首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tailless (Tlx) gene encodes an orphan nuclear receptor that is expressed by neural stem/progenitor cells in the adult brain of the subventricular zone (SVZ) and the dentate gyrus (DG). The function of Tlx in neural stem cells of the adult SVZ remains largely unknown. We show here that in the SVZ of the adult brain Tlx is exclusively expressed in astrocyte-like B cells. An inducible mutation of the Tlx gene in the adult brain leads to complete loss of SVZ neurogenesis. Furthermore, analysis indicates that Tlx is required for the transition from radial glial cells to astrocyte-like neural stem cells. These findings demonstrate the crucial role of Tlx in the generation and maintenance of NSCs in the adult SVZ in vivo.  相似文献   

2.
The rostral migratory stream (RMS) is the major pathway by which progenitor cells migrate from the subventricular zone (SVZ) to the olfactory bulb (OB) in rodents, rabbits and primates. However, the existence of an RMS within the adult human brain has been elusive. Immunohistochemical studies utilising cell-type specific markers for early progenitor cells (CD133), proliferating cells (PCNA), astrocytes and type B cells (GFAP) and migrating neuroblasts (PSA-NCAM), reveal that the adult human RMS is organized into layers containing glial cells, proliferating cells and neuroblasts. In addition, the RMS is arranged around a remnant of the ventricular cavity that extends from the SVZ to the OB as seen by immunohistological staining analysis and electron microscopy, showing the presence of basal bodies and a typical 9 + 2 arrangement of tubulin in tufts of cilia from all levels of the RMS. Overall, these findings suggest that a pathway of migratory progenitor cells similar to that seen in other mammals is present within the adult human brain and that this pathway could provide for neurogenesis in the human forebrain. These findings contribute to the scientific understanding of adult neurogenesis and establish the detailed cytoarchitecture of this novel neurogenic niche in the human brain.  相似文献   

3.
4.
Tanaka Y  Tanaka R  Liu M  Hattori N  Urabe T 《Neuroscience》2010,171(4):1367-1376
Evidence suggests that neurogenesis occurs in the adult mammalian brain, and that various stimuli, for example, ischemia/hypoxia, enhance the generation of neural progenitor cells in the subventricular zone (SVZ) and their migration into the olfactory bulb. In a mouse stroke model, focal ischemia results in activation of neural progenitor cells followed by their migration into the ischemic lesion. The present study assessed the in vivo effects of cilostazol, a type 3 phosphodiesterase inhibitor known to activate the cAMP-responsive element binding protein (CREB) signaling, on neurogenesis in the ipsilateral SVZ and peri-infarct area in a mouse model of transient middle cerebral artery occlusion. Mice were divided into sham operated (n=12), vehicle- (n=18) and cilostazol-treated (n=18) groups. Sections stained for 5-bromodeoxyuridine (BrdU) and several neuronal and a glial markers were analyzed at post-ischemia days 1, 3 and 7. Cilostazol reduced brain ischemic volume (P<0.05) and induced earlier recovery of neurologic deficit (P<0.05). Cilostazol significantly increased the density of BrdU-positive newly-formed cells in the SVZ compared with the vehicle group without ischemia. Increased density of doublecortin (DCX)-positive and BrdU/DCX-double positive neural progenitor cells was noted in the ipsilateral SVZ and peri-infarct area at 3 and 7 days after focal ischemia compared with the vehicle group (P<0.05). Cilostazol increased DCX-positive phosphorylated CREB (pCREB)-expressing neural progenitor cells, and increased brain derived neurotrophic factor (BDNF)-expressing astrocytes in the ipsilateral SVZ and peri-infarct area. The results indicated that cilostazol enhanced neural progenitor cell generation in both ipsilateral SVZ and peri-infarct area through CREB-mediated signaling pathway after focal ischemia.  相似文献   

