首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The EEG activity preceding self-paced voluntary movements (movement-related cortical potential, MRCP) is smaller if subjects make the same movement each time (regular task) compared with when different movements are made each time (random task). To test whether extra activity in the random task is due to increased motor preparation needed to switch between different movements, or to memory/attentional processes needed to select movements randomly, we compared regular and random movements with an additional alternating task. This alternating task required subjects to make different movements each time as in the random task, but since the task was very simple, the memory/attentional load was similar to that in the regular task. The MRCP was equally large over motor areas in both random and alternating tasks, suggesting that the extra activity over sensorimotor areas reflected processes involved in motor preparation rather than memory/attention. We speculate that, in the regular task, some part of the instructions for the previous movement remains intact, reducing the amount of preparation needed for the next repetition. Thus the MRCP is smaller than in the alternating and random tasks. Although the MRCPs in alternating and random tasks were similar over the motor areas, the random task had more activity than the alternating task in contralateral frontal areas. This part of the MRCP may therefore be related to memory/attentional processes required to randomize the sequence of movements. We conclude that the MRCP contains dissociable components related to motor preparation and memory/attention.  相似文献   

2.
Summary Multichannel recordings of both movement-related magnetic fields (MRMFs) and movement-related cortical potentials (MRCPs) were simultaneously recorded in association with voluntary unilateral self-paced index finger abduction movement in two normal volunteers. 1) Slow magnetic field (readiness field; RF) can be detected several hundred msec before the movement onset, and its field distribution indicates the existence of the largest generator source over the contralateral primary motor area. Taken together with the vertex-maximal Bereitschaftspotential which corresponds to the earlier part of the RF, the complexity of this magnetic field suggested by relatively low correlation value in single dipole model indicates the co-activation of other underlying generators besides this largest dipole. 2) The utilization of MRMF with MRCP facilitates the separation of two distinct electrophysiological events in proximity to the movement onset, which are difficult to be determined by the technique of MRCP only. Those are the motor field (MF) and the movement evoked field I (MEFI) in MRMF, and the parietal peak motor potential (ppMP) and the frontal peak motor potential (fpMP) in MRCP, which occur approximately 20 and 100 msec after EMG onset, respectively. These two subcomponents may imply the culmination of motor cortex and sensory feedback activation, respectively. Combined study of MRMF and MRCP will provide better definition of cortical events related to voluntary movement than the study of either modality alone.  相似文献   

3.
The question we asked in this study was how the cerebral hemispheres are coordinated when the two hands simultaneously generate force at the same level. Interlimb co-ordination of contractions at 20% of the maximal level was investigated during bilateral (BL) and unilateral (UL) handgrip in eight male right-handed subjects. The accuracy as determined by the force error was larger during BL than during UL for the left hand only. The movement-related cortical potential (MRCP) of C3 (left precentral cortex) was studied during UL right and BL handgrip and the C4 (right precentral cortex) during UL left and BL handgrip. At the phase of the readiness potential ( – 1.0 to – 0.6 s prior to the force onset), similar levels of correlation in the C3 (C4) MRCP amplitudes (P < 0.05) between UL right (UL left) and BL handgrip were observed. At the phase of the negative slope ( – 0.6 to– 0.2 s) and the motor potential ( – 0.2 to– 0.05 s), C3 revealed almost the same levels of correlation as for the readiness potential, whereas in C4 a marked decrease was noted. Accordingly, from this study the force error and movement-related cortical potentials would indicate that the left dominant hemisphere is specialized not only for unilateral contractions but also for bilateral contractions.  相似文献   

