首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
The p62 protein has been identified as a major component of the protein aggregations associated with neurodegenerative disease. Oxidative insult has also been identified as a principal cause of neurodegenerative disease. Thus, in the present study, we investigated the potential role of p62 in oxidative stress-induced cell death in SH-SY5Y human neuroblastoma cells. The results indicated that H2O2 treatment induced p62 expression in SH-SY5Y cells. In addition, p62 showed neuroprotective effects against H2O2-induced cell death in differentiated SH-SY5Y cells. p62 expression prolonged Akt phosphorylation during the later stages of H2O2-induced cell death. Furthermore, coexpression of p62 and wild-type PDK1, the upstream kinase of Akt, further increased Akt phosphorylation and cell viability, whereas the expression of kinase-defective PDK1 reversed the cytoprotective effects of p62 under oxidative stress. Overexpression of p62 led to the dissociation of PDK1 from the 14-3-3θ protein, which is thought to be a negative regulator of PDK1 kinase activity. These findings suggest a mechanism that involves the p62-mediated modulation of the interaction between signaling molecules and results in cell survival.  相似文献   

2.
Trophoblasts play a crucial role in embryo implantation and maintenance of normal pregnancy. Recently, oxidative stress has been considered as one important factor in the pathogenesis of spontaneous abortion and preeclampsia. Many studies have reported that the plasma levels of hydrogen peroxide (H2O2) are significantly increased in women with preeclampsia, but the mechanisms involved in H2O2-induced cell cytotoxicity in trophoblasts are still not completely explained. Our present study was undertaken to provide a united understanding of the role of oxidative stress generated by H2O2 on human trophoblasts and the underlying intracellular signaling pathways. Exposure to H2O2 resulted in a concentration-dependent growth decrease and apoptosis in human trophoblast-like JEG-3 cells. H2O2 treatment also caused intracellular reactive oxygen species (ROS) production and concomitant dissipation of the mitochondrial membrane potential. The three MAPK subfamilies, ERK1/2, JNK and p38 kinase, were all activated under H2O2-induced oxidative stress. Blocking the activation of JNK and p38 kinase increased cell viability and decreased apoptosis induced by H2O2 with their respective inhibitors, SP600125 and SB203580. However, preventing ERK1/2 activation further increased H2O2-induced cell death with U0126, an inhibitor of ERK upstream kinase MEK1/2. Taken together, these findings suggest that the mitochondria-dependent pathways and JNK-p38 kinase pathways are involved in H2O2-induced oxidative damage of human trophoblast-like JEG-3 cells, while ERK1/2 pathway may play an active role in cell survival following oxidant injury.  相似文献   

3.
Although reactive oxygen species (ROS) at physiological concentrations are required for normal cell function, excessive production of ROS is detrimental to cells. Neuroglobin and cytoglobin are two globins, whose functions are still a matter of debate. A potential role in the detoxification of ROS is suggested. The influence of neuroglobin and cytoglobin on cell death after oxidative stress in human neuroblastoma SH-SY5Y cells was evaluated. Exposure of SH-SY5Y cells to paraquat or H2O2 resulted in a concentration- and time-dependent induction of apoptotic and necrotic cell death. H2O2 was 16 times more potent to induce cell death as compared to paraquat. SH-SY5Y cells transfected with plasmid DNA containing the neuroglobin or cytoglobin sequence showed enhanced survival after exposure to 300 μM H2O2 for 24 h as compared to untransfected controls. This finding suggests that neuroglobin and cytoglobin protect SH-SY5Y cells against oxidative stress-induced cell death.  相似文献   

4.
Hydrogen peroxide (H2O2) is a major reactive oxygen species that has been implicated in various neurodegenerative diseases. Quercetin, one of the plant flavonoids, has been reported to harbor various physiological properties including antioxidant activity. In this study, we investigated the neuroprotective effects of quercetin against H2O2-induced apoptosis in human neuronal SH-SY5Y cells. H2O2-mediated cytotoxicity and lactate dehydrogenase release were suppressed in a quercetin concentration-dependent manner. In addition, quercetin repressed the expression of the pro-apoptotic Bax gene and enhanced that of the anti-apoptotic Bcl-2 gene in SH-SY5Y cells. Moreover, quercetin effectively inhibited the activation of the caspase cascade that leads to DNA fragmentation, a key feature of apoptosis, and subsequent cell death. These results indicate the importance of quercetin in protecting against H2O2-mediated neuronal cell death. Thus, quercetin might potentially serve as an agent for prevention of neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

