首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
The aim of this study is to evaluate whether tDCS applied on the primary motor cortex (M1) in company with hand movements could enhance cortical activation, using functional MRI (fMRI). Twelve right-handed normal subjects were recruited. Real tDCS and sham tDCS with hand movements were applied during fMRI scanning. Subjects performed grasp-release hand movements at a metronome-guided frequency of 1Hz, while direct current with 1.0mA was delivered to the primary motor cortex. The averaged cortical map and the intensity index were compared between real tDCS with hand movements and sham tDCS with hand movements. Our result showed that cortical activation on the primary sensorimotor cortex was observed under both of two conditions; real tDCS with hand movements and sham tDCS with hand movements. Voxel count and peak intensity were 365.10±227.23 and 5.66±1.97, respectively, in the left primary sensorimotor cortex during real tDCS with right hand movements; in contrast, those were 182.20±117.88 and 4.12±0.88, respectively, during sham tDCS with right hand movements. Significant differences in voxel count and peak intensity were observed between real tDCS and sham tDCS (p<0.05). We found that anodal tDCS application during motor task enhanced cortical activation on the underlying targeted motor cortex, compared with the same motor task without tDCS. Therefore, it seemed that tDCS induced more cortical activity and modulated brain function when concurrently applied with motor task.  相似文献   

2.
Transcranial direct current stimulation (tDCS) is a non-invasive powerful method to modulate brain activity. It can enhance motor learning and working memory in healthy subjects. To investigate the effects of anodal tDCS (1 mA, 20 min) of the dominant and non-dominant primary motor cortex (M1) on hand motor performance in healthy right-handed volunteers, healthy subjects underwent one session of both sham and active anodal stimulation of the non-dominant or dominant primary motor cortex. A blinded rater assessed motor function using the Jebsen Taylor Hand Function Test. For the non-dominant hand, active tDCS was able to improve motor function significantly-there was a significant interaction between time and condition of stimulation (p = 0.003). Post hoc tests showed a significant enhancement of JTT performance after 1 mA anodal tDCS of M1 (mean improvement of 9.41%, p = 0.0004), but not after sham tDCS (mean improvement of 1.3%, p = 0.84). For the dominant hand, however, neither active nor sham tDCS resulted in a significant change in motor performance. Our findings show that anodal tDCS of the non-dominant primary motor cortex results in motor function enhancement and thus confirm and extend the notion that tDCS can change behavior. We speculate that the under-use of the non-dominant hand with its associated consequences in cortical plasticity might be one of the reasons to explain motor performance enhancement in the non-dominant hand only.  相似文献   

3.
Transcranial direct current stimulation (tDCS) is a procedure to polarize human brain. It has been reported that tDCS over the hand motor cortex transiently improves the performance of hand motor tasks. Here, we investigated whether tDCS could also improve leg motor functions. Ten healthy subjects performed pinch force (PF) and reaction time (RT) tasks using the left leg before, during and after anodal, cathodal or sham tDCS over the leg motor cortex. The anodal tDCS transiently enhanced the maximal leg PF but not RT during its application. Neither cathodal nor sham stimulation changed the performance. None of the interventions affected hand PF or RT, showing the spatial specificity of the effect of tDCS. These results indicate that motor performance of not only the hands but also the legs can be enhanced by anodal tDCS. tDCS may be applicable to the neuro-rehabilitation of patients with leg motor disability.  相似文献   

4.
We investigated effects of transcranial direct-current stimulation (tDCS) on the diaphragmatic corticospinal pathways in healthy human. Anodal, cathodal, and sham tDCS were randomly applied upon the left diaphragmatic motor cortex in twelve healthy right-handed men. Corticospinal pathways excitability was assessed by means of transcranial magnetic stimulation (TMS) elicited motor-evoked-potential (MEP). For each tDCS condition, MEPs were recorded before (Pre) tDCS then after 10 min (Post1, at tDCS discontinuation in the anodal and cathodal sessions) and 20 min (Post2). As result, both anodal and cathodal tDCS significantly decreased MEP amplitude of the right hemidiaphragm at both Post1 and Post2, versus Pre. MEP amplitude was unchanged versus Pre during the sham condition. The effects of cathodal and anodal tDCS applied to the diaphragm motor cortex differ from those observed during tDCS of the limb motor cortex. These differences may be related to specific characteristics of the diaphragmatic corticospinal pathways as well as to the diaphragm's functional peculiarities compared with the limb muscles.  相似文献   

