首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary To investigate presynaptic, regulatory mechanisms on parasympathetic nerve fibres innervating the airways, the release of newly-synthesized [3H]acetylcholine from the isolated trachea was studied. Reverse phase HPLC followed by liquid scintillation spectrometry was used to separate and quantify the radioactive compounds choline, phosphorylcholine and acetylcholine in the incubation medium and the tissue.During the incubation of the tracheae with [3H]choline a significant synthesis of [3H]acetylcholine (35,000 dpm/preparation) and [3H]phosphorylcholine (500,000 dpm/preparation) occurred. In epithelium-deficient tracheae the formation of [3H]phosphorylcholine was enhanced, whereas the content of [3H]acetylcholine remained unchanged. The spontaneous outflow of tritium consisted mainly of [3H]phosphorylcholine (900 dpm/3 min) and [3H]choline (800 dpm/3 min); [3H]acetylcholine was only a minor fraction (50 dpm/3 min). Electrical stimulation of tracheae with intact epithelium caused only a small release of [3H]acetylcholine (460 dpm in the sample obtained during stimulation), but a considerable outflow of [3H]phosphorylcholine (1,900 dpm) without affecting the outflow of [3H]choline. Electrical stimulation of epithelium-deficient tracheae, however, induced a substantial release of [3H]acetylcholine (2,400 dpm), but only a small outflow of [3H]phosphorylcholine. Chemical stimulation (30 mol/1 veratridine) also caused a large release of [3H]acetylcholine (1,700 dpm) without affecting the outflow of [3H]phosphorylcholine or [3H]choline. Indomethacin (3 mol/1) enhanced the electrically-evoked release of [3H]acetylcholine from tracheae with intact epithelium by 89%.The present experiments demonstrate a strong inhibition by the epithelium of the electrically-evoked release of [3H]acetylcholine from the isolated guinea-pig trachea. Cyclooxygenase products of arachidonic acid do not appear as the main mediators of the epithelium-derived inhibition of acetylcholine release. Send offprint requests to I. Wessler at the above address  相似文献   

2.
Summary Myenteric plexus-longitudinal muscle strips isolated from the small intestine of rats were incubated with [3H]choline to measure the synthesis and the release of [3H]acetylcholine. To separate different radioactive compounds (acetylcholine, choline, phosphorylcholine) from both the tissue and the overflow a new method, the reverse phase HPLC, was used.The radiochromatogram following the injection of a [3H]choline-standard and a [14C]acetylcholine-standard onto the HPLC showed a clear separation of both isotopes with a recovery rate of roughly 100%. Incubation of the muscle strips with [3H]choline caused the synthesis of [3H]acetylcholine (30,000 dpm/preparation) that increased 2-fold, when the electrical field stimulation during labelling was increased from 0.2 Hz to 1 Hz. Electrical field stimulation (3 Hz, 2 min) caused an increase in tritium efflux that was abolished by the removal of extracellular calcium or by the addition of tetrodotoxin. Analysis by reverse phase HPLC of the overflow showed that the stimulated increase in tritium overflow was balanced by the enhanced release of [3H]acetylcholine, whereas the overflow of [3H]choline was not affected by the electrical field stimulation. Oxotremorine (1 mol/l) suppressed the release of [3H]acetylcholine by 60%. Scopolamine (0.1 mol/l) prevented this inhibition and, given alone, enhanced the release of [3H]acetylcholine by 43%. The release of [3H]acetylcholine evoked at 0.2, 2 or 20 Hz did not consistently decline at increasing frequencies.The present experiments show the synthesis and the calcium-dependent release of [3H]acetylcholine from the myenteric plexus-longitudinal muscle preparation of rats correspondingly to the same in-vitro preparation isolated from guinea-pigs. Muscarinic autoinhibition operates also in the small intestine of rats. However, some differences (frequency-dependency of [3H]acetylcholine release, spontaneous neuronal activity) are evident between both species. Reverse phase HPLC is a useful method to separate radioactive choline and acetylcholine with a high recovery rate.Send offprint requests to I. Wessler at the above address  相似文献   

