首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work explored the antinociceptive effects of the flavonoid myricitrin in models of overt nociception triggered by intraplantar injection of chemical algogens into the hind paw of mice. The nociception induced by bradykinin (3 nmol/paw i.pl.) was abolished by prior treatment with myricitrin (10–100 mg/kg, i.p.) with ID50 of 12.4 (8.5–18.1) mg/kg. In sharp contrast, myricitrin failed to affect the nociception elicited by prostaglandin E2 (3 nmol/paw i.pl.). Cinnamaldehyde (10 nmol/paw i.pl.)-induced nociception was reduced by myricitrin (100 mg/kg, i.p.) and camphor (7.6 mg/kg, s.c.) in 43 ± 10% and 57 ± 8%, respectively. Myricitrin (30–100 mg/kg, i.p.) and amiloride (100 mg/kg, i.p.) inhibited nociceptive responses induced by acidified saline (pH 5/paw i.pl.), with ID50 of 22.0 (16.1–30.0) mg/kg and inhibition of 71 ± 6% and 64 ± 5%, respectively. Moreover, myricitrin (10–30 mg/kg, i.p.) and ruthenium red (3 mg/kg, i.p.) significantly reduced the nociception induced by menthol (1.2 μmol/paw i.pl.) with the mean ID50 of 2.4 (1.5–3.7) mg/kg and inhibition of 95 ± 3% and 51 ± 7%, respectively. In addition, myricitrin administration (30 and 100 mg/kg, i.p.) markedly reduced menthol-induced mechanical allodynia. However, myricitrin (100 mg/kg, i.p.) prevented (only in time of 60 min) cold allodynia induced by menthol. Collectively, the present results extend prior data and show that myricitrin promotes potent antinociception, an action that is likely mediated by an inhibition of the activation of nociceptors by bradykinin and TRPs agonist (i.e. cinnamaldehyde, acidified saline and menthol), probably via inhibition of PKC pathways. Thus, myricitrin could constitute an attractive molecule of interest for the development of new analgesic drugs.  相似文献   

2.
Endothelin-1 (ET-1) plays an important role in peripheral pain processing. However, the mechanisms of the nociceptive action of ET-1 have not been fully elucidated. In this study, we investigated the contribution of transient receptor potential vanilloid subfamily 1 (TRPV1) to ET-1-induced thermal hyperalgesia. Intraplantar ET-1-induced thermal hyperalgesia was examined by assessing the paw withdrawal latency to noxious heat stimuli. In electrophysiological study, whole-cell patch-clamp recordings were performed to investigate the interaction of ET-1 and TRPV1 using human embryonic kidney 293 (HEK293) cells expressing endothelin type A receptor (ET(A)) and TRPV1. Intraplantar ET-1 (3, 10 and 30 pmol) produced thermal hyperalgesia in a dose-dependent manner. Thermal hyperalgesia was attenuated by the inhibition of ET(A) and protein kinase C (PKC) but not that of ET(B). ET-1-induced thermal hyperalgesia was significantly attenuated in TRPV1-deficient mice compared with that in wild-type mice. In voltage-clamp experiments, 10 nM capsaicin evoked small inward currents in HEK293 cells expressing TRPV1 and ET(A). In the presence of ET-1, capsaicin produced much larger current responses (P<0.05). Mutation at PKC-specific TRPV1 phosphorylation sites (S800A/S502A) and PKC inhibitors inhibited the potentiating effect of ET-1. In addition, ET-1 decreased the temperature threshold for TRPV1 activation in a PKC-dependent manner (from 41.0+/-0.4 degrees C to 32.6+/-0.6 degrees C). In addition, Western blot analysis was also performed to confirm ET-1-induced phosphorylation of TRPV1. Incubation of ET-1 and intraplantar ET-1 evoked phosphorylation of TRPV1 in HEK293 cells expressing TRPV1 and ET(A) and the skin, respectively. These results suggest that the sensitization of TRPV1 activity through an ET(A)-PKC pathway contributes to ET-1-induced thermal hyperalgesia.  相似文献   