5.
To investigate whether the manipulation of brain excitability by transcranial direct current stimulation (tDCS) modulates the heart rate variability (HRV), the effect of tDCS applied at rest on the left temporal lobe in athletes (AG) and non-athletes (NAG) was evaluated. The HRV parameters (natural logarithms of LF, HF, and LF/HF) was assessed in 20 healthy men before, and immediately after tDCS and sham stimulation. After anodal tDCS in AG the parasympathetic activity (HFlog) increased (P < 0.01) and the sympathetic activity (LFlog) and sympatho-vagal balance (LF/HFlog) decreased (P < 0.01), whereas no significant effects were detected in NAG (P > 0.05). No significant changes in HRV indexes were provoked by sham stimulation in both AG and NAG (P > 0.05). In conclusion, tDCS applied on the left temporal lobe significantly increased the overall HRV in AG, enhancing the parasympathetic and decreasing the sympathetic modulation of heart rate. Consequently the sympatho-vagal balance decreased at rest in AG but not in NAG. Releasing a weak electric current to stimulate selected brain areas may induce favorable effects on the autonomic control to the heart in highly fit subjects.  相似文献   

6.

Introduction

Repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are non-invasive techniques able to induce changes in corticospinal excitability. In this study, we combined rTMS and tDCS to understand possible interactions between the two techniques, and investigate whether they are polarity dependent.

Materials and methods

Eleven healthy subjects participated in the study. Each patient underwent both anodal and cathodal conditioning tDCS in two separate sessions; brief 5 Hz-rTMS trains were delivered over the primary motor cortex at an intensity of 120% the resting motor threshold (RMT) before tDCS (T0), immediately after (T1) and 10 min after current offset (T2). We then analysed changes induced by cathodal and anodal tDCS on TMS variables.

Results

Our results showed that in both anodal and cathodal sessions, the motor evoked potential (MEP) amplitude increased significantly in size before stimulation (T0). Conversely, after anodal tDCS, the MEP facilitation measured at T1 and T2 was absent, whereas after cathodal tDCS it was preserved.

Conclusions

Our findings provide new direct neurophysiological evidence that tDCS influences primary motor cortex excitability.  相似文献   

7.
The everyday experience of stepping onto a stationary escalator causes a stumble, despite our full awareness that the escalator is broken. In the laboratory, this "broken escalator" phenomenon is reproduced when subjects step onto an obviously stationary platform (AFTER trials) that was previously experienced as moving (MOVING trials) and attests to a process of motor adaptation. Given the critical role of M1 in upper limb motor adaptation and the potential for transcranial direct current stimulation (tDCS) to increase cortical excitability, we hypothesized that anodal tDCS over leg M1 and premotor cortices would increase the size and duration of the locomotor aftereffect. Thirty healthy volunteers received either sham or real tDCS (anodal bihemispheric tDCS; 2 mA for 15 min at rest) to induce excitatory effects over the primary motor and premotor cortex before walking onto the moving platform. The real tDCS group, compared with sham, displayed larger trunk sway and increased gait velocity in the first AFTER trial and a persistence of the trunk sway aftereffect into the second AFTER trial. We also used transcranial magnetic stimulation to probe changes in cortical leg excitability using different electrode montages and eyeblink conditioning, before and after tDCS, as well as simulating the current flow of tDCS on the human brain using a computational model of these different tDCS montages. Our data show that anodal tDCS induces excitability changes in lower limb motor cortex with resultant enhancement of locomotor adaptation aftereffects. These findings might encourage the use of tDCS over leg motor and premotor regions to improve locomotor control in patients with neurological gait disorders.  相似文献   