5.
We have examined the catalase activity and H2O2-induced oxidant stress on methaemoglobin formation and haemolysis in eight species of marsupials: the black striped wallaby (Macropus dorsalis), bridled nailtail wallaby (Onychogalea fraenata), proserpine rock wallaby (Petrogale persephone), red legged pademelon (Thylogale stigmatica), spectacled hare wallaby (Lagorchestes conspicillatus), whiptail wallaby (Macropus parryi), common brushtail possum (Trichosurus vulpecula), and the koala (Phascolarctos cinereus). The results indicate a significant relationship between the activity of catalase and methaemoglobin formation by H2O2.  相似文献   

6.
7.
Oxidative stress by exposure to H2O2 induces various types of cell death depending on cell type and conditions. We report herein on a study of the mechanisms underlying H2O2-induced cell death in C6 glioma cells. The findings show that H2O2 triggers a caspase-independent autophagic cell death in these cells. The findings also show that H2O2 induces the dephosphorylation of the mammalian target of rapamycin (mTOR) at Ser 2481 and the p70 ribosomal protein S6 kinase (p70S6K) at Thr389 in a Bcl-2/E1B 19 kDa interacting protein 3 (BNIP3)-dependent manner. BNIP3 has the capacity to inhibit mTOR activity and mTOR inhibition plays a role in autophagic induction. This suggests that BNIP3 may mediate H2O2-induced autophagic cell death through the suppression of mTOR. The findings show that the down-regulation of BNIP3 by BNIP3 siRNA prevents C6 cells from undergoing H2O2-induced autophagic cell death. Collectively, these results suggest that H2O2 induces autophagic cell death in C6 cells via the BNIP3-mediated suppression of the mTOR pathway.  相似文献   

8.
Conventional electrophysiology and the whole-cell patch-clamp technique have been applied to elucidate the effects of H2O2 on pancreatic B-cells of the mouse. In these cells, addition of 15 mmol/l glucose leads to depolarization and oscillation of the cell membrane potential. Subsequent addition of H2O2 (1 mmol/l) in the presence of glucose was followed by a marked and rapid hyperpolarization of the cell membrane with suppression of the electrical activity. Accordingly, in slow whole-cell patch-clamp experiments (with nystatin in the pipette solution) H2O2 induced a marked increase of cell membrane conductance. Tolbutamide, a blocker of K+ ATP channels, only partially blocked the effect of H2O2 even at high concentrations. The H2O2-induced, tolbutamide-insensitive current component, however, was largely abolished by a high concentration of TEA+ (80 mmol/l) or BaCl2 (10 mmol/l). It is concluded that in B-cells H2O2 stimulates a K+ current and that this effect leads to marked hyperpolarization and reversal of glucose-induced oscillations of cell membrane potential.  相似文献   

9.
Inflammation and oxidative stress have been shown to play a critical role in the pathophysiology that leads to neurodegeneration. Omega-6 phospholipids, e.g. dilinoleoylphosphatidylcholine (DLPC), have been shown to have anti-inflammatory properties and therefore experiments were undertaken to determine whether DLPC can prevent inflammatory neurodegenerative events in the model neuronal cell line, SH-SY5Y. Tumor necrosis factor (TNF-α) and H2O2 activate mitogen-activated protein kinase (MAPK) in SH-SY5Y cells within 5 min and this activation is completely blocked by DLPC (12 μM). DLPC blocks IκBα phosphorylation in the SH-SY5Y cells and prevents the phosphorylation and activation of nuclear factor-kappa B (NF-κB). The phospholipid inhibits induction of MAPK and NF-κB in similar fashion to the MEK1/2-inhibitor, U0126 (10 μM). DLPC completely abolishes TNF-α, H2O2 and lipopolysaccaride (LPS)-induced neuronal tau phosphorylation. Cellular amyloid precursor protein levels are reduced by DLPC and LPS-induced amyloid-β expression and secretion in SH-SY5Y cells are completely blocked by DLPC. Taken together, these data suggest that DLPC can act through MAPK to block neuronal inflammatory cascades and prevent potential pathological consequences in the neuronal metabolism of amyloid and tau proteins.  相似文献   