3.
In the spinal dorsal horn, TRPA1 ion channels on central terminals of peptidergic primary afferent nerve fibers regulate transmission to glutamatergic and GABAergic interneurons. Here we determine the cutaneous anti-inflammatory effect of a spinally administered TRPA1 channel antagonist to test the hypothesis that spinal TRPA1 channels contribute to cutaneous neurogenic inflammation induced by sustained noxious stimulation. According to the hypothesis, spinal TRPA1 channels facilitate transmission of injury discharge to GABAergic interneurons that induce a dorsal root reflex, which results in increased release of proinflammatory compounds in the skin. Intraplantar capsaicin, a TRPV1 channel agonist, was used to induce neurogenic inflammation in anesthetized rats that were pretreated intrathecally (i.t.), intraplantarly (i.pl.) or intraperitoneally (i.p.) with vehicle or Chembridge-5861526 (CHEM, a TRPA1 channel antagonist). For assessment of neurogenic inflammation, the capsaicin-induced increase of cutaneous blood flow was determined adjacent to the capsaicin-treated skin site with a laser Doppler flowmeter. Capsaicin-induced a marked increase in cutaneous blood flow. The capsaicin-induced blood flow increase was attenuated in a dose-related fashion by i.t. pretreatment with CHEM (3-10 μg). Pretreatment with CHEM at a dose of 3 mg/kg i.p. or 20 μg i.pl. failed to attenuate the capsaicin-induced increase of blood flow. The results indicate that spinal TRPA1 channels contribute to cutaneous neurogenic inflammation adjacent to the injury site, probably by facilitating a dorsal root reflex in peptidergic primary afferent nerve fibers.  相似文献   

4.
The aim of this study was to investigate the existence of functional TRPV1 receptor by substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc), which is implicated in the processing of nociceptive information from orofacial regions. The direct membrane effects of a TRPV1 receptor agonist, capsaicin, were examined by gramicidin-perforated patch clamp recording using a trigeminal brainstem slice preparation containing Vc from immature mice. Capsaicin (1–2 μM) induced a membrane depolarization in 58 out of 71 SG neurons tested (82%). Capsaicin-induced depolarization was maintained in 20 out of 32 (63%) SG neurons in the presence of amino acid and voltage-dependent sodium channel blockers (10 μM CNQX, 20 μM AP-5, 0.5 μM TTX, 50 μM picrotoxin and 2 μM strychnine). In addition, capsaicin-induced depolarization was maintained in the presence of L-732,138 (1 μM), an NK1 receptor antagonist, in 14 out of 17 neurons (82%) tested. The capsaicin-induced depolarizing effects were blocked by a TRPV1 receptor antagonist, capsazepine (10 μM). These results indicate that a sub-population of SG neurons in the Vc express functional TRPV1 receptors, and that capsaicin can directly activate the TRPV1 receptor on the postsynaptic membrane of SG neurons.  相似文献   

5.
N-arachidonoyldopamine (NADA) is an endogenous molecule found in the nervous system that is capable of acting as a vanilloid agonist via the TRPV1 receptor and as a cannabinoid agonist via the CB1 receptor. Using anesthetized rats, we investigated the neural correlates of behavioral thermal hyperalgesia produced by NADA. Extracellular single cell electrophysiology was conducted to assess the effects of peripheral administration of NADA (i.pl.) on nociceptive neurons in the dorsal horn of the spinal cord. Injection of NADA in the hindpaw caused increased spontaneous discharge of spinal nociceptive neurons compared with injection of vehicle. The neurons also displayed magnified responses to application of thermal stimuli ranging from 34 to 52 degrees C. NADA-induced neural hypersensitivity was dose dependent (EC50 = 1.55 microg) and TRPV1 dependent, as the effect was abolished by co-administration of the TRPV1 antagonist 5'-iodoresiniferatoxin (I-RTX). In contrast, co-administration of the CB1 antagonist SR 141716A did not attenuate this effect. These results suggest that the enhanced responses of spinal nociceptive neurons likely underlie the behavioral thermal hyperalgesia and implicate a possible pain-sensitizing role of endogenous NADA mediated by TRPV1 in the periphery.  相似文献   