3.
Summary Neuronal transmitter stores of the rat phrenic nerve were labelled by incubation with [3H]choline. Release of [3H]acetylcholine was elicited by electrical nerve stimulation (100 or 1500 pulses, 5 or 25 Hz) or by high potassium (27 mmol/l) and the effects of the muscarine receptor agonist oxotremorine and the antagonist scopolamine were investigated. Neither oxotremorine nor scopolamine affected the basal tritium efflux. A low concentration of oxotremorine (10 nmol/l) enhanced and a high concentration of oxotremorine (1 ol/l) reduced the electrically evoked [3H]acetylcholine release. Likewise, the high potassium-evoked [3H]acetylcholine release was reduced by a high concentration of oxotremorine. Both effects of oxotremorine, increase and decrease, were abolished by a pretreatment (30 min before the first stimulation period) with 0.1 mol/l scopolamine. Scopolamine (0.1 ol/l) alone, enhanced [3H]acetylcholine release evoked by 100 pulses (5 Hz) or by high potassium. Scopolamine, however, reduced [3H]acetylcholine release evoked by 1500 pulses (5 Hz or 25 Hz). The concentration-response curves obtained for scopolamine under these latter stimulation conditions were flat-running and biphasic which might indicate the involvement of two opposite effects (increase and decrease) of scopolamine under the present stimulation conditions. Both effects of scopolamine were reduced in the presence of 10 gmol/l neostigmine. It is concluded that muscarine receptors are present within the endplate region of motor nerves. Transmitter release from motor nerves appears to be regulated by two muscarinic feedback mechanisms. The negatively operating system is activated during short stimulation periods and the positively operating system becomes additionally apparent during long stimulation periods. Blockade of cholinesterase can hide presynaptic muscarinic mechanisms on motor nerves. Send offprint requests to I. Wessler at the above address  相似文献   

4.
Summary The effect of (+)-tubocurarine (TC) on the release of [3H]acetylcholine from the rat phrenic nerve-hemidiaphragm preincubated with [3H]choline was investigated at different stimulation frequencies and train lengths.At 0.5 Hz (100 pulses) TC failed to modulate the evoked acetylcholine release. A slight (30%) inhibition was observed at 1 Hz (100 pulses). Release of acetylcholine evoked at 5, 25 and 50 Hz (100 pulses) or 100 Hz (200 pulses) was markedly reduced by TC. The degree of inhibition (60%) was similar between 5 Hz and 100 Hz. A concentration of 1 mol/l TC was a maximal effective concentration at 5 Hz whilst at all higher stimulation frequencies a 10-fold higher concentration was necessary for the maximal effect. When 300 pulses were continuously applied at 5 Hz or 50 Hz TC caused only a slight inhibition (20%). Additionally, the phrenic nerve was stimulated intermittently. Trains of 15 pulses were repeated 10 times with an interval of 3 s between each train. Under this latter stimulation condition TC failed to reduce acetylcholine release.It is concluded that nicotinic autofacilitation of acetylcholine release from the motor nerve operates at frequencies and stimulation conditions similar to the pattern of nerve activity under in vivo conditions. At least more than 15 pulses are required before the nicotinic autofacilitation becomes apparent. It appears unlikely that the TC induced fading of end-organ responses can only be attributed to a blockade of the presynaptic nicotine receptors. Send offprint requests to I. Wessler at the above address  相似文献   

5.
Summary Two different preparations of the rat phrenic nerve-hemidiaphragm (whole nerve-muscle preparation, end-plate preparation) were used for studying synthesis and release of radioactive acetylcholine in the absence and presence of cholinesterase inhibitors.When the whole nerve-muscle preparation (110–180 mg) was incubated with [3H]choline, only small amounts of radioactive acetylcholine were synthesized within the tissue. Electrical nerve stimulation of the whole nerve-muscle preparation produced no increase in tritium outflow.Incubation of the end-plate preparation (16–29 mg) which was obtained after removal of most of the muscle mass led to the formation of large amounts of [3H]acetylcholine. Synthesis depended on nerve activity and increased 13-fold during a high loading stimulation (50 Hz), as compared to the synthesis at rest. In a denervated end-plate preparation the formation of [3H]acetylcholine was reduced to 4% of the control preparation. Electrical nerve stimulation of the end-plate preparation produced a release of tritium that could be attributed entirely to the release of [3H]acetylcholine. The stimulated tritium efflux was completely suppressed in a calcium-free medium or in the presence of tetrodotoxin (300 nM). Release could even be detected during a short train of 50 pulses (5 Hz) with a fractional release of about 0.04% of the [3H]acetylcholine tissue content per pulse.It is concluded that the large muscle mass interferes with nerve labelling by a reduction of the [3H]choline supply to the nerve terminals when the whole nerve-muscle preparation is used. Removal of most of the muscle fibres reduces the possibility for [3H]choline to be captured by them and then more radioactive choline can enter the end-plate region. From this end-plate preparation a calcium-dependent release of radioactive transmitter can be measured in the absence of cholinesterase inhibitors.  相似文献   