8.
Human subjects can quickly adapt and maintain performance of arm reaching when experiencing novel physical environments such as robot-induced velocity-dependent force fields. Using anodal transcranial direct current stimulation (tDCS) this study showed that the primary motor cortex may play a role in motor adaptation of this sort. Subjects performed arm reaching movement trials in three phases: in a null force field (baseline), in a velocity-dependent force field (adaptation; 25 N s m−1) and once again in a null force field (de-adaptation). Active or sham tDCS was directed to the motor cortex representation of biceps brachii muscle during the adaptation phase of the motor learning protocol. During the adaptation phase, the global error in arm reaching (summed error from an ideal trajectory) was similar in both tDCS conditions. However, active tDCS induced a significantly greater global reaching (overshoot) error during the early stage of de-adaptation compared to the sham tDCS condition. The overshoot error may be representative of the development of a greater predictive movement to overcome the expected imposed force. An estimate of the predictive, initial movement trajectory (signed error in the first 150 ms of movement) was significantly augmented during the adaptation phase with active tDCS compared to sham tDCS. Furthermore, this increase was linearly related to the change of the overshoot summed error in the de-adaptation process. Together the results suggest that anodal tDCS augments the development of an internal model of the novel adapted movement and suggests that the primary motor cortex is involved in adaptation of reaching movements of healthy human subjects.  相似文献   

9.
Transcranial direct current stimulation (tDCS) can modulate motor cortex excitability in the human brain. We attempted to demonstrate the cortical stimulation effect of tDCS on the primary motor cortex (M1) using functional MRI (fMRI). An fMRI study was performed for 11 right-handed healthy subjects at 1.5 T. Anodal tDCS was applied to the scalp over the central knob of the M1 in the left hemisphere. A constant current with an intensity of 1.0 mA was applied. The total fMRI paradigm consisted of three sessions with a 5-min resting period between each session. Each session consisted of five successive phases (resting-tDCS-tDCS-tDCS-tDCS), and each of the phases was performed for 21s. Our findings revealed that no cortical activation was detected in any of the stimulation phases except the fourth tDCS phase. In the result of group analysis for the fourth tDCS phase, the average map indicated that the central knob of the left primary motor cortex was activated. In addition, there were activations on the left supplementary motor cortex and the right posterior parietal cortex. We demonstrated that tDCS has a direct stimulation effect on the underlying cortex. It seems that tDCS is a useful modality for stimulating a target cortical region.  相似文献   

10.
Previous studies have claimed that weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex that can be more pronounced than cortical modulation induced by transcranial magnetic stimulation, but there are no studies that have evaluated the effects of tDCS on working memory. Our aim was to determine whether anodal transcranial direct current stimulation, which enhances brain cortical excitability and activity, would modify performance in a sequential-letter working memory task when administered to the dorsolateral prefrontal cortex (DLPFC). Fifteen subjects underwent a three-back working memory task based on letters. This task was performed during sham and anodal stimulation applied over the left DLPFC. Moreover seven of these subjects performed the same task, but with inverse polarity (cathodal stimulation of the left DLPFC) and anodal stimulation of the primary motor cortex (M1). Our results indicate that only anodal stimulation of the left prefrontal cortex, but not cathodal stimulation of left DLPFC or anodal stimulation of M1, increases the accuracy of the task performance when compared to sham stimulation of the same area. This accuracy enhancement during active stimulation cannot be accounted for by slowed responses, as response times were not changed by stimulation. Our results indicate that left prefrontal anodal stimulation leads to an enhancement of working memory performance. Furthermore, this effect depends on the stimulation polarity and is specific to the site of stimulation. This result may be helpful to develop future interventions aiming at clinical benefits.Felipe Fregni and Paulo S. Boggio contributed equally to this work.  相似文献   