6.
Pronociceptive response elicited by TRPA1 receptor activation in mice   总被引:1,自引:0,他引:1  
Ankyrin-repeat transient receptor potential 1 (TRPA1) is a member of the transient receptor potential (TRP) channel family and it is found in sensory neurons. In the present study, we found that TRPA1 receptor activation with allyl isothiocyanate or cinnamaldehyde caused dose-dependent spontaneous nociception when injected into the mouse hind paw. Very similar results were obtained when stimulating transient receptor potential vanilloid 1 (TRPV1) receptors with capsaicin. Pretreatment with the TRP receptor antagonist Ruthenium Red (1 nmol/paw) inhibited capsaicin-(0.1 nmol/paw) and allyl isothiocyanate-(1 nmol/paw) induced nociceptive responses. However, the nonselective TRPV1 receptor antagonist capsazepine (1 nmol/paw) and the selective TRPV1 receptor antagonist SB 366791 (1 nmol/paw) only attenuated capsaicin-induced nociception. In contrast, the intrathecal treatment with TRPA1 antisense oligodeoxynucleotide (2.5 nmol/site) and the degeneration of the subset of primary afferent fibers sensitive to capsaicin significantly reduced allyl isothiocyanate-induced nociception. Consequently to TRPA1 antisense oligodeoxynucleotide treatment there was a marked decrease of the expression of TRPA1 receptor in both sciatic nervous and spinal cord segments. Moreover, capsaicin and allyl isothiocyanate-induced nociception were not significantly changed by chemical sympathectomy produced by guanethidine. The previous degranulation of mast cells by compound 48/80 and treatment with antagonist H(1) receptor antagonist pyrilamine (400 microg/paw) both significantly inhibited the capsaicin- and allyl isothiocyanate-induced nociception. The selective NK(1) receptor antagonist N(2)-[(4R)-4-hydroxy-1-(1-methyl-1H-indol-3-yl) carbony-1-L-prolyl]-N-methyl-N-phenylmethyl-3-2-(2-naphtyl)-L-alaninamide (10 nmol/paw) reduced either capsaicin- or allyl isothiocyanate-induced nociception. Collectively, the present findings demonstrate that the TRPA1 agonist allyl isothiocyanate produces a consistent nociceptive response when injected into the mouse paw, an effect that seems to be mediated via activation of TRPA1 receptor and dependent on the capsaicin-sensitive fibers, release of histamine by mast cells and participation of tachykinins. Thus, the TRPA1 receptor has an apparently relevant role in nociceptive processes and the selective TRPA1 antagonist might possess a potential antinociceptive property.  相似文献   

7.
Capsaicin opens the TRPV1 channel, a cation channel that depolarizes and activates nociceptive neurons. Following this initial activation, neurons become desensitized to subsequent applications of capsaicin as well as to other noxious stimuli, a phenomenon attributed primarily to the entry of Ca2+ ions through the open TRPV1 channel. This ability of capsaicin to desensitize nociceptors has led to its use as an analgesic in the treatment of a variety of chronic pain states. Because treatment with capsaicin is initially quite painful, local anesthetics are sometimes used to block axonal conduction in nociceptive neurons and thus minimize pain. However, local anesthetics might also block TRPV1 and prevent the Ca2+ entry required for capsaicin-induced desensitization. We have studied the direct effect of local anesthetics on currents induced by capsaicin (1 microM) in acutely isolated rat dorsal root ganglion neurons using the whole cell patch clamp technique. At the highest concentration tested (1 mM), bupivacaine only moderately inhibited the capsaicin-induced current to 55 +/- 27% of control (mean +/- S.D.; n=12, p<0.01). Tetracaine (1 mM), on the other hand, enhanced the capsaicin-induced current to 151 +/- 34% of control (mean +/- S.D.; n=7, p<0.01). These results show that local anesthetics can be used to prevent the initial pain induced by application of capsaicin without abolishing, and perhaps even enhancing, its desensitizing actions.  相似文献   

8.
Effects of the endogenous lipid N-oleoyldopamine (OLDA) were analyzed on the rTRPV1-expressing HT1080 human fibrosarcoma cell line (HT5-1), on cultured rat trigeminal neurons, on the noxious heat threshold of rats and on nocifensive behavior of TRPV1 knockout mice. The EC(50) of capsaicin and OLDA on (45)Ca accumulation of rTRPV1-expressing HT5-1 cells was 36 nM and 1.8 microM, respectively. The efficacy of OLDA was 60% as compared to the maximum response of capsaicin. OLDA (330 nM to 3.3 microM) caused a transient increase in fluorescence of fura-2 loaded cultured small trigeminal neurons of the rat and rTRPV1-transfected HT5-1 cells measured with a ratiometric technique. Repeated application of OLDA and capsaicin caused similar desensitization in the Ca(2+) transients both in cultured neurons and rTRPV1-transfected HT5-1 cells. In the rat intraplantar injection of OLDA (5 nmol) decreased the noxious heat threshold by 6-9 degrees C and this response was strongly inhibited by the TRPV1 antagonist iodoresiniferatoxin (0.05 nmol intraplantarly (i.pl.)). In wild-type mice OLDA (50 nmol i.pl.) evoked paw lifting/licking which was significantly less sustained in TRPV1 knockout mice. It is concluded that on TRPV1 capsaicin receptors OLDA is 50 times less potent than capsaicin and it might serve as an endogenous ligand for TRPV1 in the rat, but more likely in humans.  相似文献   