6.
Summary The effect of nicotine (1–10 M) and tacrine (9-amino-1,2,3,4-tetrahydroacridine; THA) on stimulation evoked release of [3H]acetylcholine from the rat brain slice preparation preincubated with [3H]choline was investigated.In these preparations, nicotine enhanced while tacrine inhibited evoked [3H]acetylcholine release. These effects were blocked by (+)tubocurarine (1 M) and atropine (0.1 M) respectively. In the presence of idazoxan (0.3 M) plus atropine (0.1 M), nicotine (3 M) continued to enhance evoked [3H]acetylcholine release while the inhibitory effect of tacrine (1 M) on evoked [3H]acetylcholine release was reversed to an enhancement. Under these circumstances the effects of both nicotine and tacrine were blocked by (+)tubocurarine (1 M).These findings demonstrate that tacrine can both inhibit or enhance [3H]acetylcholine release, most likely through its activity as a cholinesterase inhibitor. Under normal circumstances following tacrine the predominant effect of the elevated levels of acetylcholine will be activation of inhibitory presynaptic muscarine receptors on cholinergic nerves and an inhibition of evoked [3H]acetylcholine release. Under conditions where both presynaptic inhibitory muscarine and 2-adrenoceptors are blocked, the elevated levels of acetylcholine produced by tacrine will lead to the activation of facilitatory presynaptic nicotine cholinoceptors on cholinergic nerves and an enhancement of evoked [3H]acetylcholine release. Send offprint requests to R. Loiacono at the above address  相似文献   

7.
Summary Electrically-evoked release of [3H]acetylcholine from autonomic neurons (myenteric plexus), motoneurons (phrenic nerve) and the central nevous system (neocortex) was investigated in the presence and absence of the calcium channel antagonists -conotoxin GVIA, nifedipine and verapamil, whereby the same species (rat) was used in all experiments. Release of [3H]acetylcholine was measured after incubation of the tissue with [3H]choline.-Conotoxin GVIA markedly reduced (70%) the evoked release of [3H]acetylcholine from the myenteric plexus of the small intestine (IC50: 0.7 nmol/l) with a similar potency at 3 and 10 Hz stimulation. An increase in the extracellular calcium concentration attenuated the inhibitory effect of -conotoxin GVIA. Release of [3H]acetylcholine from the rat neocortex was also inhibited (90%) by -conotoxin GVIA, but the potency was 19-fold lower (IC50: 13 nmol/l). However, the release of [3H]acetylcholine from the phrenic nerve was not reduced by -conotoxin GVIA (100 nmol/l) at 1.8 mmol/l calcium (normal concentration), whereas -conotoxin GVIA inhibited evoked [3H]acetylcholine release by 47% at 0.9 mmol/l calcium. Neither nifedipine (0.1 and 1 mol/l) nor verapamil (0.1, 1 and 10 mol/l) modified the evoked release of [3H]acetylcholine from the myenteric plexus and the phrenic nerve.Acetylcholine release from different neurons appears to be regulated by different types of calcium channels. N-type channels play the dominant role in regulating acetylcholine release from both the myenteric plexus and the neocortex, whereas acetylcholine release from motor nerves is regulated by calcium channel(s) not yet characterized. Send offprint requests to I. Wessler at the above address  相似文献   

8.
Summary The modulation of the depolarization induced release of [3H]-acetylcholine by agonists acting on -adrenoceptors was studied in superfused rat atrial slices. In this model, noradrenaline and methoxamine, but not UK 14304 reduced the potassium evoked release of [3H]-acetylcholine. The inhibitory action of these drugs was antagonized by the 1 selective adrenoceptor antagonist prazosin. Propranolol, idazoxan and sulpiride did not antagonize the inhibition by noradrenaline of the potassium-evoked release of [3H]-acetylcholine. Exposure to amphetamine, -phenylethylamine, m- or p-tyramine, increased in a concentration-dependent manner the spontaneous outflow of [3H]-noradrenaline from atrial slices. Yet, these concentrations of the indirectly acting sympathomimetic amines, tested in the presence of an inhibitor of monoamine oxidase (MAO), failed to modify the potassium evoked release of [3H]-acetylcholine. Desipramine 3 mol/l or cocaine 10 mol/l did not affect the release of [3H]-acetylcholine evoked by potassium stimulation. Under similar experimental conditions, -phenylethylamine facilitated the spontaneous outflow of [3H]-noradrenaline, and inhibited the electrically-evoked release of [3H]-serotonin from the hippocampus by activation of 2-adrenoceptors. It is concluded that the release of acetylcholine from atrial cholinergic neurons can be modulated through inhibitory 1-adrenoceptors, which are not activated when the release of noradrenaline is induced by indirectly acting sympathomimetic amines. In addition, amphetamine or structurally related amines do not activate directly recognition sites in the cholinergic postganglionic parasympathetic neuron to modify the release of [3H-acetylcholine.  相似文献   