5.
Reelin调节小鼠喙端迁移流发育的形态学观察   总被引:1,自引:1,他引:0  
目的 探讨小鼠室管膜下区(SVZ)的神经干细胞孵育成熟以及沿喙端迁移流(RMS)切线迁移至嗅球(OB)的过程,尤其是Reelin对细胞迁移和细胞分化的影响。方法 选用野生型(WT)小鼠50只和纯合reeler小鼠23只胚胎16 d至生后90 d的各年龄点小鼠大脑,应用尼氏染色、免疫荧光染色、墨汁灌注及电子显微镜技术标记并观察小鼠大脑的神经干细胞、胶质细胞以及血管发生之间的相互关系,比较两组小鼠RMS的发育情况。结果 胚胎后期至出生早期,在SVZ分布着大量的胶质细胞、神经干细胞和血管网,它们相互联系构成SVZ神经干细胞孵育的血管龛(niche);神经干细胞在niche中孵育成熟后可以进入RMS,切线迁移至嗅球,到达嗅球后转变为放射状迁移,分化为各种神经元整合入嗅球;神经干细胞在RMS的迁移过程中,放射状胶质细胞协同血管为其提供支架引导;reeler小鼠也能形成RMS,但形态有所改变,主要在嗅球处,神经干细胞失去规律排列,呈散乱分布。结论 室管膜下区的niche是神经干细胞的主要来源;血管协同放射状胶质细胞为RMS中的神经干细胞提供支架引导作用;作为调节细胞迁移的重要信号,Reelin可以通过其交互作用影响血管的发育,Reelin缺失导致嗅球处神经干细胞放射状迁移的转变障碍。  相似文献   

6.
The main olfactory bulb (MOB) is the first relay on the olfactory sensory pathway and the target of the neural progenitor cells generated in the subventricular zone (SVZ) lining the lateral ventricles and which migrate along the rostral extension of the SVZ, also called the rostral migratory stream (RMS). Within the MOB, the neuroblasts differentiate into granular and periglomerular interneurons. A reduction in the number of granule cells during sensory deprivation suggests that neurogenesis may be influenced by afferent activity. Here, we show that unilateral sensory deafferentation of the MOB by axotomy of the olfactory receptor neurons increases apoptotic cell death in the SVZ and along the rostro-caudal extent of the RMS. The vast majority of dying cells in the RMS are migrating neuroblasts as indicated by double Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling/PSA-NCAM labeling. Counting bromodeoxyuridine-labeled cells in animals killed immediately or 4 days after tracer administration showed a bilateral increase in proliferation in the SVZ and RMS which was balanced by cell death on the operated side. These data suggest that olfactory inputs are required for the survival of newborn neural progenitors. The greatest enhancement in proliferation occurred in the extension of the RMS located in the MOB, revealing a population of local precursors mitotically stimulated following axotomy. Together, these findings indicate that olfactory inputs may strongly modulate the balance between neurogenesis and apoptosis in the SVZ and RMS and provide a model for further investigation of the underlying molecular mechanisms of this activity-dependent neuronal plasticity.  相似文献   

7.
Precursor cells have been shown to be affected by oxidative stress, in vivo and vitro, but little is known about the expression of antioxidant mechanisms in neuronal/glial differentiation. We have characterized the expression of Cu/Zn superoxide dismutase (Cu/Zn SOD), one of the main antioxidant proteins involved in the breakdown of superoxide, in the immature rat dorsolateral subventricular zone (SVZ), rostral migratory stream (RMS) and hippocampal subgranular zone (SGZ). Progenitor cells were identified immunohistochemically on cryostat sections by 5'Bromodeoxyuridine (BrdU) incorporation and expressing cells were further characterized using double labeling for progenitor markers. In the SVZ, only a subpopulation of BrdU+ cells, mostly found in the medial SVZ, expressed Cu/Zn SOD. These cells were mostly nestin+ and some were also vimentin+. In contrast, in the lateral SVZ few Cu/Zn SOD+/BrdU+ cells were found. These were primarily nestin+, vimentin-, showed some PSA-NCAM expression, but only a few were NG2+. In the RMS and SGZ virtually all BrdU+ progenitors were Cu/Zn SOD+ and expressed nestin and vimentin. Some RMS cells were also PSA-NCAM+. These findings show a heterogeneous expression of Cu/Zn SOD in restricted cell types in the germinative zones and suggest a role for antioxidant Cu/Zn SOD in progenitor cells of the immature rat brain.  相似文献   