9.
The selective agonist of serotonin 5-HT3 receptor 1-(3-chlorophenyl)biguanide hydrochloride (m-CPBG) administered intracerebroventricularly (40, 80 or 160 nmol) produced long-lasting dose-dependent hypothermic response in AKR/2J mice. m-CPBG (160 nmol i.c.v.) induced profound hypothermia (delta t = −4 °C) that lasted up to 7 h. m-CPBG (40 nmol i.c.v.)-induced hypothermia was attenuated by 5-HT3 receptor antagonist ondansetron pretreatment. At the same time, intraperitoneal administration of m-CPBG in a wide range of doses (0.5, 1.0, 5.0 or 10.0 mg/kg) did not affect the body temperature. These findings indicate: (1) the implication of central, rather than peripheral 5-HT3 receptor in the thermoregulation; (2) the inability of m-CPBG to cross blood–brain barrier in mice. The comparison of brain 5-HT3-induced hypothermic reaction in six inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J) was performed and two highly sensitive to m-CPBG strains (CBA/Lac and C57BL/6) were found. In the same six mouse strains the functional activity of 5-HT1A receptor was studied. The comparison of hypothermic reactions produced by 5-HT1A receptor agonist 8-OH-DPAT (1.0 mg/kg i.p.) and m-CPBG revealed significant correlation between 5-HT3 and 5-HT1A-induced hypothermia in five out of six investigated mouse strains. 5-HT1A receptor antagonist p-MPPI pretreatment (1 mg/kg i.p.) diminished hypothermia produced by centrally administered m-CPBG (40 nmol i.c.v.). The data suggest the cross-talk between 5-HT1A and 5-HT3 receptors in the mechanism of 5-HT-related hypothermia.  相似文献   

10.
It is well established that the vanilloid receptor, VR1, is an important peripheral mediator of nociception. VR1 receptors are also located in several brain regions, yet it is uncertain whether these supraspinal VR1 receptors have any influence on the nociceptive system. To investigate a possible nociceptive role for supraspinal VR1 receptors, capsaicin (10 nmol in 0.4 microl) was microinjected into either the dorsal (dPAG) or ventral (vPAG) regions of the periaqueductal gray. Capsaicin-related effects on tail flick latency (immersion in 52 degrees C water) and on neuronal activity (on-, off-, and neutral cells) in the rostral ventromedial medulla (RVM) were measured in lightly anesthetized rats. Administration of capsaicin into the dPAG but not the vPAG caused an initial hyperalgesic response followed later by analgesia (125 +/- 20.96 min postinjection). The tail flick-related burst in on-cell activity was triggered earlier in the hyperalgesic phase and was delayed or absent during the analgesic phase. Spontaneous activity of on-cells increased at the onset of the hyperalgesic phase and decreased before and during the analgesic phase. The tail flick-related pause in off-cell activity as well as spontaneous firing for these cells was unchanged in the hyperalgesic phase. During the analgesic phase, off-cells no longer paused during noxious stimulation and had increased levels of spontaneous activity. Neutral cell firing was unaffected in either phase. Pretreatment with the VR1 receptor antagonist, capsazepine (10 nmol in 0.4 microl), into the dPAG blocked the capsaicin-induced hyperalgesia as well as the corresponding changes in on- and off-cell activity. VR1 receptor immunostaining was observed in the dPAG of untreated rats. Microinjection of capsaicin likely sensitized and then desensitized dPAG neurons affecting nocifensive reflexes and RVM neuronal activity. These results suggest that supraspinal VR1 receptors in the dPAG contribute to descending modulation of nociception.  相似文献   