9.
Summary Dendrosomes prepared from substantia nigra are able to take up and release [3H]dopamine in a Ca2+-dependent manner. The Vmax values of [3H]dopamine uptake in substantia nigra dendrosomes was about 5 times lower than that in caudate putamen synaptosomes. The pattern of the K+-dependency of the [3H]dopamine release in substantia nigra dendrosomes was significantly different from that found in caudate putamen synaptosomes. The release of [3H]dopamine evoked by 15 mmol/l KCl from superfused dendrosomes was increased in a concentration-dependent manner by acetylcholine. The maximal potentiation produced by acetylcholine was about 40%. The potentiation of [3H]dopamine release by 10 µmol/l acetylcholine was insensitive to mecamylamine but antagonized by atropine and by pirenzepine. The effects of acetylcholine on the release of [3H]acetylcholine from substantia nigra nerve endings was also studied. Exogenous acetylcholine added to the superfusion medium decreased in a concentration-dependent manner the release of acetylcholine. This effect was not antagonized by mecamylamine or pirenzepine but fully antagonized by atropine. The data suggest the existence, in the substantia nigra of the rat, of two distinct muscarinic receptor subtypes regulating respectively dopamine release from dopamine dendrites and acetylcholine release from cholinergic nerve terminals.Part of this work was presented at a satellite meeting of the 11th International Congress of Pharmacology: Dopamine '90 held in Como, Italy (July 1990) Send offprint requests to M. Raiteri at the above address  相似文献   

10.
Summary The inhibition by three modulators (oxotremorine, noradrenaline, morphine) of acetylcholine release from the myenteric plexus preincubated with [3H]choline was investigated at different stimulation frequencies and calcium concentrations. Moreover, [3H]acetylcholine release evoked by a low (0.1 Hz) or a high (10 Hz) stimulation rate was investigated at different calcium concentrations either in the absence or presence of scopolamine. A reduced calcium concentration (0.6 mmol/l) inhibited acetylcholine release more at 0.1 Hz (74% ± 3%) than at 10 Hz (44% ± 8%). Scopolamine enhanced the stimulated acetylcholine release at a calcium concentration of 1.8 mmol/l. At calcium concentrations higher than 1.8 mmol/l scopolamine failed to enhance transmitter release markedly. A reduction of the calcium concentration (< 1.8 mmol/l) significantly enhanced the effect of scopolamine, when acetylcholine release was evoked at 0.1 Hz. Oxotremorine (10 mol/l) completely suppressed acetylcholine release at 1 Hz (120 pulses). When 120 pulses were applied at 10 Hz the maximal effect was only a 64% inhibition and the concentration-response curve was significantly shifted to the right. However, after a reduction of both the train length or the calcium concentration oxotremorine produced a complete inhibition of acetylcholine release evoked at 10 Hz. In contrast to the effect of oxotremorine, the concentration-response curves for morphine and noradrenaline were similar at 1 Hz and 10 Hz. Following conclusions can be drawn: 1. The present findings fit into the concept that residual calcium accumulates in the nerve terminal during 10 Hz stimulation. 2. The results obtained with scopolamine and oxotremorine are consistent with the view that muscarine autoreceptor activation triggers a reduction of the intraneuronal availability of calcium for the stimulus-secretion coupling. 3. The presynaptic effect of morphine and partly that of noradrenaline might be mediated by a different mechanism, probably by a reduction of release sites. Send offprint requests to I. Wessler at the above address  相似文献   

