首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Although reactive oxygen species (ROS) at physiological concentrations are required for normal cell function, excessive production of ROS is detrimental to cells. Neuroglobin and cytoglobin are two globins, whose functions are still a matter of debate. A potential role in the detoxification of ROS is suggested. The influence of neuroglobin and cytoglobin on cell death after oxidative stress in human neuroblastoma SH-SY5Y cells was evaluated. Exposure of SH-SY5Y cells to paraquat or H2O2 resulted in a concentration- and time-dependent induction of apoptotic and necrotic cell death. H2O2 was 16 times more potent to induce cell death as compared to paraquat. SH-SY5Y cells transfected with plasmid DNA containing the neuroglobin or cytoglobin sequence showed enhanced survival after exposure to 300 μM H2O2 for 24 h as compared to untransfected controls. This finding suggests that neuroglobin and cytoglobin protect SH-SY5Y cells against oxidative stress-induced cell death.  相似文献   

3.
Hydrogen peroxide (H2O2) is a major reactive oxygen species that has been implicated in various neurodegenerative diseases. Quercetin, one of the plant flavonoids, has been reported to harbor various physiological properties including antioxidant activity. In this study, we investigated the neuroprotective effects of quercetin against H2O2-induced apoptosis in human neuronal SH-SY5Y cells. H2O2-mediated cytotoxicity and lactate dehydrogenase release were suppressed in a quercetin concentration-dependent manner. In addition, quercetin repressed the expression of the pro-apoptotic Bax gene and enhanced that of the anti-apoptotic Bcl-2 gene in SH-SY5Y cells. Moreover, quercetin effectively inhibited the activation of the caspase cascade that leads to DNA fragmentation, a key feature of apoptosis, and subsequent cell death. These results indicate the importance of quercetin in protecting against H2O2-mediated neuronal cell death. Thus, quercetin might potentially serve as an agent for prevention of neurodegenerative diseases caused by oxidative stress and apoptosis.  相似文献   

4.
Inflammation and oxidative stress have been shown to play a critical role in the pathophysiology that leads to neurodegeneration. Omega-6 phospholipids, e.g. dilinoleoylphosphatidylcholine (DLPC), have been shown to have anti-inflammatory properties and therefore experiments were undertaken to determine whether DLPC can prevent inflammatory neurodegenerative events in the model neuronal cell line, SH-SY5Y. Tumor necrosis factor (TNF-α) and H2O2 activate mitogen-activated protein kinase (MAPK) in SH-SY5Y cells within 5 min and this activation is completely blocked by DLPC (12 μM). DLPC blocks IκBα phosphorylation in the SH-SY5Y cells and prevents the phosphorylation and activation of nuclear factor-kappa B (NF-κB). The phospholipid inhibits induction of MAPK and NF-κB in similar fashion to the MEK1/2-inhibitor, U0126 (10 μM). DLPC completely abolishes TNF-α, H2O2 and lipopolysaccaride (LPS)-induced neuronal tau phosphorylation. Cellular amyloid precursor protein levels are reduced by DLPC and LPS-induced amyloid-β expression and secretion in SH-SY5Y cells are completely blocked by DLPC. Taken together, these data suggest that DLPC can act through MAPK to block neuronal inflammatory cascades and prevent potential pathological consequences in the neuronal metabolism of amyloid and tau proteins.  相似文献   

5.
Trophoblasts play a crucial role in embryo implantation and maintenance of normal pregnancy. Recently, oxidative stress has been considered as one important factor in the pathogenesis of spontaneous abortion and preeclampsia. Many studies have reported that the plasma levels of hydrogen peroxide (H2O2) are significantly increased in women with preeclampsia, but the mechanisms involved in H2O2-induced cell cytotoxicity in trophoblasts are still not completely explained. Our present study was undertaken to provide a united understanding of the role of oxidative stress generated by H2O2 on human trophoblasts and the underlying intracellular signaling pathways. Exposure to H2O2 resulted in a concentration-dependent growth decrease and apoptosis in human trophoblast-like JEG-3 cells. H2O2 treatment also caused intracellular reactive oxygen species (ROS) production and concomitant dissipation of the mitochondrial membrane potential. The three MAPK subfamilies, ERK1/2, JNK and p38 kinase, were all activated under H2O2-induced oxidative stress. Blocking the activation of JNK and p38 kinase increased cell viability and decreased apoptosis induced by H2O2 with their respective inhibitors, SP600125 and SB203580. However, preventing ERK1/2 activation further increased H2O2-induced cell death with U0126, an inhibitor of ERK upstream kinase MEK1/2. Taken together, these findings suggest that the mitochondria-dependent pathways and JNK-p38 kinase pathways are involved in H2O2-induced oxidative damage of human trophoblast-like JEG-3 cells, while ERK1/2 pathway may play an active role in cell survival following oxidant injury.  相似文献   