4.
The readiness potential (RP), a slow negative electroencephalographic pre-movement potential, was reported to commence earlier for movements with the non-dominant left hand than with the dominant right hand. Latencies in these reports were always calculated from averaged RPs, whereas onset times of individual trials remained inaccessible. The aim was to use a new statistical approach to examine whether a few left hand trials with very early pre-movement activity disproportionally affect the onset of the average. We recorded RPs in 28 right-handed subjects while they made self-paced repetitive unilateral movements with their dominant and non-dominant hand. Skewness, a measure of distribution asymmetry, was analysed in sets of single-trial RPs to discriminate between a symmetric distribution and an asymmetric distribution containing outlier trials with early onset. Results show that for right hand movements skewness has values around zero across electrodes and pre-movement intervals, whereas for left hand movements skewness has initially negative values which increase to neutral values closer to movement onset. This indicates a symmetric (e.g., Gaussian) distribution of onset times across trials for simple right hand movements, whereas cortical activation preceding movements with the non-dominant hand is characterised by outlier trials with early onset of negativity. These findings may explain differences in the averaged brain activation preceding dominant versus non-dominant hand movements described in previous electrophysiological/neuroimaging studies. The findings also constrain mental chronometry, a technique that makes conclusions upon the time and temporal order of brain processes by measuring and comparing onset times of averaged electroencephalographic potentials evoked by these processes.  相似文献   

5.
To analyze the distribution of the cortical electrical activity related to self-paced voluntary movements, i.e. the movement-related readiness potentials (Bereitschaftspotential, BP) and the event-related desynchronization (ERD) and synchronization (ERS) of cortical rhythms using intracerebral recordings. EEG was recorded in 14 epilepsy surgery candidates during preoperative video-stereo-EEG monitoring. Subjects performed self-paced hand movements, with their right and left fingers in succession. EEG signals were obtained from a total of 501 contacts using depth electrodes located in primary and nonprimary cortical regions. In accordance with previous studies, BP was found consistently in the primary motor (M1) and somatosensory (S1) cortex, the supplementary motor area (SMA), and in a few recordings also in the cingulate cortex and in the dorsolateral prefrontal and premotor cortex. ERD and ERS of alpha and beta rhythms were also observed in these cortical regions. The distribution of contacts showing ERD or ERS was larger than the distribution of those showing BP. In contrast to BP, ERD and ERS frequently occurred in the lateral and mesial temporal cortex and the inferior parietal lobule. The number of contacts and cortical regions showing ERD and ERS and not BP suggests that the two electrophysiological phenomena are differently involved in the preparation and execution of simple voluntary movements. Substantial differences between BP and ERD in spatial distribution and the widespread topography of ERD/ERS in temporal and higher-order motor regions suggest that oscillatory cortical changes are coupled with cognitive processes supporting movement tasks, such as memory, time interval estimation, and attention.  相似文献   

6.
Despite abundant evidence that different nervous system control strategies may exist for human concentric and eccentric muscle contractions, no data are available to indicate that the brain signal differs for eccentric versus concentric muscle actions. The purpose of this study was to evaluate electroencephalography (EEG)-derived movement-related cortical potential (MRCP) and to determine whether the level of MRCP-measured cortical activation differs between the two types of muscle activities. Eight healthy subjects performed 50 voluntary eccentric and 50 voluntary concentric elbow flexor contractions against a load equal to 10% body weight. Surface EEG signals from four scalp locations overlying sensorimotor-related cortical areas in the frontal and parietal lobes were measured along with kinetic and kinematic information from the muscle and joint. MRCP was derived from the EEG signals of the eccentric and concentric muscle contractions. Although the elbow flexor muscle activation (EMG) was lower during eccentric than concentric actions, the amplitude of two major MRCP components-one related to movement planning and execution and the other associated with feedback signals from the peripheral systems-was significantly greater for eccentric than for concentric actions. The MRCP onset time for the eccentric task occurred earlier than that for the concentric task. The greater cortical signal for eccentric muscle actions suggests that the brain probably plans and programs eccentric movements differently from concentric muscle tasks.  相似文献   

7.
This study was designed to evaluate hemodynamic and electrophysiological motor cortex responses to voluntary finger pinching in humans, with simultaneous recording of near-infrared spectroscopy (NIRS) signals and movement-related cortical potentials (MRCP). Six healthy, right-handed subjects performed 100 trials of voluntary right-thumb index-finger pinching with about a 10-second interval at their own pace. Throughout the session, 48 regions over the bilateral motor cortex were assessed by NIRS, while MRCP and electromyogram (EMG) were simultaneously monitored. MRCP started 1536±58 ms before EMG onset and peaked 127±24 ms after EMG onset. NIRS data showed bilateral prefrontal cortex at 0.5±0.1 s before EMG onset and bilateral dorsal premotor cortex activations at 0.6±0.1 s before EMG onset. The hand area of the sensorimotor cortex was activated left-dominantly, seen obviously peaked at 3.7±0.2 s after EMG onset. The comparison between MRCP and NIRS results raised the possibility that the vascular response to neural activity occurs within 4 s with a voluntary pinch task. These results indicate that our technique allows detailed study of the motor control. Our method is a promising strategy for event-related motor control and neurovascular coupling studies.  相似文献   