11.
Summary The effect of Bay K 8644 (a dihydropyridine Ca2+-channel activator), was examined on spontaneous and stimulus-evoked release of tritium from isolated rat atria prelabelled with [3H]-noradrenaline. Bay K8644 (3mol/l) significantly increased atrial rate from 206±7 to 259±9 beats·min–1 (P<0.05) and also tritium outflow (expressed as fractional rate of loss in min × 103) from 6.49±0.35 to 8.61±0.74 (P<0.05). Neither the maximal rate nor the overflow of tritium induced by stimulation of sympathetic nerve terminals was changed by the compound. The increase in basal tritium outflow produced by Bay K 8644 was calcium-dependent. However, it could not be antagonized by nitrendipine. The overflow of tritium induced by Bay K 8644 consisted mainly of 3,4-dihydroxyphenylglycol ([3H]-DOPEG), indicating that the compound produces a leakage from the storage vesicles of sympathetic nerve terminals of the isolated rat atria.Members of Consejo Nacional de Investigaciones Científicas - Técnicas (CONICET), Argentina Send offprint requests to M. C. Camilión de Hurtado at the above address  相似文献   

12.
Summary The effects of 5-methoxytryptamine and 5-hydroxytryptamine (5-HT) on both basal and electrically evoked outflow of tritium were studied in guinea-pig myenteric plexus preparations preincubated with [3H]-choline. Basal outflow. 5-Methoxytryptamine caused a transient and calcium-dependent increase in basal outflow of [3H]acetylcholine that was abolished by tetrodotoxin. Ondansetron (1 mol/1) did not affect the stimulatory response of 5-methoxytryptamine but ICS 205-930 (1 and 3 mol/1) produced parallel rightward displacements of the concentration-response curve to 5-methoxytryptamine. The PKB value for ICS 205-930 was 6.6 suggesting an involvement of 5-HT4 receptors. 5-HT caused an increase in basal outflow of [3H]acetylcholine and a biphasic concentration-response curve was obtained. The maximal response of the first phase to 5-HT (release of 0.98% of tissue tritium) and the maximal response to 5-methoxytryptamine (0.94% of tissue tritium) were similar but 5-methoxytryptamine (-log EC50: 6.9) was less potent than 5-HT (-log EC50 of the high affinity component: 7.9). ICS 205-930 (0.01–1.0 mol/1) acted as a competitive antagonist against the low affinity component of the 5-HT concentration-response curve with a pA2 value of 8.0. It is concluded that stimulation of both 5-HT4 receptors (by 5-methoxytryptamine and submicromolar concentrations of 5-HT) and 5-HT3 receptors (by micromolar concentrations of 5-HT) causes a release of acetylcholine which in turn leads to smooth muscle contraction. Electrically evoked outflow. This outflow of [3H]acetylcholine was concentration-dependently inhibited by both 5-methoxytryptamine and 5-HT. ICS 205-930 (1 mol/1) reinforced the inhibitory effect of 5-methoxytryptamine but not that of 5-HT. In the presence of methiothepine (0.1 mol/1) 5-methoxytryptamine enhanced the evoked outflow of [3H]acetylcholine, an effect which was attenuated by 3 mol/1 ICS 205-930. These results suggest that 5-methoxytryptamine may both inhibit (via 5-HT1 receptors) and facilitate (via 5-HT4 receptors) the evoked release of acetylcholine from guinea-pig myenteric neurones. The facilitatory action is unmasked when the 5-HT1 receptor is blocked by methiothepine. Send offprint requests to H. Kilbinger at the above address  相似文献   

13.
Summary The periaqueductal gray is a brain region of considerable interest. It is innervated by monoamine-containing neurons as well as by a variety of peptidergic fiber systems, and it participates in the regulation of various functions. Virtually nothing is known about monoamine release in the periaqueductal gray and its receptor-mediated modulation. We therefore studied the release of radioactivity from periaqueductal gray slices preloaded with tritriated monoamines, using an in vitro superfusion method.The release of radioactivity from superfused periaqueductal gray slices after preloading of the tissue with [3H]noradrenaline increased upon electrical stimulation in a frequency-dependent manner. The stimulus-evoked release of radioactivity was Ca2+-dependent. Clonidine reduced and yohimbine enhanced the release. The inhibition curve for the effect of clonidine was shifted to the right in the presence of 10–6 M yohimbine. While phenylephrine, isoprenaline, SK&F 38393, quinpirole, carbachol, [Arg8]vasopressin, -MSH and ACTH-(1-24), at a concentration of 10–6 M, did not influence the electrically evoked release of radioactivity, [Leu5]enkephalin reduced it. The selective -opioid receptor agonists [d-Ala2,NMePhe4,Gly-ol5]enkephalin and [d-Arg2,Lys4]-dermorphin-(1–4)-amide reduced the release of radioactivity, whereas the selective opioid receptor agonist [d-Pen2,d-Pen5]enkephalin and the selective K opioid receptor agonist U-69593 had no effect. In the presence of naloxone, which by itself had no effect on the release of radioactivity, the effect of [d-Arg2,Lys4]dermorphin-(1–4)-amide was abolished. These results show that the release of noradrenaline from periaqueductal gray slices is via a Ca2+-dependent. exocytotic process, and that it is modulated through 2-adrenoceptors as well as via -opioid receptors. Though the overflow of radioactivity from slices preloaded with [3H]dopamine in the presence of desipramine was measurable, there are reasons to assume that we are dealing here with the release of tritiated catecholamines from a population of nerve endings consisting of noradrenergic and dopaminergic terminals.The release of radioactivity from periaqueductal gray slices preloaded with [3H]5-hydroxytryptamine upon elevation of the K+ concentration in the superfusion medium was much more pronounced than that induced by electrical stimulation. The K+-evoked release of radioactivity was almost completely abolished in the absence of Cat2+; showing that the release is via a Ca2+-dependent process. 5-Hydrotryptamine reduced the K+-evoked release of radioactivity in a concentration-dependent manner.Some of these data were presented at the XIth International Congress of Pharmacology, 1–6 July 1990, Amsterdam, The Netherlands (Eur J Pharmacol 183:408) Send offprint requests to D. H. G. Versteeg at the above address  相似文献   

