首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We obtained patch-clamp recordings from neuron-glial cell pairs in cerebellar brain slices to examine the contribution of glutamate (Glu) uptake by Bergmann glial cells to shaping excitatory postsynaptic currents (EPSCs) at the parallel fiber to Purkinje cell synapse. We show that electrical stimulation of parallel fibers not only activates EPSCs in Purkinje cells but also activates inward currents in antigenically identified Bergmann glial cells that invest Purkinje cell synapse with their processes. The inward current is partially due to 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX)- and 2-amino-5-phosphonopentanoic acid (AP5)-sensitive ionotropic Glu receptors, but >/=70% of the current was mediated by D,L-threo-beta-hydroxyaspartate (THA)-sensitive Glu transporters. Glu inward currents were completely and reversibly inhibited by depolarization of Bergmann glial cells to positive membrane potentials allowing biophysical inhibition of Glu uptake into a single glial cell. Inhibition of Glu transport into Bergmann glial cells by voltage-clamping the cell to depolarized potentials caused a reversible increase in spontaneous EPSC frequency in the Purkinje cell. This increase could also be achieved by pharmacological inhibition of Glu transport with the Glu transport inhibitor THA, suggesting that inhibition of Glu uptake into Bergmann glial cells is responsible for the modulation of postsynaptic EPSCs. THA modulation of spontaneous EPSCs could only be observed in the absence of TTX, suggesting primarily a presynaptic effect. Taken together these data suggest that glial Glu uptake can profoundly affect excitatory transmission in the cerebellum, most likely by regulating presynaptic glutamate release.  相似文献   

2.
We previously proposed that L-3,4-dihydroxyphenylalanine (L-DOPA) is a neurotransmitter in the CNS. Receptor and transporter molecules for L-DOPA, however, have not been determined. In the present study, in order to localize the uptake sites of L-DOPA in the CNS, we performed autoradiographic uptake studies using L-[14C]DOPA and L-[3H]DOPA in the uptake study on rat brain slice preparations, and further analyzed the properties of L-DOPA uptake. Image analysis of the L-[14C]DOPA autoradiogram showed a unique heterogeneous distribution of uptake sites in the brain. The intensity was relatively high in the cerebral cortex, the hypothalamus, the cerebellum and the hippocampus, while the density was moderate or even low in the striatum and the substantia nigra. L-DOPA and phenylalanine, but not dopamine (10mM) were able to almost completely inhibit the uptake of L-[14C]DOPA to basal levels. Microautoradiographic studies using L-[3H]DOPA revealed accumulation of dense grains in the median eminence, the supraoptic nucleus of the hypothalamus, the cerebral cortex (layer I) and the hippocampus. In the cerebellum, grains formed in clusters surrounding the Purkinje cells. This grain accumulation was concluded to be in Bergmann glial cells, since the morphological pattern of grain accumulation was similar to that of the immunoreactivity of the glutamate aspartate transporter, a marker protein for Bergmann glial cells. In the hippocampus, the grain density significantly decreased under Na(+)-free conditions. In addition, grain density also decreased in the absence of Cl(-). In contrast, grains in the choroid plexus and the ependymal cell layer, were not affected by the absence of Na(+). These findings indicated that the uptake of L-DOPA occurs via various types of large neutral amino acid transport mechanisms. It appears that neuronal and/or glial cells, which take up L-DOPA in a Na(+)-dependent manner, exist in the CNS. Our finding further supports the concept that L-DOPA itself may act as a neurotransmitter or neuromodulator.  相似文献   

3.
Sept2 is a member of the septin family of GTPases. Septins form filaments in a GTP-form dependent manner, and are involved in cytokinesis from yeast to mammals; however, some mammalian septins, including Sept2, are expressed in the brain, a tissue in which almost all the cells are postmitotic. Recently, some functions of mammalian septin other than cytokinesis such as vesicle transport have been reported. However, mammalian septin's physiological functions are still unclear. The present study revealed that Sept2 co-localizes with the astrocyte glutamate transporter GLAST in the Bergmann glial processes facing axons and synapses. Biochemical analyses demonstrated that Sept2 bound directly to the carboxy-terminal region of GLAST in a GDP-form dependent manner. Expression of constitutive GDP-form Sept2 mutant reduced the glutamate uptake activity of GLAST via internalization of GLAST from cell surface. Thus Sept2 may regulate GLAST-mediated glutamate uptake by astrocytes, which is important for appropriate transmitter signalling in the cerebellum.  相似文献   