8.
1. Single-unit activity in the cingulate cortex of the monkey was recorded during the performance of sensorially (visual, auditory, or tactile) triggered or self-paced forelimb key press movements. 2. Microelectrodes were inserted into the broad rostrocaudal expanse of the cingulate cortex, including the upper and lower banks of the cingulate sulcus and the hemispheric medial wall of the cingulate gyrus. 3. A total of 1,042 task-related neurons were examined, the majority of which were related to the execution of the key press movements. In greater than 60% of them, the movement-related activity preceded the activity in the distal flexor muscles. 4. The movement-related neurons were distributed, in two foci, in the posterior and anterior parts of the cingulate cortex, both including the upper and lower banks of the cingulate sulcus. The posterior focus was found to largely overlap the area projecting to the forelimb area of the primary motor cortex by the use of the horseradish peroxidase (HRP) method. 5. About 40% of the cingulate cortical neurons showed equimagnitude responses during the signal-triggered and self-paced movements. The neurons exhibiting a selective or differential response to the self-paced motor task were more frequently observed in the anterior than in the posterior cingulate cortex. 6. The long-lead type of changes in activity, ranging from 500 ms to 2 s, were observed mainly before the self-paced and, much less frequently, before the triggered movements. They were particularly abundant in the anterior cingulate cortex. 7. Only a few of the neurons showed activity time-locked to the onset of the sensory signals. 8. These observations indicate that the anterior and posterior parts of the cingulate cortex are distinct entities participating in the performance of limb movements, even if the movements are simple, such as those in this study.  相似文献   

9.
Augmented cortical activity during repetitive grasping mitigates repetition-related decrease in cortical efficiency in young adults. It is unclear if similar processes occur with healthy aging. We recorded movement-related cortical potentials (MRCP) during 150 repetitive handgrip contractions at 70% of maximal voluntary contraction (MVC) in healthy young (n?=?10) and old (n?=?10) adults. Repetitions were grouped into two Blocks (Block 1 and 2: repetitions 1-60 and 91-150, respectively) and analyzed separately to assess the effects of aging and block. EMG of the flexor digitorum superficialis and handgrip force were also recorded. No changes in EMG or MVC were observed across blocks for either group. Significant interactions (P?相似文献   

10.
This paper presents additional evidence showing the persistent functional deficits in concussed athletes as revealed by altered movement-related cortical potentials (MRCP) preceding whole body postural movements at least 30 days post-injury. Eight student-athletes participated in this study (a) prior to injury; and (b) 3, 10 and 30 days after MTBI. EEG was recorded while subjects produced static balance tasks and dynamic postural movements. All subjects were cleared for sport participation within 10 days post-injury based upon neurological and neuropsychological assessments as well as upon clinical symptoms resolution. There was a persistent reduction of MRCP amplitude prior to initiation of postural movement up to 30 days post-injury, although abnormal postural responses basically recovered within 10 days post-injury. The frontal lobe MRCP effects were larger than posterior areas. This supports the notion that behavioral symptoms resolution may not be indicative of brain injury resolution. Overall, persistent alteration of movement-related cortical potentials after MTBI may indicate residual disturbance of neuronal networks involved in preparation and execution of postural movements and a lower threshold for brain re/injury.  相似文献   