14.
The effects of the 5-HT4 receptor agonists BIMU 8, BIMU 1, renzapride and of the 5-HT1p receptor agonist 5-hydroxyindalpine on basal and electrically evoked outflow of tritium were studied in guinea-pig longitudinal muscle myenteric plexus preparations preincubated with [3H]choline. Muscle contractions were recorded simultaneously.BIMU 8 caused a calcium dependent and tetrodotoxin sensitive increase in basal [3H]outflow that was assumed to represent release of [3H]acetylcholine. In addition, BIMU 8 enhanced the release of [3H]acetylcholine and twitch contractions evoked by submaximal electrical stimulation. Ondansetron (1 mol/l) did not change the effects of BIMU 8, but DAU 6285 and tropisetron (each 1 mol/l) competitively antagonized the various facilitatory effects of BIMU 8 with pA2 values of 7.0–7.2 (DAU 6285) and 7.0–7.3 (tropisetron). The phosphodiesterase inhibitors IBMX and rolipram did not increase the effects of BIMU 8. BIMU 1 and renzapride also concentration-dependently increased basal release of acetylcholine, and release and contractions caused by submaximal stimulation. The effects of BIMU 1 and renzapride were competitively antagonized by 1 mol/l tropisetron (pA2 6.6–7.1). The EC50 values for the increase in the evoked [3H]acetylcholine release and contractions were closely similar. 5-Hydroxyindalpine did not change basal release and slightly inhibited the evoked release of [3H]acetylcholine. Release of acetylcholine and contractions elicited by submaximal stimulation were strongly inhibited by ( + )-tubocurarine which indicates that nicotinic ganglionic transmission is involved in this kind of release.The results suggest that BIMU 8, BIMU 1 and renzapride stimulate 5-HT4 receptors at cholinergic interneurones and thereby facilitate nicotinic ganglionic transmission in the myenteric plexus. Cyclic AMP is probably not involved in the 5-HT4 receptor mediated facilitation of acetylcholine release.  相似文献   

15.
The action of the A2a-adenosine analogue, CGS 21680C, on electrically evoked [3H]acetylcholine ([3H]-ACh) release, and its interaction with forskolin (an activator of adenylate cyclase), MDL 12,330A (an irreversible inhibitor of adenylate cyclase), rolipram (an inhibitor of cyclic AMP specific phosphodiesterase), dibutyryl- (db-cAMP) and 8-bromo- (8-Br-cAMP) cyclic AMP analogues (substances that mimic intracellular actions of cyclic AMP), were investigated using rat phrenic nerve-hemidiaphragm preparations.CGS 21680C facilitated [3H]ACh release. Forskolin (but not 1,9-dideoxy forskolin), rolipram, db-cAMP and 8-Br-cAMP also increased evoked neurotransmitter release in a concentration-dependent manner. When the evoked [3H]-ACh release that is dependent on stimulation of the adenylate cyclase/cyclic AMP transduction system was supramaximally stimulated by these compounds, CGS 21680 C (3 mol/l) could not further increase [3H]-ACh release. Phosphodiesterase inhibition with low concentrations ( 30 mol/l) of rolipram significantly potentiated the augmenting effect of CGS 21680C (1 mol/l) on evoked [3H]ACh release. MDL 12,330A (an irreversible inhibitor of adenylate cyclase) decreased evoked [3H]-ACh release. The irreversible blocking action of MDL 12,330A on [3H]-ACh release was overcome by by-passing cyclase activation with db-cAMP and 8-Br-cAMP, but could not be overcome with FSK or CGS 21680 C. The inhibitory effect of MDL 12,330A on evoked [3H]-ACh release was not mimicked by nifedipine.It is concluded that the increase in [3H]-ACh release caused by CGS 21680C results from activation of an A2a-adenosine receptor positively linked to the adenylate cyclase/cyclic AMP system.  相似文献   