8.
The adult mammalian brain contains neural stem cells that are capable of generating new neurons and glia over the course of a lifetime. Neural stem cells reside in 2 germinal niches, the subventricular zone (SVZ) and the dentate gyrus subgranular zone. These primary progenitors have been identified in their niche in vivo; these cells have characteristics of astrocytes. Recent studies have shown that adult SVZ stem cells are derived from radial glia, the stem cells in the developing brain, which in turn are derived from the neuroepithelum, the earliest brain progenitors. Thus, SVZ stem cells are a continuum from neuroepithelium to radial glia to astrocytes, and are contained within what has been considered the lineage for astrocytes. However, it seems that only a small subset of the astrocytes present in the adult brain have stem cell properties. Recent findings have shown that SVZ stem cell astrocytes express a receptor for platelet-derived growth factor (PDGF), suggesting that the ability to respond to specific growth factor stimuli, such as PDGF, epidermal growth factor and others, may be unique to these stem cell astrocytes. Intriguingly, activation of these same signaling pathways is widely implicated in brain tumor formation. Since the adult brain has very few proliferating cells capable of accumulating the numerous mutations required for transformation, the adult neural stem and/or progenitor cells may be likely candidates for the brain tumor cell of origin. Indeed, activation of the PDGF or epidermal growth factor pathways in adult neural stem or progenitor cells confers tumor-like properties on these cells, lending support to this hypothesis.  相似文献   

9.
Neurogenesis occurs in adult brain neural progenitor cells (NPCs) located in the subventricular zone (SVZ) of the lateral ventricle and the subgrandular zone of the hippocampal dentate gyrus. After ischemic stroke, NPCs in the SVZ proliferate and migrate towards the ischemic boundary region to replenish damaged neurons. During development, the Wnt pathways contribute to stem cell maintenance and promote neurogenesis. We hypothesized that stroke up regulates Wnt family genes in SVZ cells. Non-ischemic and ischemic cultured SVZ cells and a single population of non-ischemic and ischemic SVZ cells isolated by laser capture microdissection (LCM) were analyzed for Wnt pathway expression using real-time RT-PCR and immunostaining. The number of neurospheres increased significantly (p<0.05) in SVZ cells derived from ischemic (32+/-4.7/rat) compared with the number in non-ischemic SVZ cells (18+/-3/rat). Wnt family gene mRNA levels were detected in SVZ cells isolated from both cultured and LCM SVZ cells, however there was no up regulation between non-ischemic and ischemic SVZ cells. Immunostaining on brain sections also demonstrated no up regulation of Wnt pathway protein between ischemic and non-ischemic SVZ cells. Expression of the Wnt family genes in SVZ cells support the hypothesis that the Wnt pathway may be involved in neurogenesis in the adult brain. However, ischemia does not up regulate Wnt family gene expression.  相似文献   

10.
Perivascular instruction of cell genesis and fate in the adult brain   总被引:1,自引:0,他引:1  
Goldman SA  Chen Z 《Nature neuroscience》2011,14(11):1382-1389
The perivascular niche for neurogenesis was first reported as the co-association of newly generated neurons and their progenitors with both dividing and mitotically quiescent endothelial cells in restricted regions of the brain in adult birds and mammals alike. This review attempts to summarize our present understanding of the interaction of blood vessels with neural stem and progenitor cells, addressing both glial and neuronal progenitor cell interactions in the perivascular niche. We review the molecular interactions that are most critical to the endothelial control of stem and progenitor cell mobilization and differentiation. The focus throughout will be on defining those perivascular ligand-receptor interactions shared among these systems, as well as those that clearly differ as a function of cell type and setting, by which specificity may be achieved in the development of targeted therapeutics.  相似文献   