11.
The activity of neurons in the motor nuclei of the thalamus that project to the cortical motor areas (the primary motor cortex, the ventral and dorsal premotor cortex, and the supplementary motor area) was investigated in monkeys that were performing a task in which wrist extension and flexion movements were instructed by visuospatial cues before the onset of movement. Movement was triggered by a visual, auditory, or somatosensory stimulus. Thalamocortical neurons were identified by a spike collision, and exhibited 2 distinct types of task-related activity: 1) a sustained change in activity during the instructed preparation period in response to the instruction cues (set-related activity); and 2) phasic changes in activity during the reaction and movement time periods (movement-related activity). A number of set- and moment-related neurons exhibited direction selectivity. Most movement-related neurons were similarly active, irrespective of the different sensory modalities of the cue for movement. These properties of neuronal activity were similar, regardless of their target cortical motor areas. There were no significant differences in the antidromic latencies of neurons that projected to the primary and nonprimary motor areas. These results suggest that the thalamocortical neurons play an important role in the preparation for, and initiation and execution of, the movements, but are less important than neurons of the nonprimary cortical motor areas in modality-selective sensorimotor transformation. It is likely that such transformations take place within the nonprimary cortical motor areas, but not through thalamocortical information channels.  相似文献   

12.
We investigated steady-state movement-related cortical potentials elicited by fast repetitive movements (1/sec@rpar; with 50-channel EEG. The experimental design comprised a comparison @lpar;a@rpar; between unilateral movements of the digits and the toes and (b) between metronome-paced and self-paced initiation of the movements. A distinct biphasic pattern of electrical activity following movement onset was observed, namely a frontal negative peak at a latency of 90 ms (post-MP100) and a frontal positive peak at a latency of 310 ms )post-MP300(. Pacing exerted its effects mainly on the amplitude and on the latency of the post-MP300. Source analysis revealed that both peaks could be modelled by a single source. The source locations were highly reproducible across the metronome-paced and self-paced conditions, and, they followed the expected somatotopic organisation.  相似文献   

13.
Multiple system atrophy (MSA) is a progressive neurodegenerative disease characterized by parkinsonism (MSA-P), cerebellar and autonomic deficits. In Parkinson’s disease (PD), an impaired modulation of motor cortical mu and beta range oscillations may be related to the pathophysiology of bradykinesia. Event-related desynchronization (ERD) of these oscillations occur for 1–2 s preceding a voluntary movement in normal subjects and patients with PD treated with levodopa while only lasting around 0.5 s in untreated patients. Motor cortical rhythms were recorded from subdural strip electrodes in three patients with MSA-P while taking their regular dopaminergic medications. Following a ready cue, patients performed an externally cued wrist extension movement to a go cue. In addition, recordings were obtained during imagined wrist extension movements to the same cues and during self-paced wrist extensions. ERD and event-related synchronization were examined in subject-specific frequency bands. All patients showed movement-related ERD in subject-specific frequency bands below ~40 Hz in both externally cued and self-paced conditions. Preparatory ERD latency preceding self-cued movement was 900 ms in one patient and at or after movement onset in the other two patients. In the externally cued task, a short lasting (<1.3 s) ready cue-related ERD that was not sustained to movement onset was observed in two patients. Imagined movements resulted in go cue-related ERD with a smaller magnitude in the same two patients. These results indicate that the modulation of motor cortical oscillations in patients with MSA that are treated with levodopa is similar to that occurring in untreated patients with PD. The findings suggest that cortical activation in patients with MSA is diminished, may be related to pathophysiological changes occurring in the basal ganglia and correlates with the poor clinical response that these patients typically obtain with dopaminergic therapy.  相似文献   

14.
There is increasing evidence demonstrating the role of the cerebral cortex in human postural control. Modulation of EEG both in voltage and frequency domains has been observed preceding and following self-paced postural movements and those induced by external perturbations. The current study set out to provide additional evidence regarding the role of cerebral cortex in human postural control by specifically examining modulation of EEG as a function of postural sway direction. Twelve neurologically normal subjects were instructed to produce self-paced voluntary postural sways in the anterior–posterior (AP) and medial–lateral (ML) directions. The center of pressure dynamics and EEG both in voltage and frequency domains were extracted by averaging and Morlet wavelet techniques, respectively. The amplitude of movement-related cortical potentials (MRCP) was significantly higher preceding ML sways. Also, time–frequency wavelet coefficients (TF) indicated differential modulation of EEG within alpha, beta and gamma bands as a function of voluntary postural sway direction. Thus, ML sway appear to be more difficult and energy demanding tasks than the AP sway as reflected in differential modulation of EEG. These results are discussed within the conceptual framework of differential patterns of brain activation as a result of postural task complexity.  相似文献   