6.
Mitigating oxidative stress-induced damage is critical to preserve neuronal function in diseased or injured brains. This study explores the mechanisms contributing to the neuroprotective effects of pigment epithelium-derived factor (PEDF) in cortical neurons. Cultured primary neurons are exposed to PEDF and H2O2 as well as inhibitors of phosphoinositide-3 kinase (PI3K) or extracellular signal-regulated kinase 1/2 (ERK1/2). Neuronal survival, cell death and levels of caspase 3, PEDF, phosphorylated ERK1/2, and Bcl-2 are measured. The data show cortical cultures release PEDF and that H2O2 treatment causes cell death, increases activated caspase 3 levels and decreases release of PEDF. Exogenous PEDF induces a dose-dependent increase in Bcl-2 expression and neuronal survival. Blocking Bcl-2 expression by siRNA reduced PEDF-induced increases in neuronal survival. Treating cortical cultures with PEDF 24 h before H2O2 exposure mitigates oxidant-induced decreases in neuronal survival, Bcl-2 expression, and phosphorylation of ERK1/2 and also reduces elevated caspase 3 level and activity. PEDF pretreatment effect on survival is blocked by inhibiting ERK or PI3K. However, only inhibition of ERK reduced the ability of PEDF to protect neurons from H2O2-induced Bcl-2 decrease and neuronal death. These data demonstrate PEDF-mediated neuroprotection against oxidant injury is largely mediated via ERK1/2 and Bcl-2 and suggest the utility of PEDF in preserving the viability of oxidatively challenged neurons.  相似文献   

7.
Oxidative stress by exposure to H2O2 induces various types of cell death depending on cell type and conditions. We report herein on a study of the mechanisms underlying H2O2-induced cell death in C6 glioma cells. The findings show that H2O2 triggers a caspase-independent autophagic cell death in these cells. The findings also show that H2O2 induces the dephosphorylation of the mammalian target of rapamycin (mTOR) at Ser 2481 and the p70 ribosomal protein S6 kinase (p70S6K) at Thr389 in a Bcl-2/E1B 19 kDa interacting protein 3 (BNIP3)-dependent manner. BNIP3 has the capacity to inhibit mTOR activity and mTOR inhibition plays a role in autophagic induction. This suggests that BNIP3 may mediate H2O2-induced autophagic cell death through the suppression of mTOR. The findings show that the down-regulation of BNIP3 by BNIP3 siRNA prevents C6 cells from undergoing H2O2-induced autophagic cell death. Collectively, these results suggest that H2O2 induces autophagic cell death in C6 cells via the BNIP3-mediated suppression of the mTOR pathway.  相似文献   

8.
Cerebral hypoxia is one of the main causes of cerebral injury. This study was conducted to investigate the potential protective effect of H2S in in vitro hypoxic models by subjecting SH-SY5Y cells to either oxygen–glucose deprivation or Na2S2O4 (an oxygen scavenger) treatment. We found that treatment with NaHS (an H2S donor, 10–100 μM) 15 min prior to hypoxia increased cell viability in a concentration-dependent manner. Time-course study showed that NaHS was able to exert its protective effect even when added 8 h before or less than 4 h after hypoxia induction. Interestingly, endogenous H2S level was markedly reduced by hypoxia induction. Over-expression of cystathionine-β-synthase prevented hypoxia induced cell apoptosis. Blockade of ATP-sensitive K+ (KATP) channels with glibenclamide and HMR-1098, protein kinase C (PKC) with its three specific inhibitors (chelerythrine, bisindolylmaleide I and calphostin C), extracellular signal-regulated kinase 1/2 (ERK1/2) with PD98059 and heat shock protein 90 (Hsp90) with geldanamycin and radicicol significantly attenuated the protective effects of NaHS. Western blots showed that NaHS significantly stimulated ERK1/2 activation and Hsp90 expression. In conclusion, H2S exerts a protective effect against cerebral hypoxia induced neuronal cell death via KATP/PKC/ERK1/2/Hsp90 pathway. Our findings emphasize the important neuroprotective role of H2S in the brain during cerebral hypoxia.  相似文献   