11.
The central nervous system (CNS) of adult mammals regenerates poorly; in vivo, neurogenesis occurs only in two restricted areas, the hippocampal subgranular zone (SGZ) and the subventricular zone (SVZ). Neurogenic potential depends on both the intrinsic properties of neural progenitors and the environment, or niche, in which progenitor cells reside. Isolation of multipotent progenitor cells from broad CNS regions suggests that the neurogenic potential of the adult CNS is dictated by local environmental cues. Here, we report that astrocytes in the neurogenic brain regions, the SGZ and SVZ, of adult mice release molecular signals, such as sonic hedgehog (Shh), that stimulate adult neural progenitors to reenter the cell cycle and generate new neurons in vitro and in vivo. Transplantation of SGZ astrocytes or application of Shh caused de novo neurogenesis from the non-neurogenic neocortex of adult mice. These findings identify a molecular target that can activate the dormant neurogenic potential from nonconventional neurogenic regions of the adult CNS and suggest a novel mechanism of neural replacement therapy for treating neurodegenerative disease and injury without transplanting exogenous cells.  相似文献   

12.
Phosphoserine phosphatase (PSP) metabolizes the conversion of l-phosphoserine to l-serine, classically known as an amino acid necessary for protein and nucleotide synthesis and more recently suggested to be involved in cell-to-cell signaling. Previously, we identified PSP as being enriched in proliferating neural progenitors and highly expressed by embryonic and hematopoietic stem cells, suggesting a general role in stem cells. Here we demonstrate that PSP is highly expressed in periventricular neural progenitors in the embryonic brain. In the adult brain, PSP expression was observed in slowly dividing or quiescent glial fibrillary acidic protein (GFAP)-positive cells and CD24-positive ependymal cells in the forebrain germinal zone adjacent to the lateral ventricle and within GFAP-positive cells of the hippocampal subgranular zone, consistent with expression in adult neural stem cells. In vitro, PSP overexpression promoted proliferation, whereas small interfering RNA-induced knockdown inhibited proliferation of neural stem cells derived from embryonic cortex and adult striatal subventricular zone. The effects of PSP knockdown were partially rescued by exogenous l-serine. These data support a role for PSP in neural stem cell proliferation and suggest that in the adult periventricular germinal zones, PSP may regulate signaling between neural stem cells and other cells within the stem cell niche. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

13.
Subventricular zone (SVZ)–derived adult neurospheres express two ectonucleotidases, nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) and tissue non-specific alkaline phosphatase (TNAP). Agonists of the nucleotide receptors P2Y1 and P2Y2 as well as adenosine augment growth factor–mediated progenitor cell proliferation. NTPDase2 converts ATP and UTP to ADP and UDP, respectively, which are all P2Y receptor agonists. TNAP hydrolyzes nucleoside triphosphates and diphosphates and produces the P1 receptor agonist adenosine. In the SVZ, NTPDase2 is specifically expressed by type B cells. In order to further scrutinize the association of key molecules of the purinergic signaling pathway with neurogenic regions, we analyzed the expression of TNAP at the lateral ventricles of the adult and developing mouse brain. In the adult brain, TNAP was expressed by type B, type A and at least subsets of type C cells of the SVZ and throughout the rostral migratory stream. Almost 100% of the proliferating, Ki-67-positive cells of the adult SVZ stained for TNAP, supporting the notion of a ubiquitous association of TNAP with SVZ progenitors. In contrast, NTPDase2-positive progenitors of the dentate gyrus were TNAP-negative. Essentially all cells of the telencephalic vesicle at embryonic day (E) 14 revealed TNAP activity, including doublecortin-positive neuroblasts. During further embryonic development, enhanced TNAP activity became restricted to cells of the ventricular and SVZ. In contrast to TNAP, NTPDase2 was first expressed in the SVZ perinatally, in association with TNAP-positive SVZ border cells. During later development, NTPDase2-positive cells disappeared from the ventricular surface and began to form sheaths around clusters of subventricular doublecortin-positive cells, apparently transforming into type B cells. Our results identify TNAP and NTPDase2 as novel markers for subsets of progenitors in the adult and developing mouse brain. They further support the notion that signaling via extracellular nucleotides and nucleosides contributes to embryonic and adult neurogenesis.  相似文献   