15.
Mental rotation of the hands classically induces kinesthetic effects according to the direction of the rotation, with faster response times to the hands’ medial rotations compared with lateral rotations, and is thus commonly used to induce engagement in motor imagery (MI). In the present study, we compared the performances of table tennis players (experts on hand movements), who commonly execute and observe fast hand movements, to those of soccer players (non-experts on hand movements) on a mental rotation task of hands. Our results showed a significant effect of the direction of rotation (DOR) confirming the engagement of the participants in MI. In addition, only hand movement experts were faster when the task figures corresponded to their dominant hand compared with the non-dominant hand, revealing a selective effect of motor expertise. Interestingly, the effect of the DOR collapsed in hand movement experts only when the task figures corresponded to their dominant hand, but it is noteworthy that lateral and medial rotations of the right-hand stimuli were not faster than medial rotations of the left-hand stimuli. These results are discussed in relation to possible strategies during the task. Overall, the present study highlights the embodied nature of the mental rotation task of hands by revealing selective effects of motor expertise.  相似文献   

16.
Studies of movement-related cortical potentials (MRCPs) for simple movements have shown a slowly rising negativity (Bereitschaftspotential, or BP) about 2 s prior to movement onset, centered in the bilateral sensorimotor area. However, complex movements may elicit a different temporal and spatial distribution of this pre-movement activity. In this study, 64-channel electroencephalography (EEG) was recorded while normal volunteers were asked to perform a simple thumb adduction once every 10–15 s for three 10–15 min blocks. Following this, they were asked to make tool-use movements (hammer, scissor, and screwdriver pantomime) in the same manner. Surface electromyography (EMG) was recorded on the thumb adductor and forearm flexor. MRCP was analyzed for the beginning part of the epoch (from 3.5 s to 1.5 s before EMG onset, with 0.5 s time bins) for differences in the amplitude and spatial distribution of the BP. Significant differences were seen from 3.0 s to 2.0 s before EMG onset, where the amplitude was greater for the more complex movements. On average, negativity began at 3.0 s before onset for praxis movements, and only 1.7 s before onset for thumb adduction. Additionally, the negativity seen for the complex movements had a distribution beginning over the left hemisphere posterior parietal area, whereas, thumb adduction movements had a more anterior distribution, over the bilateral sensorimotor area. The posterior parietal negativity (PPN) suggests that early parietal activity is essential for tool-use movements and is not a part of preparing simple movements.  相似文献   

17.
Early effects of a resistance training program include neural adaptations at multiple levels of the neuraxis, but direct evidence of central changes is lacking. Plasticity exhibited by multiple supraspinal centers following training may alter slow negative electroencephalographic activity, referred to as movement-related cortical potentials (MRCP). The purpose of this study was to determine whether MRCPs are altered in response to resistance training. Eleven healthy participants (24.6 ± 3.5 years) performed 3 weeks of explosive unilateral leg extensor resistance training. MRCP were assessed during 60 self-paced leg extensions against a constant nominal load before and after training. Resistance training was effective (P < 0.001) in increasing leg extensor peak force (+22%), rate of force production (+32%) as well as muscle activity (iEMG; +47%, P < 0.05). These changes were accompanied by several MRCP effects. Following training, MRCP amplitude was attenuated at several scalp sites overlying motor-related cortical areas (P < 0.05), and the onset of MRCP at the vertex was 28% (561 ms) earlier. In conclusion, the 3-week training protocol in the present study elicited significant strength gains which were accompanied by neural adaptations at the level of the cortex. We interpret our findings of attenuated cortical demand for submaximal voluntary movement as evidence for enhanced neural economy as a result of resistance training.  相似文献   

18.
Neuronal activities in the ventral part of the premotor cortex (PMv) and the primary motor cortex (MI) were analyzed during a visually guided jaw movement task. Based on the type of neuronal activity observed, when monkeys closed or opened their mouths in response to a visual stimulus, PMv neurons could be classified into three categories: (1) signal-related neurons, which transiently responded to visual stimuli, (2) movement-related neurons which were time-locked to jaw opening and/or jaw closing movements, and (3) set related neurons which exhibited gradually increasing activities while jaw position was maintained. However, all MI neurons exhibited movement-related activities and responded differently between the closing and opening dynamic phases. These results suggest that PMv neurons may be involved in motor preparation, initiation and control of jaw movements and task behavior based on visual information, and that MI neurons may be involved in controlling jaw movements, especially contraction of the masticatory muscles.  相似文献   