16.
Summary Neuronal transmitter stores of the rat phrenic nerve were labelled by an incubation with [3H]choline. Release of [3H]acetylcholine was elicited either by a short (100 pulses, 5 Hz) or by a long (1500 pulses, 5 or 25 Hz) period of electrical nerve stimulation. Pirenzepine and dicyclomine enhanced transmitter release evoked by the short stimulation period. Both antagonists reduced transmitter release evoked by the long stimulation period. Pirenzepine reduced transmitter release at low concentrations (1 nmol/l) whereas a higher concentration was necessary for the enhancing effect; the opposite pattern was found for dicyclomine. A low concentration of oxotremorine (10 nmol/l) enhanced and a high concentration (1 mol/l) reduced transmitter release evoked by the short stimulation period. Both effects could be prevented by a low concentration of pirenzepine (10 nmol/l). It is concluded that facilitatory and inhibitory muscarine receptors are present on the motor nerve. A short stimulation period activates predominantly the negative muscarinic feedback, whereas during a long period of continuous nerve stimulation the positive muscarinic feedback mechanism is additionally activated. Both the facilitatory and inhibitory receptors might be regarded as M1-receptors but differences in the pharmacological properties between both receptor populations appear possible.This work was supported by the Deutsche Forschungsgemeinschaft. The paper contains part of the Dr. med. thesis of A. D. and M. O. Send offprint requests to I. Wessler at the above address  相似文献   

17.
Summary KCl-, NMDA-, and glycine-evoked release of [3H]acetylcholine was studied in superfused rat striatal slices. KCl-evoked release of [3H]acetylcholine was inhibited by 1.2 mM MgC12 and 100 M lidocaine. Similarly, NMDA-evoked release was inhibited by MgCl2 and lidocaine as well as 10 M CGS 19755, a competitive antagonist at NMDA receptors, and 10 nM MK-801, a noncompetitive antagonist of NMDA-induced responses. Glycine-evoked release was calcium-dependent and was inhibited by 0.1 M strychnine whereas KCl- and NMDA-evoked release were resistant to strychnine. In addition, lidocaine inhibited the glycine-induced response. Cross-tachyphylaxis was not observed between NMDA- and glycine-evoked release. These results indicate that the strychnine-sensitive, glycine-evoked release of [3H]acetylcholine is independent of the NMDA receptor.  相似文献   

18.
Summary The effects of three different opioid agonists on contractions and [3H]-acetylcholine (ACh) release evoked by 5-hydroxytryptamine3 (5-HT3) and neurokinin-3 (NK-3) receptor activation were examined in the guinea-pig ileum longitudinal muscle-myenteric plexus strip (LMMP) preparation. The selective mu ()-opioid receptor agonist (d-Ala2,NMe-Phe4,Gly-ol]-enkephalin) (DAMGO; 1 nM–100 nM) and the selective kappa ()-opioid receptor agonist U50488 (10 nM -1 M) inhibited contractile responses to 5-HT and to the selective NK-3 receptor agonist senktide, producing a concentration-related progressive flattening of their concentration-response curves. IC50 estimates for DAMGO and U50488 were somewhat higher for inhibition of 5-HT-evoked as compared to senktide-evoked contractions, and overall lay in the range 6 nM – 51 nM. The selective delta ()-opioid receptor agonist [d-Pen2,5]-enkephalin (DPDPE) inhibited contractile responses only at the highest concentration used (1 M). 3H-overflow from LMMP preparations preincubated with [3H]-choline was measured as an indicator of [3H]-ACh release. DAMGO (1 nM –100 nM) and U50488 (10 nM -1 M) inhibited the increases in release of [3H]-ACh evoked by 5-HT (10 M) and by senktide (10 nM) in a concentration-dependant manner. IC50 estimates for DAMGO and U50488 were not significantly different for inhibition of 5-HT as compared to senktide-evoked increases in [3H]-ACh release and lay in the range 6 nM –23 nM. DPDPE again only inhibited these responses at the maximum concentration used (1 M). The inhibitory effects of DAMGO, U50488 and DPDPE on contractions and [3H]-ACh release evoked by 5-HT and senktide were completely reversed by naloxone (10 M).These results show that ACh release in the guinea-pig ileum evoked by 5-HT and senktide can be modulated to a similar extent by the opioid agonists DAMGO and U50488, but not by DPDPE. This suggests that the pathways of excitation for 5-HT3 and NK-3 receptors converge at some level susceptible to opioid inhibition, which may be mediated by - and -, but not -, opioid receptors.  相似文献   