11.
Transcranial direct current stimulation (tDCS) of the human cerebral cortex modulates cortical excitability noninvasively in a polarity-specific manner: anodal tDCS leads to lasting facilitation and cathodal tDCS to inhibition of motor cortex excitability. To further elucidate the underlying physiological mechanisms, we recorded corticospinal volleys evoked by single-pulse transcranial magnetic stimulation of the primary motor cortex before and after a 5-min period of anodal or cathodal tDCS in eight conscious patients who had electrodes implanted in the cervical epidural space for the control of pain. The effects of anodal tDCS were evaluated in six subjects and the effects of cathodal tDCS in five subjects. Three subjects were studied with both polarities. Anodal tDCS increased the excitability of cortical circuits generating I waves in the corticospinal system, including the earliest wave (I1 wave), whereas cathodal tDCS suppressed later I waves. The motor evoked potential (MEP) amplitude changes immediately following tDCS periods were in agreement with the effects produced on intracortical circuitry. The results deliver additional evidence that tDCS changes the excitability of cortical neurons.  相似文献   

12.
Electroencephalogram-based brain–computer interface (BCI) has been developed as a new neurorehabilitative tool for patients with severe hemiparesis. However, its application has been limited because of difficulty detecting stable brain signals from the affected hemisphere. It has been reported that transcranial direct current stimulation (tDCS) can modulate event-related desynchronization (ERD) in healthy persons. The objective of this study was to test the hypothesis that anodal tDCS could modulate ERD in patients with severe hemiparetic stroke. The participants were six patients with chronic hemiparetic stroke (mean age, 56.8 ± 9.5 years; mean time from the onset, 70.0 ± 19.6 months; Fugl-Meyer Assessment upper extremity motor score, 30.8 ± 16.5). We applied anodal tDCS (10 min, 1 mA) and sham stimulation over the affected primary motor cortex in a random order. ERD of the mu rhythm (mu ERD) with motor imagery of extension of the affected finger was assessed before and after anodal tDCS and sham stimulation. Mu ERD of the affected hemisphere increased significantly after anodal tDCS, whereas it did not change after sham stimulation. Our results show that anodal tDCS can increase mu ERD in patients with hemiparetic stroke, indicating that anodal tDCS could be used as a conditioning tool for BCI in stroke patients.  相似文献   

13.
利用脑网络研究经颅直流电刺激(tDCS)对脑功能机制和脑皮层状态的影响具有重要意义。本研究基于偏定向相干因果分析方法,构建被试在不同tDCS刺激实验范式下进行运动想象的因效性脑网络。以因效性脑网络的功能脑区通道信息流入、流出率为局部特征,平均聚类系数、全局效率为全局特征,分析研究tDCS对运动想象脑网络特征的影响。16名健康被试均为右利手。结果显示,被试执行左手运动想象下,伪刺激和阳极刺激C4后的C4通道信息流出率、流入率、平均聚类系数和全局效率分别为0.142±0.014、0.193±0.013、0.585±0.046、0.347±0.031和0.223±0.025、0.258±0.023、0.817±0.021、0.491±0.091,均存在显著性差异(P<0.05);tDCS阴极刺激C4后的C4通道信息流出率、平均聚类系数和全局效率分别为0.109±0.009、0.356±0.037和0.252±0.024,与伪刺激相比差异显著(P<0.05),C4通道信息流入率为0.184±0.008,与伪刺激相比无显著差异(P>0.05)。研究表明,阳极tDCS有效激活该脑区皮层的活跃性,使脑区信息交流更加频繁,增加脑网络的聚集程度,提高脑网络的连通性;阴极tDCS刺激则会抑制脑区皮层的活跃性,降低了脑区信息的流出,减少脑网络的聚集程度,降低脑网络的连通性。  相似文献   