11.
The capsaicin receptor TRPV1 is a polymodal sensory transducer molecule in the pain pathway. TRPV1 integrates noxious heat, tissue acidosis and chemical stimuli which are all known to cause pain. Studies on TRPV1-deficient mice suggest that TRPV1 is essential for acid sensing by nociceptors and for thermal hyperalgesia in inflammation of the skin, but not for transducing noxious heat. After TRPV1, other TRPV channels were cloned with polymodal properties and sensitivity to noxious heat, named TRPV2, TRPV3 and TRPV4. While TRPV3 and TRPV4 are predominantly warm sensors, TRPV2’s threshold is in the noxious range (>52°C). However, mice deficient of TRPV2 and TRPV1 or TRPV3 or TRPV4 show no major impairment of noxious heat sensing. Ruthenium red, a water soluble polycationic dye, was found to block the pore of the capsaicin-operated cation channel TRPV1 thus interfering with all polymodal ways of TRPV1 activation. Antagonistic effects of the dye were subsequently described on many other TRP-channels, especially on the heat-sensitive ones of the vanilloid family, TRPV2, TRPV3 and TRPV4. In this study, we used the rat skin-nerve preparation to define the possible actions of ruthenium red on the proton, capsaicin and noxious heat activation of native polymodal nociceptors. Ruthenium red was found to suppress only the capsaicin-induced excitation and desensitization of these nerve endings. On the contrary, the proton and heat-induced discharge responses of the single fibres were not influenced. Additionally, we found that the dye concentration dependently increases the excitability of the neurons resulting in ongoing activity and burstlike discharge. These differential results are discussed in the light of recent findings from transgenic mouse models, and they point once more to major (pharmacological) differences between cellular models of nociception, including spinal ganglion neuron and transfected cell lines, and the real native nerve endings.  相似文献   

12.
The present study was performed to investigate the role of calcitonin gene-related peptide (CGRP) and its receptor in nociception in the basolateral nucleus of amygdala (BLA) of rats. Hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulations were measured by hot plate and Randall Selitto tests. The HWL to both thermal and mechanical stimulations increased significantly after intra-BLA administration of 1.0 or 2.0 nmol CGRP, but not 0.5 nmol, indicating that CGRP plays an anti-nociceptive role in BLA of rats. The anti-nociceptive effect of 1.0 nmol CGRP was blocked significantly by administration of 1.0 or 2.0 nmol CGRP8-37, a selective antagonist of CGRP1 receptor, which suggests that the anti-nociceptive effect of CGRP is mediated by the CGRP1 receptor. Taken together, the results indicate that both CGRP and CGRP1 receptor play important roles in nociceptive modulation in the BLA of rats.  相似文献   

13.
Although previous studies describe the up-regulation of purinergic P2X3 receptors expressed at peripheral nociceptive fibers in experimental painful neoplastic processes, the analgesic efficacy of P2X3 receptor antagonists has not been tested in these settings. We study here the effect of the P2X3 receptor antagonist, A-317491, on thermal hyperalgesia produced by the intratibial inoculation of NCTC 2472 fibrosarcoma cells to C3H/HeJ mice. The peritumoral administration of A-317491 (10–100 μg) dose-dependently attenuated osteosarcoma-induced thermal hyperalgesia without modifying thermal latencies measured in the contralateral paws. This antihyperalgesic effect was inhibited by the coadministration of naloxone-methiodide (0.1–1 μg) or the systemic injection of the selective μ-opioid receptor antagonist cyprodime (1 mg/kg), demonstrating the involvement of peripheral μ-opioid receptors. Furthermore, the antihyperalgesic effect induced by A-317491, was antagonised by the coadministration of an anti-enkephalin antibody supporting the participation of endogenous enkephalins. Consistent with this result, the antihyperalgesic effect induced by A-317491 was dramatically enhanced by the administration of an enkephalin-degrading inhibitor, Debio 0827, as demonstrated by isobolographic analysis. This synergism opens the theoretical possibility that the combination of both types of drugs could be useful to counteract some nociceptive symptoms derived from tumor development.  相似文献   

14.
We investigated the involvement of spinal macrophage inflammatory protein-1α (MIP-1α), an inflammatory chemokine, in partial sciatic nerve ligation (PSL)-induced neuropathic pain in mice. PSL increased MIP-1α mRNA levels as well as levels of the MIP-1α receptor, CCR1, but not CCR5 in the spinal dorsal horn. PSL-induced tactile allodynia and thermal hyperalgesia were prevented by intrathecal (i.t.) injection of a neutralizing antibody of MIP-1α (2 ng). Recombinant MIP-1α (10 pmol, i.t.) elicited long-lasting tactile allodynia and thermal hyperalgesia in naïve mice. These results suggest that peripheral nerve injury elicits the up-regulation of spinal MIP-1α and CCR1 to participate in neuropathic pain.  相似文献   