10.
We investigated the systemic and site-specific actions of a selective CB2 receptor agonist, A-836339 on mechanically evoked (10 g von Frey hair) and spontaneous firing of spinal wide dynamic range (WDR) neurons in neuropathic (L5 and L6 ligations) and sham rats. Systemic administration of A-836339 (0.3–3 μmol/kg, i.v.) reduced both evoked and spontaneous WDR neuronal activity in neuropathic, but not sham rats. The effects in neuropathic rats were blocked by pre-administration of a CB2, but not a CB1, receptor antagonist. Similar to systemic delivery, intra-spinal injection of A-836339 (0.3 and 1 nmol) also attenuated both von Frey–evoked and spontaneous firing of WDR neurons in neuropathic rats. Intra-spinal injections of A-836339 were ineffective in sham rats. Application of A-836339 (3–30 nmol) onto the ipsilateral L5 dorsal root ganglion (DRG) of neuropathic rats reduced the von Frey–evoked activity of WDR neurons, but spontaneous firing was unaltered. All effects of A-836339 on WDR neuronal activity following either intra-spinal or intra-DRG administration were blocked by pre-administration of a CB2 receptor antagonist. Pre-administration of a CB1 receptor antagonist did not alter the site-specific effects of A-836339. Injection of A-836339 (300 nmol) into the neuronal receptive field on the ipsilateral hind paw did not affect evoked or spontaneous firing of WDR neurons. Thus, the current data demonstrate that modulation of spinal neuronal activity by a CB2 receptor agonist is enhanced following peripheral nerve injury, and further delineate the contribution of spinal and peripheral CB2 receptors to this modulation.  相似文献   

11.
The effects of Duranta repens fruits were investigated on H2O2 induced oxidative cell death to evaluate its antioxidative potential in vitro. HEK293T cells were treated with different concentrations [0–1000 µg/ ml] of ethanol extract (E-Ex) and methanol extract (M-Ex) of D. repens for 24h, and then treated with 100 µM H2O2 for 24h. Cell viability, antioxidant parameters of cells, and antioxidant constituents of the extracts were determined. Treatment with limited dose of E-Ex or M-Ex increased the survival rate of H2O2-treated HEK293T cells, however the extra-high dose showed growth inhibitory effect. Treatment with E-Ex or M-Ex protected cellular lipid per-oxidation. In vitro analyses showed the 2,2-diphenyl-1-picrylhydrazyl and H2O2 scavenging activities as well as reducing potential of the extracts. We report here that the limited dose of E-Ex and M-Ex possess antioxidative potential, which can protect H2O2-induced oxidative cell damage.  相似文献   

12.
Autophagy in dopamine (DA) neurons is concerned to be associated with Parkinson's disease (PD), but the detailed mechanism remains unknown. Herein, we aimed to investigate the function of microRNA (miR)-29c-3p in autophagy in PD models. Intraperitoneal injection of MPTP (20 mg/kg) was given to C57BL/6 mice to establish PD mouse model. SH-SY5Y cells were treated with MPP+ (1 mmol/L) to establish in vitro PD model. The results indicated that in the substantia nigra pars compacta (SNpc) DA neurons of PD mice, autophagy was activated accompanied by down-regulated miR-29c-3p and up-regulated ten-eleven translocation 2 (TET2) expression. Up-regulation of miR-29c-3p inhibited TET2 expression and SNpc (including DA neurons) autophagy in PD mice. In vitro PD model confirmed that MPP+ treatment markedly down-regulated miR-29c-3p expression and up-regulated TET2 expression in SH-SY5Y cells in a dose/time-dependent manner. Moreover, miR-29c-3p up-regulation also inhibited autophagy and TET2 expression in vitro. Additionally, TET2 was proved to be targeted and down-regulated by miR-29c-3p. TET2 knockdown inhibited MPP+-induced autophagy, whereas TET2 over-expression reversed the effects of miR-29c-3p over-expression on SH-SY5Y cell autophagy. Overall, miR-29c-3p over-expression inhibits autophagy in PD models, which may be mediated by TET2. Our finding may provide new insights for regulating autophagy to improve PD progression.  相似文献   

13.
目的:观察瘦素(leptin)对H2O2诱导的大鼠心肌细胞凋亡的影响并探讨其作用机制。方法:应用脱氧三磷酸尿苷缺口末端标记(TUNEL)法观察瘦素对H2O2诱导的大鼠心肌细胞H9c2凋亡的影响;应用Western blotting法观察瘦素、H2O2对caspase-3、胞外信号调控激酶(ERK)活性的影响。结果:(1)瘦素对H2O2诱导的H9c2细胞凋亡具有显著的抑制作用(与对照组比较P0.01),该作用可被ERK激酶抑制剂PD98059所阻断。(2)H2O2明显抑制ERK活性;而瘦素可激活ERK并部分阻断H2O2诱导的caspase-3激活。结论:瘦素对H2O2诱导的H9c2细胞凋亡具有抑制作用,其机制可能与其激活ERK信号途径有关。  相似文献   