14.
Anodal transcranial direct current stimulation (tDCS) of the prefrontal cortex has been repeatedly shown to improve working memory (WM). Since patients with attention deficit hyperactivity disorder (ADHD) are characterized by both underactivation of the prefrontal cortex and deficits in WM, the modulation of prefrontal activity with tDCS in ADHD patients may increase their WM performance as well as improve the activation and connectivity of the WM network. In the present study, this hypothesis was tested using a double-blind sham-controlled experimental design. After randomization, sixteen adolescents with ADHD underwent either anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC, 1 mA, 20 min) or sham stimulation with simultaneous fMRI during n-back WM task. Both in one-back and two-back conditions, tDCS led to a greater activation (compared with sham stimulation) of the left DLPFC (under the electrode), left premotor cortex, left supplementary motor cortex, and precuneus. The effects of tDCS were long-lasting and influenced resting state functional connectivity even 20 min after the stimulation, with patterns of strengthened DLPFC connectivity after tDCS outlining the WM network. In summary, anodal tDCS caused increased neuronal activation and connectivity, not only in the brain area under the stimulating electrode (i.e. left DLPFC) but also in other, more remote brain regions. Because of moderate behavioral effects of tDCS, the significance of this technique for ADHD treatment has to be investigated in further studies.  相似文献   

15.
Pain is a multidimensional experience with sensory-discriminative, cognitive-evaluative and affective-motivational components. Emotional factors such as unpleasantness or anxiety are known to have influence on pain in humans. The aim of this single-blinded, cross over study was to evaluate the effects of transcranial direct current stimulation (tDCS) on emotional aspects of pain in pain alleviation. Fifteen subjects (5 females, 10 males) volunteered to participate in this study. In an oddball paradigm, three categories of 20 pictures (unpleasant, neutral, and pleasant) served as rare target pictures from the International Affective Picture System (IAPS). The power of the delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–25 Hz), and gamma (30–40 Hz) frequency bands in the three categories were measured using electroencephalography during an oddball paradigm at pre- and post-anodal or sham tDCS above the left dorsolateral prefrontal cortex (DLPFC). Results showed that the beta band power was significantly increased, and the alpha band power was significantly decreased during unpleasant pictures after anodal tDCS compared with sham tDCS. Furthermore, regarding unpleasant pictures, subjective reports of Self Assessment Manikin (SAM) for emotional valence after anodal tDCS showed a significant decrease of unpleasantness. Therefore, emotional aspects of pain may be effectively alleviated by tDCS of the left DLPFC as was shown not only by subjective evaluation, but also by objective observation of cerebral neural activity. This processing may be mediated by facilitation of the descending pain inhibitory system through enhancing neural activity of the left DLPFC.  相似文献   

16.
Transcranial direct current stimulation (tDCS), a technique for central neuromodulation, has been recently proposed as possible treatment in several neurological and psychiatric diseases. Although shifts on focal brain excitability have been proposed to explain the clinical effects of tDCS, how tDCS-induced functional changes influence cortical interneurones is still largely unknown. The assessment of short latency afferent inhibition (SLAI) of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS), provides the opportunity to test non-invasively interneuronal cholinergic circuits in the human motor cortex. The aim of the present study was to assess whether anodal tDCS can modulate interneuronal circuits involved in SLAI. Resting motor threshold (RMT), amplitude of unconditioned MEPs and SLAI were assessed in the dominant hemisphere of 12 healthy subjects (aged 21-37) before and after anodal tDCS (primary motor cortex, 13min, 1mA). SLAI was assessed delivering electrical conditioning stimuli to the median nerve at the wrist prior to test TMS given at the interstimulus interval (ISI) of 2ms. Whereas RMT and the amplitude of unconditioned MEPs did not change after anodal tDCS, SLAI significantly increased. In conclusion, anodal tDCS-induced effects depend also on the modulation of cortical interneuronal circuits. The enhancement of cortical cholinergic activity assessed by SLAI could be an important mechanism explaining anodal tDCS action in several pathological conditions.  相似文献   