15.
Neuropathic pain in diabetic patients is a common distressing symptom and remains a challenge for analgesic treatment. Selective inhibition of pathological pain sensation without modification of normal sensory function is a primary aim of analgesic treatment in chronic neuropathic pain. Tapentadol is a novel analgesic with two modes of action, μ-opioid receptor (MOR) agonism and noradrenaline (NA) reuptake inhibition. Mice were rendered diabetic by means of streptozotocin, and neuropathic hyperalgesia was assessed in a 50 °C hot plate test. Normal nociception was determined in control mice. Tapentadol (0.1–1 mg/kg i.v.) and morphine (0.1–3.16 mg/kg i.v.) dose-dependently attenuated heat-induced nociception in diabetic animals with full efficacy, reaching >80% at the highest doses tested. Tapentadol was more potent than morphine against heat hyperalgesia, with ED50 (minimal effective dose) values of 0.32 (0.316) and 0.65 (1) mg/kg, respectively. Non-diabetic controls did not show significant anti-nociception with tapentadol up to the highest dose tested (1 mg/kg). In contrast, 3.16 mg/kg morphine, the dose that resulted in full anti-hyperalgesic efficacy under diabetic conditions, produced significant anti-nociception in non-diabetic controls. Selective inhibition of disease-related hyperalgesia by tapentadol suggests a possible advantage in the treatment of chronic neuropathic pain when compared with classical opioids, such as morphine. It is hypothesized that this superior efficacy profile of tapentadol is due to simultaneous activation of MOR and inhibition of NA reuptake.  相似文献   

16.
Using a preparation of isolated rat kidneys perfused at constant renal artery pressure (80 mmHg) we investigated the role of endothelins in the regulation of renin release. Addition of three related endothelins (ET-1, ET-2, ET-3) at a concentration of 10 pmol L-1 tended to enhance renin secretion rates. Higher doses (100 pmol L-1, 1 nmol L-1) of different ETs such as the selective ETB, receptor agonist sarafotoxin S6c (100 pmol L-1, 1 nmol L-1) inhibited renin release and increased renal vascular resistance with similar potency. These effects of ETs were blunted when calcium ions were removed from the perfusate. Renin release activated by isoproterenol (10 nmol L-1) was also significantly reduced with ET-1, -2 and -3 (1 nmol L-1). BQ-123 (500 nmol L-1), a selective ETA receptor antagonist, only attenuated, whilst the nonselective ET receptor blocker bosentan (Ro 47–0203, 10 μmol L-1) almost abolished the renal vasopressor and renin inhibitory action of ET-1 and sarafotoxin S6c. BQ-123 and bosentan alone did not affect either perfusate flow or basal renin secretion rates in isolated perfused kidneys. These findings indicate that all three ET peptides equipotently inhibit renin secretion from the kidneys. Most of the vasopressor and renin inhibitory effect of ETs is mediated by ETb, rather than ETA receptors involving a calcium-dependent signal transduction mechanism. Moreover, our results suggest that intrarenally released ETs do not contribute to the regulation of renin secretion from isolated perfused rat kidneys.  相似文献   

17.
Evidence are that inhibition of cyclooxygenase 2 (COX-2) enhances endocannabinoid signaling, indicating a crosstalk between these two eicosanoid pathways. Aspirin, a non-selective COX inhibitor, acetylates COX-2 with generation of a lipoxygenase (LOX) substrate, whose end product is the 15-epi-lipoxin A4 (15-epi-LXA4), an aspirin-triggered lipoxin. Our objective was to investigate whether 15-epi-LXA4 would potentiate in vivo effects of the endocannabinoid anandamide (AEA). Catalepsy was selected as a behavioral parameter and tested 5 min after AEA injection in all experiments. AEA induced dose-dependent (200 pmol/2 μl, i.c.v.) catalepsy. A sub-dose of AEA (10 pmol/2 μl, i.c.v.) was potentiated by aspirin (300 mg/kg, p.o.) via a 5-LOX-dependent step. The cataleptic effect induced by the interaction between sub-doses of 15-epi-LXA4 (0.01 pmol/2 μl, i.c.v.) and AEA (10 pmol/2 μl, i.c.v.) was prevented by the cannabinoid CB1 receptors antagonist SR141716A (1 mg/kg, i.p.), but not by the antagonist of lipoxin ALX receptors Boc-2 (10 μg/kg, i.p.). While previous studies have shown that COX inhibition itself may enhance endocannabinoid effects, here we add another piece of evidence revealing that a LOX-derivative produced in consequence of COX-2 acetylation participates in this process.  相似文献   