14.
15.
Accumulation and deposition of amyloid β peptide (Aβ) in the brain causes neuronal apoptosis and eventually leads to Alzheimer's disease (AD). A therapeutic target for AD is to block the cascade reaction induced by Aβ. It has been demonstrated that glucagon-like peptide-1 (GLP-1), which is an endogenous insulinotropic peptide secreted from the gut, binds to its receptor in the brain and possesses neuroprotective effects. Using site-directed mutagenesis and gene recombination techniques, we generated a mutated recombinant human glucagon-like peptide-1 (mGLP-1) which has longer half-life as compared with native GLP-1. This present work aims to examine whether mGLP-1 attenuates Aβ1–42-mediated cytotoxicity in SH-SY5Y cells and to explore the possible mechanisms. Our data indicate that ≥0.02 ng/ml of mGLP-1 facilitated cell proliferation and 0.1 ng/ml and 0.5 ng/ml of mGLP-1 rescued SH-SY5Y cells from Aβ1–42-induced apoptosis. Moreover, Aβ1–42 treatment dramatically stimulated the release of Ca2+ from internal calcium stores in SH-SY5Y cells, while mGLP-1 helped to maintain the intracellular Ca2+ homeostasis. Aβ1–42 also significantly increased the expression level of TP53 and Bax genes which are involved in apoptotic pathways, and mGLP-1 decreased Aβ1–42-induced up-regulation of TP53 and Bax. Since mGLP-1 treatment elevated cytosolic cAMP concentration in SH-SY5Y cells, we postulate that mGLP-1 may exert its influence via binding to GLP-1 receptors in SH-SY5Y cells and stimulating the production of cAMP. These results suggest that mGLP-1 exhibited neuronal protection properties, and could potentially be a novel therapeutic agent for intervention in Alzheimer's disease.  相似文献   

16.
Lithium has been successfully employed therapeutically for treatment of bipolar depressive illness; however, its mechanism of action is poorly understood. Recently, it has been demonstrated by us that lithium can prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dopaminergic neurotoxicity in mice. From analyzing the pattern of protection in various parameters, we suggest that lithium protects against MPTP-induced depletion of striatal dopamine (DA) by preventing free radical-induced inactivation of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine synthesis. Possible neuroprotective effect of lithium against H2O2-induced cell death was assessed in human neuroblastoma; SH-SY5Y cell line. Pretreatment with LiCl (2 mM and 4 mM) for 7 days protected against H2O2 neurotoxicity in a dose-dependent manner. However, this protection could not be achieved through short-term incubation with LiCl. In agreement; we found that lithium lacks immediate antioxidant activity using the in vitro lipid peroxidation essay indicating that not acute but chronic treatment with lithium allows cells to deal better with oxidative stress.  相似文献   

17.
Superparamagnetic iron oxide nanoparticles (SPIOs) have been widely used as the magnetic resonance imaging (MRI) contrast agent in biomedical studies and clinical applications, with special interest recently in in vivo stem cell tracking. However, a full understanding of the fate of SPIOs in cells has not been achieved yet, which is particularly important for stem cells since any change of the microenvironment may disturb their propagation and differentiation behaviors. Herein, synchrotron radiation-based X-ray fluorescence (XRF) in combination with X-ray absorption spectroscopy (XAS) were used to in situ reveal the fate of Fe3O4 and Fe3O4@SiO2 NPs in human mesenchymal stem cells (hMSCs), in which the dynamic changes of their distribution and chemical speciation were precisely determined. The XAS analysis evidences that Fe3O4 NPs cultured with hMSCs are quite stable and almost keep their initial chemical form up to 14 days, which is contradictory to the previous report that Fe3O4 NPs were unstable in cell labeling assessed by using a simplified lysosomal model system. Coating with a SiO2 shell, Fe3O4@SiO2 NPs present higher stability in hMSCs without detectable changes of their chemical form. In addition, XRF analysis demonstrates that Fe3O4@SiO2 NPs can label hMSCs in a high efficiency manner and are solely distributed in cytoplasm during cell proliferation, making it an ideal probe for in vivo stem cell tracking. These findings with the help of synchrotron radiation-based XAS and XRF improve our understanding of the fate of SPIOs administered to hMSCs and will help the future design of SPIOs for safe and efficient stem cells tracking.  相似文献   