19.
There are clear hemispheric differences in the human motor system. Studies using magnetic resonance morphometry have shown that representation of hand muscles is larger in the dominant hemisphere than the non-dominant hemisphere. There is some limited evidence of electrophysiological differences between hemispheres. For example, it has been reported recently that there is less intracortical inhibition in the dominant hemisphere than the non-dominant hemisphere, and it has been hypothesised that this reduction in inhibition may facilitate use-dependent plasticity in the dominant motor cortex. In the present study we examined this hypothesis in human subjects by examining plasticity induction in both dominant and non-dominant hemispheres using an experimental paradigm known to induce motor cortical plasticity, namely paired associative stimulation (PAS). Additionally, we investigated changes in dominant and non-dominant hand performance on a simple ballistic training task. Short-interval intracortical inhibition (SICI) was also measured for both dominant and non-dominant hands at a range of conditioning intensities. There was significantly less SICI in the dominant motor cortical hand area than in the non-dominant hand area. PAS induced a significant, and similar, increase in motor cortical excitability in both the dominant and non-dominant hemispheres. Motor training resulted in significant performance improvement in both dominant and non-dominant hands. However, there was significantly more improvement in the non-dominant hand. The results from these studies provide some further evidence of electrophysiological differences between the motor cortices of the two hemispheres. Additionally, these findings offer no support for the hypothesis that the dominant hemisphere is positioned more favourably, due to decreased inhibitory tone, than the non-dominant hemisphere for use-dependent plasticity.  相似文献   

20.
Both self-paced movements (internally generated) and movements paced by a fixed interval cue (externally cued) are preceded by a slow-rising movement-related potential (MRP) of similar timing, magnitude and topography. When the timing of the external cue is variable (temporally unpredictable), this MRP is absent. These findings have been interpreted to suggest that MRPs reflect neural activity mediating the preparation of temporally predictive movements, irrespective of whether the movement is internally generated or externally cued. However, the apparent similarity between MRPs preceding self-paced and predictably cued movements might be explained by the absence of control for the timing of movement onset, that is, MRPs preceding regularly-paced cues may simply reflect activity associated with self-paced movements initiated at times that more or less coincide with the timing of the imperative cue. The objective of this study was to reexamine the comparison of MRPs preceding temporally predictive (self-paced and predictably cued) versus reactive movements. To circumvent the potential confound of movement onset timing, constraints were placed on the temporal accuracy of movements cued by a regularly-paced tone. This design permitted post-hoc classification of trials into predictive or reactive movements to the tone. Three movement initiation conditions were tested: (1) self-paced (SP), (2) in response to an irregularly-paced cue (IC), and (3) in response to a regularly-paced cue (RC). In the latter condition, subjects were trained to initiate movement to within less than one simple reaction time in at least 50% of trials, and MRPs were compared between movements that were initiated “too early” (predictive), “too late” (reactive), or were temporally accurate (predictive). Cerebral potentials were recorded from 87 scalp surface electrodes. Consistent with previous studies, an early slow-rising MRP with maximum negativity over the midline frontal cortex was present only when the timing of movement onset could be predicted in advance (SP and RC conditions). Moreover, MRPs for movements that were temporally accurate or were initiated “too early” were significantly larger than the MRPs that preceded SP movements (P < 0.018). In contrast, movements initiated in reaction to the cue (IC condition), even when the timing of the cue could be predicted in advance (movement initiated “too late” in the RC condition), were associated with a significant attenuation of premovement activity (P < 0.005). Differences between conditions (RC > SP > IC) were significantly greater over the midline frontal cortex than the contralateral or ipsilateral sensorimotor cortex (P < 0.038). These findings show that the imposition of accuracy constraints on the timing of movement onset markedly enhances preparatory activity in the cortical or subcortical networks that mediate the predictive initiation of movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号