q type channels that trigger GABA release. Ca(2+) spikes in periglomerular cells are evoked by powerful excitatory inputs from a single principal cell, and glutamate release from the dendrites of single principal neurons activates a large ensemble of periglomerular cells.  相似文献   

20.
Uptake and retention of exogenous tritiated dopamine and L-dopa was observed within turtle olfactory bulb slices. In the more superficial layers, periglomerular and superficial tufted cells, as well as their processes, and intraglomerular dendrites were recognized as labeled. Within the deeper part of the bulb, some labeled cells between the tanycytes, as well as nerve fibers and terminals within the granule cell layer, are reported. The results confirm the presence of specific intrinsic dopaminergic cells within the reptilian olfactory bulb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号