14.
Mammalian neurogenesis has been demonstrated in the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. However, the low rate and the restricted long term survival of newborn cells limit the restorative ability of this process. Adult bone marrow derived mesenchymal stem cells (MSCs) have been extensively studied due to their wide therapeutic potential. The aim of this study was to determine if MSC transplantation to the normally restrictive SVZ of mice housed in an enriched environment stimulates endogenous neurogenesis. In the presented study 30 C57BL/6 female mice were divided into 3 groups: standard environment injected with phosphate buffered saline (PBS) and enriched environment injected with either PBS or MSCs. Bromodeoxyuridine was injected for 6 days, and 3 weeks later the mice were sacrificed and the brain tissue analyzed immunohistochemically. PBS-treated mice housed in enriched cages showed augmented neurogenesis in the SGZ but not the SVZ. MSC transplantation was associated with increased proliferation and neuronal differentiation of neural progenitors within the SVZ and an increase in the proportion of the newborn neurons out of the total proliferating cells. Histological analysis confirmed the survival of a significant amount of the transplanted cells at least 3 weeks after transplantation, and the presence of brain-derived neurotrophic factor expression. To our knowledge, this is the first study to show that MSCs might interfere with the tight regulation of the SVZ, independent of the induced brain lesion.  相似文献   

15.
In adult mammals, new neurons in the subventricular zone (SVZ) of the lateral ventricle (LV) migrate tangentially through the rostral migratory stream (RMS) to the olfactory bulb (OB), where they mature into local interneurons. Using a monoclonal antibody for the beta-amyloid precursor protein (APP) (mAb 22C11), which is specific for the amino-terminal region of the secreted form of APP and recognizes all APP isoforms and APP-related proteins, immunoreactivity was detected in specific subpopulations of cells in the SVZ and RMS of the adult rat forebrain. In the SVZ, APP-like immunoreactivity was detected in the ependymal cells lining the LV and some of the subependymal cells. The latter were regarded as astrocytes, because they were positive for the glial markers, S-100 protein (S-100) and glial fibrillary acidic protein (GFAP). APP-like immunoreactive astrocytes exhibited strong labelling of the perinuclear cytoplasm and often possessed a long, fine process similar to that found with radial glia. The process extended to an APP-like immunoreactive meshwork in the RMS that consisted of cytoplasmic processes of astrocytes forming 'glial tubes'. Double-immunofluorescent labelling with a highly polysialylated neural cell adhesion molecule (PSA-NCAM) confirmed that the APP-like immunoreactive astrocytes in the SVZ and meshwork in the RMS made close contact with PSA-NCAM-immunopositive neuroblasts, suggesting an interaction between APP-containing cells and neuroblasts. This region of the adult brain is a useful in vivo model to investigate the role of APP in neurogenesis.  相似文献   

16.
In the developing brain, cell migration is a crucial process for structural organization, and is therefore highly regulated to allow the correct formation of complex networks, wiring neurons, and glia. In the early postnatal brain, late developmental processes such as the production and migration of astrocyte and oligodendrocyte progenitors still occur. Although the brain is completely formed and structured few weeks after birth, it maintains a degree of plasticity throughout life, including axonal remodeling, synaptogenesis, but also neural cell birth, migration and integration. The subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus are the two main neurogenic niches in the adult brain. Neural stem cells reside in these structures and produce progenitors that migrate toward their ultimate location: the olfactory bulb and granular cell layer of the DG respectively. The aim of this review is to synthesize the increasing information concerning the organization, regulation and function of cell migration in a mature brain. In a normal brain, proteins involved in cell–cell or cell–matrix interactions together with secreted proteins acting as chemoattractant or chemorepellant play key roles in the regulation of neural progenitor cell migration. In addition, recent data suggest that gliomas arise from the transformation of neural stem cells or progenitor cells and that glioma cell infiltration recapitulates key aspects of glial progenitor migration. Thus, we will consider glioma migration in the context of progenitor migration. Finally, many observations show that brain lesions and neurological diseases trigger neural stem/progenitor cell activation and migration toward altered structures. The factors involved in such cell migration/recruitment are just beginning to be understood. Inflammation which has long been considered as thoroughly disastrous for brain repair is now known to produce some positive effects on stem/progenitor cell recruitment via the regulation of growth factor signaling and the secretion of a number of chemoattractant cytokines. This knowledge is crucial for the development of new therapeutic strategies. One of these strategies could consist in increasing the mobilization of endogenous progenitor cells that could replace lost cells and improve functional recovery.  相似文献   