19.
Summary Rat hippocampal synaptosomes preloaded with [3H]serotonin and maintained in a superfusion apparatus were exposed for 3 min to d-fenfluramine or fluoxetine. Both drugs evoked a tritium overflow which was reserpine-sensitive requiring the presence of intact synaptic vesicles. However the two drugs displayed different characteristics: 1) the overflow was immediate with dfenfluramine whereas the releasing activity of fluoxetine showed a delay of about 2 min; 2) d-fenfluramine-induced overflow was already apparent at 0.15 mol/l whereas the minimal effective concentration of fluoxetine was 2.5 mol/l. Their concentration-effect curves were differently shaped, the effect of d-fenfluramine being saturable at 5–20 mol/l (EC50 about 1 gmol/l) while no saturation was observed with fluoxetine up to 10 mol/l; 3) only 1907o of the tritium overflow evoked by fluoxetine (2.5–10 mol/l) consisted of true [3H]serotonin, compared with 7001o when 0.5 mol/l d-fenfluramine was used; 4) the releasing action of 0.5 mol/l d-fenfluramine was completely Ca++-dependent, while at higher dfenfluramine concentrations the Ca++-independent overflow became more important. The fluoxetine induced overflow was mainly. (70010) Ca++-independent; 5) the releasing acitvity of d-fenfluramine was mainly (80%) blocked by the serotonin uptake blockers indalpine, midalcipram and also fluoxetine whereas fluoxetine-induced overflow was insensitive to inhibition of the serotonin carrier.In conclusion, the releasing activity of d-fenfluramine is already present at a very low concentration (0.5 mol/l) and at this concentration its mechanism of action was Ca++-dependent, together with the requirement of a functional serotonin carrier. These data therefore do not support the hypothesis of a simple. displacement of 5-HT from its storage vesicles but suggest an exocytotic release possibly triggered by interaction of d-fenfluramine with intracellular receptors. A direct releasing activity is also shown for fluoxetine, very marked at 5–10 mol/l; such effect is different from that of d-fenfluramine and is probably due to the overflow of 5-hydroxyindoleacetic acid, formed in the synaptosomes after the fluoxetine-induced displacement of serotonin from its storage vesicles. The active concentrations of fluoxetine on serotonin release are compatible with those found in rat brain at doses inducing an anorectic activity. Send offprint requests to M. Gobbi at the above address  相似文献   

20.
Summary The possible involvement of dopamine D1 receptors in the regulation of acetylcholine release in the rabbit caudate nucleus was investigated. Caudate slices, preincubated with [3H]choline, were superfused continuously and subjected to electrical field stimulation with only a single pulse. In agreement with the view that the release of acetylcholine evoked by a single electrical pulse is not influenced by endogenous transmitters, atropine and domperidone failed to icnrease the evoked release of [3H]acetylcholine, whereas oxotremorine and quinpirole caused a concentration-dependent inhibition of transmitter release. Neither the dopamine D1 receptor antagonist SCH 23390 nor the Dt agonist SKF 38393 in a concentration range of 0.01–1 mol/l changed the evoked [3H]acetylcholine release. The inhibitory effect of the dopamine D2 receptor agonist quinpirole was virtually abolished in the presence of 0.1 mol/l domperidone and diminished in the presence of 1 mol/l SCH 23390. It remained unchanged in the presence of 1 mol/l SKF 38393. It is concluded that the inhibition of acetylcholine release by dopamine is mediated exclusively via presynaptic dopamine D2 receptors and that the antagonistic effect of SCH 23390 on the inhibition of acetylcholine release by quinpirole is due to its interaction with dopamine D2 rather than D1 receptors located on cholinergic nerve terminals. Send offprint requests to C. Allgaier at the above address  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号