9.
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that caffeine, one of the major components of coffee, has a protective effect against developing PD. However, the detailed mechanisms of how caffeine suppresses neuronal death have not been fully elucidated. We investigated the cytoprotective mechanisms of caffeine using human dopaminergic neuroblastoma SH-SY5Y cells as a PD model. Caffeine prevented the apoptotic cell death induced by serum/retinoic acid (RA) deprivation, MPP+, rotenone, and 6-OHDA in SH-SY5Y cells in a dose dependent manner. Caffeine lowered caspase-3 activity induced by serum/RA deprivation and 6-OHDA administration, and also decreased the number of apoptotic condensed and/or fragmented nuclei. Akt was phosphorylated 60 min after caffeine administration in a dose dependent manner; PI3K inhibitors, wortmannin and LY294002 canceled this cytoprotective effect of caffeine. On the other hand, MAPKs such as Erk1/2, p38, or JNK were not activated by caffeine. These results suggest that caffeine has a cytoprotective effect due to the activation of the PI3K/Akt pathways in SH-SY5Y cells.  相似文献   

10.
Z-ligustilide (Z-LIG) is the primary lipophilic compound of the Chinese medicine Danggui (Radix Angelica sinensis). Previous studies demonstrated that Z-LIG had significant neuroprotective potential in both transient and permanent cerebral ischemia, possibly through antioxidant and anti-apoptotic mechanisms. The present study examined the mechanisms of Z-LIG on hydrogen peroxide (H2O2)-induced injury in PC12 cells. Following exposure of the cells to H2O2 (500 μM), a significant reduction in cell survival and total antioxidant capacity (TAC), as well as increased intracellular reactive oxygen species (ROS), were observed. In addition, H2O2 treatment significantly upregulated Bax expression, cleaved-caspase 3, and cytosolic cytochrome-c, and decreased Bcl-2 protein levels. Pretreatment of the cells with Z-LIG (0.1, 1.0, 2.5, or 5.0 μg/ml) significantly attenuated H2O2-induced cell death, attenuated increased intracellular ROS levels, and decreased Bax expression, cleaved-caspase 3, and cytochrome-c. Further, Z-LIG improved cellular TAC and concentration-dependently upregulated Bcl-2 expression. These results demonstrate that Z-LIG has a pronounced protective effect against H2O2-induced cytotoxicity, at least partly through improving cellular antioxidant defense and inhibiting the mitochondrial apoptotic pathway. These findings suggest that Z-LIG may be useful in the treatment of neurodegenerative disorders in which oxidative stress and apoptosis are mainly implicated.  相似文献   

11.
12.
13.
The p62/sequestosome-1 is a multifunctional protein containing several protein-protein interaction domains. Through these interactions p62 is involved in the regulation of cellular signaling and protein trafficking, aggregation and degradation. p62 protein can bind through its UBA motif to ubiquitinated proteins and control their aggregation and degradation via either autophagy or proteasomes. p62 protein has been reported to be seen in association with the intracellular inclusions in primary and secondary tauopathies, α-synucleinopathies and other neurodegenerative brain disorders displaying inclusions with misfolded proteins. In Alzheimer's disease (AD), p62 protein is associated with neurofibrillary tangles composed primarily of hyperphosphorylated tau protein and ubiquitin. Increasing evidence indicates that p62 has an important role in the degradation of tau protein. The lack of p62 protein expression provokes the tau pathology in mice. Recent studies have demonstrated that the p62 gene expression and cytoplasmic p62 protein levels are significantly reduced in the frontal cortex of AD patients. Decline in the level of p62 protein can disturb the signaling pathways of Nrf2, cyclic AMP and NF-κB and in that way increase oxidative stress and impair neuronal survival. We will review here the molecular and functional characteristics of p62 protein and outline its potential role in the regulation of Alzheimer's pathogenesis.  相似文献   