17.
目的 研究生后不同日龄小鼠喙端迁移流(RMS)的发育,神经干细胞增殖和凋亡的规律。方法 利用Caspase-8免疫荧光标记法和5’-溴脱氧尿嘧啶核苷(BrdU)法,对小鼠RMS内的神经干细胞增殖和凋亡进行研究(n =92)。结果 生后早期小鼠脑内,尤其是室管下区(SVZ)和RMS,存在大量的增殖细胞。随着小鼠年龄的增加,脑内干细胞逐渐减少,到成年,大脑皮质几乎见不到增殖的神经干细胞,但在SVZ和RMS仍可以看到许多增殖的神经干细胞。在RMS,神经干细胞增殖的同时伴随着细胞凋亡,干细胞的增殖与凋亡存在着正相关关系。结论 RMS的神经干细胞增殖与凋亡有重要的生理意义,通过细胞凋亡,RMS可以调节神经干细胞向嗅球迁移的数量,也可以调节干细胞向颗粒细胞分化。  相似文献   

18.
Vascular endothelial growth factor receptor (VEGFR)-3, a receptor for VEGF-C and VEGF-D, has recently been proposed to be involved in adult hippocampal neurogenesis in response to cerebral ischemia. To identify whether VEGFR-3 is involved in poststroke neurogenesis, we investigated the temporal regulation of VEGFR-3 mRNA expression in the subventricular zone (SVZ) of rats with transient focal cerebral ischemia by in situ hybridization analysis, and identified the phenotypes of cells expressing VEGFR-3 by double- and triple-labeling techniques. In sham-operated rats, hybridization signals for VEGFR-3 mRNA were evident at a weaker intensity in the SVZ of the lateral ventricle. VEGFR-3 was transiently increased in the dorsolateral SVZ of the infarcted hemisphere on days 3–7 after reperfusion. Almost all VEGFR-3-expressing cells in the ipsilateral SVZ were colabeled with glial fibrillary acidic protein and the neural progenitor marker nestin, and were highly proliferative. In addition, a subset of VEGFR-3-labeled cells in the ipsilateral SVZ expressed the immature neuronal marker, polysialic acid-neural cell adhesion molecule. These data indicate that VEGFR-3 is upregulated in SVZ astrocytes and immature neurons after focal ischemia, suggesting that VEGFR-3 might mediate the adult neurogenesis after ischemic stroke.  相似文献   

19.
20.
The functions of the presenilin-1 (PS-1) protein remain largely unknown. In adult brain PS-1 is expressed principally in neurons. However during development PS-1 is expressed more widely including in embryonic neural progenitors. To determine if PS-1 is expressed in neural progenitors in adult hippocampus we used bromodeoxyuridine (BrdU) labeling combined with immunostaining for BrdU, PS-1 and markers of neuronal or glial differentiation. Most BrdU labeled cells also expressed PS-1 at a time when few BrdU labeled cells expressed the early neuronal markers beta-III tubulin or TOAD-64 and none expressed mature neuronal (NeuN or calbindin) or astrocytic (GFAP) markers. Cells expressing PS-1 and the neural progenitor marker nestin were also found. Thus PS-1 is expressed in neural progenitor cells in adult hippocampus implying its possible role in neurogenesis in adult brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号