18.
In this report, monodispersed ultra-small Gd2O3 nanoparticles capped with hydrophobic oleic acid (OA) were synthesized with average particle size of 2.9 nm. Two methods were introduced to modify the surface coating to hydrophilic for bio-applications. With a hydrophilic coating, the polyvinyl pyrrolidone (PVP) coated Gd2O3 nanoparticles (Gd2O3-PVP) showed a reduced longitudinal T1 relaxation time compared with OA and cetyltrimethylammonium bromide (CTAB) co-coated Gd2O3 (Gd2O3-OA-CTAB) in the relaxation study. The Gd2O3-PVP was thus chosen for its further application study in MRI with an improved longitudinal relaxivity r1 of 12.1 mm1 s−1 at 7 T, which is around 3 times as that of commercial contrast agent Magnevist®. In vitro cell viability in HK-2 cell indicated negligible cytotoxicity of Gd2O3-PVP within preclinical dosage. In vivo MR imaging study of Gd2O3-PVP nanoparticles demonstrated considerable signal enhancement in the liver and kidney with a long blood circulation time. Notably, the OA capping agent was replaced by PVP through ligand exchange on the Gd2O3 nanoparticle surface. The hydrophilic PVP grants the Gd2O3 nanoparticles with a polar surface for bio-application, and the obtained Gd2O3-PVP could be used as an in vivo indicator of reticuloendothelial activity.  相似文献   

19.
Our previous studies have demonstrated that preconditioning with hydrogen peroxide (H2O2) activated the JAK-STAT pathway that played an important role in the cytoprotection, and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mediated the late phase of cytoprotection induced by high concentration of H2O2 after preconditioning. Here we sought to identify the downstream targets of the JAK-STAT axis that mediated H2O2 preconditioning and the expression of iNOS and COX-2 in the early phase of H2O2 preconditioning. It was shown that (1) Preconditioning with H2O2 at 100 μmol/L for 90 min in PC12 cells induced significant expression of iNOS and COX-2. (2) Pretreatment with the iNOS inhibitor AG (10 μmol/L) or the COX-2 inhibitor NS-398 (10 μmol/L) respectively 20 min before H2O2 preconditioning not only inhibits the increased expression of iNOS or COX-2 but also abrogates the protective effects of H2O2 preconditioning against apoptosis induced by oxidative stress. (3) Pretreatment with the JAK inhibitor AG-490 (10 μmol/L) 20 min before H2O2 preconditioning obviously inhibits the up-regulation of iNOS or COX-2 induced by H2O2 preconditioning. These results suggested that JAK-STAT pathway modulates the roles of iNOS and COX-2 in the cytoprotection of early phase of H2O2 preconditioning.  相似文献   

20.
In mice, lysophosphatidylcholine (LPC) was found to be a physiological substrate of neuropathy target esterase, which is also bound by organophosphates that cause a delayed neuropathy in human and some animals. However, the mechanism responsible for causing the different symptoms in mice and humans that are exposed to neuropathic organophosphates still remains unknown. In the present study, we examined and compared the effect of exogenous LPC on intracellular Ca2+ overload in mouse N2a and human SH-SY5Y neuroblastoma cells. LPC caused an intracellular Ca2+ level ([Ca2+]i) increase in both N2a and SH-SY5Y cells; moreover, the amplitude was higher in N2a cells than that in SH-SY5Y cells. Preincubation of the cells with verapamil, an L-type Ca2+ channel blocker, did not affect the LPC-induced Ca2+ increase in N2a cells, verapamil inhibited the response by 23% in SH-SY5Y cells. In Ca2+-free medium, LPC produced a significant [Ca2+]i decrease in N2a cells, while it caused 64% of total [Ca2+]i increase in SH-SY5Y cells. The results of a cell viability test suggest that N2a cells were more sensitive to LPC than were SH-SY5Y cells. These data suggested that the LPC-induced [Ca2+]i increase was produced in each cell line through different mechanisms. In particular, the [Ca2+]i increase occurred via entry through a permeabilized membrane in N2a cells, but through L-type Ca2+ channels as well as by Ca2+ release from intracellular Ca2+ stores in SH-SY5Y cells. Thus, the symptomatic differences of organophosphate-induced neurotoxicity between mice and humans are probably not related to the diverse amplitudes of intracellular Ca2+ overload produced by LPC. Moreover, the demyelination effect induced by LPC in mice may be a consequence of its detergent effect on membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号