14.
The effects of Duranta repens fruits were investigated on H2O2 induced oxidative cell death to evaluate its antioxidative potential in vitro. HEK293T cells were treated with different concentrations [0–1000 µg/ ml] of ethanol extract (E-Ex) and methanol extract (M-Ex) of D. repens for 24h, and then treated with 100 µM H2O2 for 24h. Cell viability, antioxidant parameters of cells, and antioxidant constituents of the extracts were determined. Treatment with limited dose of E-Ex or M-Ex increased the survival rate of H2O2-treated HEK293T cells, however the extra-high dose showed growth inhibitory effect. Treatment with E-Ex or M-Ex protected cellular lipid per-oxidation. In vitro analyses showed the 2,2-diphenyl-1-picrylhydrazyl and H2O2 scavenging activities as well as reducing potential of the extracts. We report here that the limited dose of E-Ex and M-Ex possess antioxidative potential, which can protect H2O2-induced oxidative cell damage.  相似文献   

15.
Activation of transient receptor potential melastatin 2 (TRPM2), a non-selective, Ca2+-permeable cation channel, is implicated in cell death. Channel opening is stimulated by oxidative stress, a feature of numerous disease states. The wide expression profile of TRPM2 renders it a potentially significant therapeutic target in a variety of pathological settings including cardiovascular and neurodegenerative diseases. HEK293 cells transfected with human TRPM2 (HEK293/hTRPM2) were more vulnerable to H2O2-mediated cell death than untransfected controls in which H2O2-stimulated Ca2+ influx was absent. Flufenamic acid partially reduced Ca2+ influx in response to H2O2 but had no effect on viability. N-(p-Amylcinnamoyl) anthranilic acid substantially attenuated Ca2+ influx but did not alter viability. Poly(adenosine diphosphate ribose) polymerase inhibitors (N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide, 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone and nicotinamide) reduced Ca2+ influx and provided a degree of protection but also had some protective effects in untransfected controls. These data suggest H2O2 triggers cell death in HEK293/hTRPM2 cells by a mechanism that is in part Ca2+ independent, as blockade of channel opening (evidenced by suppression of Ca2+ influx) did not correlate well with protection from cell death. Determining the underlying mechanisms of TRPM2 activation is pertinent in elucidating the relevance of this channel as a therapeutic target in neurodegenerative diseases and other pathologies associated with Ca2+ dysregulation and oxidative stress.  相似文献   

16.
Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of matrix metalloproteinases (MMPs), and the aberrant expressions of MMPs are strongly associated with neuroinflammation and neuronal cell death. In the present study, we found that two well-known dopaminergic neurotoxins, MPP+ and 6-OHDA, reduced TIMP-2 expression at the mRNA and protein levels in two human neuroblastoma cell lines (SK-N-BE(2)C and SH-SY5Y). To investigate the role of TIMP-2, these cells were transfected with TIMP-2 expression plasmid and viabilities were compared after treating cells with MPP+ or 6-OHDA. It was found that TIMP-2 overexpression attenuated the cell deaths induced by MPP+ or 6-OHDA, and that the degree of protection conferred was greater for MPP+-treated cells. Furthermore, the introduction of TIMP-2 siRNA into SK-N-BE(2)C cells aggravated the cell deaths induced by MPP+ or 6-OHDA. These findings collectively show that endogenously expressed TIMP-2 has a neuroprotective role, and they imply that the inhibition of TIMP-2 expression by MPP+ or 6-OHDA may contribute, in part, to neuronal cell death. These findings suggest that TIMP-2 expressional enhancement provides a potential therapeutic strategy for the treatment of neurodegenerative diseases such as Parkinson's disease.  相似文献   