18.
We examined the effect of SR 140333, a nonpeptide NK1 receptor antagonist, FK 888, a peptide NK1 antagonist, and SR 142801, a non-peptide NK3 antagonist, on ear oedema induced by topical application of capsaicin (250 g/ear) in mice. SR 140333 (ED50: 39 g/kg, i.v.) dose-dependently inhibited the oedema response to capsaicin, whereas FK 888 (1.0 mg/kg, i.v.) and SR 142801 (3.0 mg/kg, i.v.) had no effect. Furthermore, SR 140333 significantly (p<0.001) suppressed ear oedema in response to intradermal injection of substance P (SP) (100 pmol/site) by i.v. administration (0.1 mg/kg), and co-injection (50 pmol/site). In contrast, FK 888 (1.0 mg/kg, i.v. and 500 pmol/site) was ineffective in the response to SP. The present results suggest that the difference in effects of the two NK1 receptor antagonists on the oedema response to capsaicin is due to species differences in affinities for the NK1 receptor in the mouse skin. Moreover, it seems unlikely that the NK3 receptor is involved primarily in capsaicin-induced mouse ear oedema.accepted by G. W. Carter  相似文献   

19.
We examined the substrates for ocular nociception in adult male Sprague-Dawley rats. Capsaicin application to the ocular surface in awake rats evoked nocifensive responses and suppressed spontaneous grooming responses. Thus, peripheral capsaicin was able to activate the central pathways encoding ocular nociception. Our capsaicin stimulus evoked c-Fos expression in a select population of neurons within rostral trigeminal nucleus caudalis in anesthetized rats. These activated neurons also received direct contacts from corneal afferent fibers traced with cholera toxin B from the corneal surface. However, the central terminals of the corneal afferents that contacted capsaicin-activated trigeminal neurons did not contain TRPV1. To determine if TRPV1 expression had been altered by capsaicin stimulation, we examined TRPV1 content of corneal afferents in animals that did not receive capsaicin stimulation. These studies confirmed that while TRPV1 was present in 30% of CTb-labeled corneal afferent neurons within the trigeminal ganglion, TRPV1 was only detected in 2% of the central terminals of these corneal afferents within the trigeminal nucleus caudalis. Other TRP channels were also present in low proportions of central corneal afferent terminals in unstimulated animals (TRPM8, 2%; TRPA1, 10%). These findings indicate that a pathway from the cornea to rostral trigeminal nucleus caudalis is involved in corneal nociceptive transmission, but that central TRP channel expression is unrelated to the type of stimulus transduced by the peripheral nociceptive endings.  相似文献   

20.
Zaltoprofen, a propionic acid derivative of non-steroidal anti-inflammatory drugs (NSAIDs), was shown to have more powerful inhibitory effects to bradykinin (BK)-nociception than other NSAIDs. However, the molecular mechanisms underlying this potent analgesia are not yet fully understood. Here we attempted to clarify the molecular mechanism underlying zaltoprofen-induced analgesia on BK-induced nociception by a novel algogenic-induced paw flexion (APF) test in mice. The intraplantar (i.pl.) injection of zaltoprofen at 1nmol showed strong analgesic action on BK (i.pl.)-induced nociceptive flexor responses, whereas loxoprofen or its active metabolite loxoprofen-SRS did not. Zaltoprofen also inhibited the nociception induced by [Tyr8]-BK, a specific agonist of B2-type BK receptor, but did not affect the nociception by [Lys-des-Arg9]-BK, a specific agonist of B1-type BK receptor. However, zaltoprofen did not affect the substance P-induced nociception, which is mediated by common post-receptor signaling through nociceptive fibers with BK-ones. All these results suggest that NSAID zaltoprofen possesses novel anti-nociceptive mechanism, which inhibits B2-type BK receptor function in nerve endings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号