17.
Recent brain functional magnetic resonance imaging (fMRI) studies have shown that chronic back pain (CBP) alters brain dynamics beyond the feeling of pain. In particular, the response of the brain default mode network (DMN) during an attention task was found abnormal. In the present work similar alterations are demonstrated for spontaneous resting patterns of fMRI brain activity over a population of CBP patients (n = 12, 29–67 years old, mean = 51.2). Results show abnormal correlations of three out of four highly connected sites of the DMN with bilateral insular cortex and regions in the middle frontal gyrus (p < 0.05), in comparison with a control group of healthy subjects (n = 20, 21–60 years old, mean = 38.4). The alterations were confirmed by the calculation of triggered averages, which demonstrated increased coactivation of the DMN and the former regions. These findings demonstrate that CBP disrupts normal activity in the DMN even during the brain resting state, highlighting the impact of enduring pain over brain structure and function.  相似文献   

18.

Background and aims

Postural reactions are associated with changes in the excitability of the motor system. In the present study we investigated the presence of neurophysiological changes of motor cortical areas targeting muscles of the inferior limbs following treatment with a physiotherapy technique aimed to treat postural dysfunctions by stretching postural muscles, global postural reeducation (GPR).

Methods

Twenty healthy subjects were evaluated with paired-transcranial magnetic stimulation (TMS) of the motor cortex and recording of motor evoked potentials (MEPs) from peripheral muscles of the inferior limb before and after two GPR manoeuvres applied in different experiments (1 and 2).

Results

The effects of GPR were posture- and task-specific: indeed, a GPR manoeuvre applied in standing subjects increased inhibition in cortical areas controlling flexor muscles (Biceps Femoris: p < 0.05) while increasing the excitation of cortical areas controlling extensor muscles (Tibialis Anterior: p < 0.05). On the other hand, following a GPR manoeuvre applied in subjects in supine position, increased inhibition in cortical areas controlling flexor muscles (Biceps Femoris and Soleus) was not paralleled by excitation of extensor ones (F = 12.2; p = 0.005).

Conclusions

These findings provide a neurophysiological basis to the clinical benefits associated to physiotherapy and suggest potential applications of treatments based on postural changes on motor cortical disorders.  相似文献   

19.
Convergent findings point to a left-sided specialization for the representation of learned actions in right-handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill learning. In the present study, we explored this question by comparing the effects of anodal transcranial direct current stimulation (tDCS) over either left or right motor cortex (M1) on motor skill learning in either hand, using a tDCS montage to better isolate stimulation to one hemisphere. Results were compared with those previously found with a montage more commonly used in the field. Six groups trained for three sessions on a visually guided sequential pinch force modulation task with their right or left hand and received right M1, left M1, or sham tDCS. A linear mixed-model analysis for motor skill showed a significant main effect for stimulation group (left M1, right M1, sham) but not for hand (right, left) or their interaction. Left M1 tDCS induced significantly greater skill learning than sham when hand data were combined, a result consistent not only with the hypothesized left hemisphere specialization for motor skill learning but also with possible increased left M1 responsiveness to tDCS. The unihemispheric montage effect size was one-half that of the more common montage, and subsequent power analysis indicated that 75 subjects per group would be needed to detect differences seen with only 12 subjects with the customary bihemispheric montage.  相似文献   

20.
The aim of this study was to examine whether transcranial direct current stimulation (tDCS) of the dorsolateral prefrontal cortex (DLPFC) enhances pain inhibition by improving working memory (WM). Forty healthy volunteers participated in two tDCS sessions. Pain was evoked by electrical stimulation at the ankle. Participants performed an n-back task (0-back and 2-back). The experimental protocol comprised five counterbalanced conditions (0-back, 2-back, pain, 0-back with pain and 2-back with pain) that were performed twice (pre-tDCS baseline and during tDCS). Compared with the pre-tDCS baseline values, anodal tDCS decreased response times for the 2-back condition (p < 0.01) but not for the 0-back condition (p > 0.5). Anodal tDCS also decreased pain ratings marginally in the 2-back with pain condition, but not the 0-back with pain condition (p = 0.052 and p > 0.2, respectively). No effect was produced by sham tDCS for any condition (p > 0.2). These results indicate that tDCS of the left DLPFC may enhance pain inhibition by improving WM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号