17.
Lithium has been successfully employed therapeutically for treatment of bipolar depressive illness; however, its mechanism of action is poorly understood. Recently, it has been demonstrated by us that lithium can prevent 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dopaminergic neurotoxicity in mice. From analyzing the pattern of protection in various parameters, we suggest that lithium protects against MPTP-induced depletion of striatal dopamine (DA) by preventing free radical-induced inactivation of tyrosine hydroxylase (TH), the rate limiting enzyme in dopamine synthesis. Possible neuroprotective effect of lithium against H2O2-induced cell death was assessed in human neuroblastoma; SH-SY5Y cell line. Pretreatment with LiCl (2 mM and 4 mM) for 7 days protected against H2O2 neurotoxicity in a dose-dependent manner. However, this protection could not be achieved through short-term incubation with LiCl. In agreement; we found that lithium lacks immediate antioxidant activity using the in vitro lipid peroxidation essay indicating that not acute but chronic treatment with lithium allows cells to deal better with oxidative stress.  相似文献   

18.
Macrophages play critical roles in innate immune defense by sensing microbes using pattern-recognition receptors. Lipopolysaccharide (LPS) stimulates macrophages via TLR, which leads to activation of downstream signaling cascades. In this study, we investigated the roles of a conserved signaling pathway, Notch signaling, in regulating the downstream signaling cascades of the LPS/TLR4 pathways in macrophages. Using a phospho-proteomic approach and a gamma-secretase inhibitor (GSI) to suppress the processing and activation of Notch signaling, we identified regulator of G protein signaling 19 (RGS19) as a target protein whose phosphorylation was affected by GSI treatment. RGS19 is a guanosine triphosphatase (GTPase)-activating protein that functions to negatively regulate G protein-coupled receptors via Gαi/Gαq-linked signaling. Stimulation of RAW264.7 cells with LPS increased the level of the phosphorylated form of RGS19, while LPS stimulation in the presence of GSI decreased its level. GSI treatment did not alter the mRNA level of rgs19. Treatment with GSI or silencing of rgs19 in macrophages impaired the phosphorylation of Akt Thr308 upon LPS stimulation. Furthermore, targeted deletion of a DNA-binding protein and binding partner of the Notch receptor, RBP-Jκ/CSL, in macrophages resulted in delayed and decreased Akt phosphorylation. Because the PI3K/Akt pathway regulates cell survival in various cell types, the cell cycle and cell death were assayed upon GSI treatment, phosphatidylinositol 3 kinase (PI3K) inhibitor treatment or silencing of rgs19. GSI treatment resulted in decreased cell populations in the G1 and S phases, while it increased the cell population of cell death. Similarly, silencing of rgs19 resulted in a decreased cell population in the G1 phase and an increased cell population in the subG1 phase. Inhibition of Akt phosphorylation by PI3K inhibitor in LPS-stimulated macrophages increased cell population in G1 phase, suggesting a possible cell cycle arrest. Taken together, these results indicate that Notch signaling positively regulates phosphorylation of Akt, possibly via phosphorylation of RGS19, and inhibition of both molecules affects the cell survival and cell cycle of macrophages upon LPS stimulation.  相似文献   

19.
管花苷B对抗H2O2诱导的PC12细胞凋亡   总被引:2,自引:2,他引:2  
目的:观察肉苁蓉提取物管花苷B对H2O2诱导的PC12细胞损伤的影响。方法:用MTT法检测细胞存活率,以激光共聚焦显微镜荧光染色法检测细胞内活性氧的产生和线粒体膜电位的变化,DNA琼脂糖凝胶电泳和流式细胞仪检测细胞凋亡的发生,并用荧光酶标仪测定caspase-3的活性。结果:100 μmol·L-1 H2O2处理细胞24 h显著降低细胞的存活率;诱导细胞发生凋亡,凋亡率达48.0%;细胞内活性氧水平及caspase-3的活性显著升高;而线粒体膜电位却明显降低,红/绿荧光强度的比值由正常的5.97降低为0.41左右。而预先给予1、10或100 mg·L-1浓度的管花苷B处理细胞12 h,可显著提高细胞存活率;并可有效抑制DNA ladder的发生;流式细胞仪检测凋亡率分别降低到30.9%、18.3%和6.2%;激光共聚焦显微镜结果显示管花苷B可明显降低细胞内活性氧的水平;并可逐渐恢复线粒体的高能量状态;caspase-3的活性不断降低,并呈现了一定的剂量依赖性。结论:管花苷B能显著地抑制H2O2诱导的PC12细胞凋亡,其神经细胞保护作用可能与其降低细胞内活性氧水平,维持线粒体膜电位的高能状态和抑制caspase-3的活性有关。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号