4.
Non-neuronal cells may be pivotal in neurodegenerative disease, but the mechanistic basis of this effect remains ill-defined. In the polyglutamine disease spinocerebellar ataxia type 7 (SCA7), Purkinje cells undergo non-cell-autonomous degeneration in transgenic mice. We considered the possibility that glial dysfunction leads to Purkinje cell degeneration, and generated mice that express ataxin-7 in Bergmann glia of the cerebellum with the Gfa2 promoter. Bergmann glia-specific expression of mutant ataxin-7 was sufficient to produce ataxia and neurodegeneration. Expression of the Bergmann glia-specific glutamate transporter GLAST was reduced in Gfa2-SCA7 mice and was associated with impaired glutamate transport in cultured Bergmann glia, cerebellar slices and cerebellar synaptosomes. Ultrastructural analysis of Purkinje cells revealed findings of dark cell degeneration consistent with excitotoxic injury. Our studies indicate that impairment of glutamate transport secondary to glial dysfunction contributes to SCA7 neurodegeneration, and suggest a similar role for glial dysfunction in other polyglutamine diseases and SCAs.  相似文献   

5.
Glutamate, the main excitatory amino acid transmitter in the vertebrate brain is involved in the dynamic changes in protein repertoire that underlie synaptic plasticity. Activity-dependent differential expression patterns occur not only in neurons but also in glial cells. In fact, a membrane to nuclei signaling has been described after ionotropic glutamate receptor stimulation in cultured chick cerebellar Bergmann glia cells. In order to characterize other levels of protein expression regulation, we explored the effect of glutamate treatment in [35S]-methionine incorporation into newly synthesized polypeptides. A time-dependent modification in protein synthesis was found. An important component of translational control is the ribosomal S6 protein kinase. Threonine phosphorylation renders the kinase active increasing translation initiation. Glutamate exposure results in ribosomal S6 protein kinase Thr389 phosphorylation in a dose and time-dependent manner that matches perfectly with the overall protein synthesis profile detected upon the excitatory amino acid. Pharmacological characterization of the receptors involved suggests the participation of both ionotropic as well as metabotropic glutamate receptors. The non-receptor tyrosine kinase Src, phosphatidylinositol 3-kinase, protein kinase B and the mammalian target of rapamycin are mediators of the glutamate effect. These results not only demonstrate that glutamate receptors activation is critically involved in translational control in glial cells adjacent to synaptic processes like cerebellar Bergmann glia cells, but also further strengthen the notion of an active participation of glial cells in synaptic transmission.  相似文献   

6.
Glutamate transporters play a critical role in the maintenance of low extracellular concentrations of glutamate, which prevents the overactivation of post‐synaptic glutamate receptors. Four distinct glutamate transporters, GLAST/EAAT1, GLT‐1/EAAT2, EAAC1/EAAT3 and EAAT4, are distributed in the molecular layer of the cerebellum, especially near glutamatergic synapses in Purkinje cells (PCs). This review summarizes the current knowledge about the differential roles of these transporters at excitatory synapses of PCs. Data come predominantly from electrophysiological experiments in mutant mice that are deficient in each of these transporter genes. GLAST expressed in Bergmann glia contributes to the clearing of the majority of glutamate that floods out of the synaptic cleft immediately after transmitter release from the climbing fibre (CF) and parallel fibre (PF) terminals. It is indispensable to maintain a one‐to‐one relationship in synaptic transmission at the CF synapses by preventing transcellular glutamate spillover. GLT‐1 plays a similar but minor role in the uptake of glutamate as GLAST. Although the loss of neither GLAST nor GLT‐1 affects cerebellar morphology, the deletion of both GLAST and GLT‐1 genes causes the death of the mutant animal and hinders the folium formation of the cerebellum. EAAT4 removes the low concentrations of glutamate that escape from uptake by glial transporters, preventing the transmitter from spilling over into neighbouring synapses. It also regulates the activation of metabotropic glutamate receptor 1 (mGluR1) in perisynaptic regions at PF synapses, which in turn affects mGluR1‐mediated events including slow EPSCs and long‐term depression. No change in synaptic function is detected in mice that are deficient in EAAC1.  相似文献   

7.
Rapid removal of synaptically released glutamate from the extracellular space ensures a high signal-to-noise ratio in excitatory neurotransmission. In the cerebellum, glial glutamate transporters, GLAST and GLT-1, are co-localized in the processes of Bergmann glia wrapping excitatory synapses on Purkinje cells (PCs). Although GLAST is expressed six-fold more abundantly than GLT-1, the decay kinetics of climbing fiber-mediated excitatory postsynaptic currents (CF-EPSCs) in PCs in GLAST(−/−) mice are not different from those in wild-type (WT) mice. This raises a possibility that GLT-1 plays a significant role in clearing glutamate at CF-PC synapses despite its smaller amount of expression. Here, we studied the functions of GLT-1 and GLAST in the clearance of glutamate using GLAST(−/−) mice and GLT-1(−/−) mice. In the presence of cyclothiazide (CTZ) that attenuates the desensitization of AMPA receptors, the decay time constant of CF-EPSCs (τw) in GLT-1(−/−) mice was slower than that in WT mice. However, the degree of this prolongation of τw was less prominent compared to that in GLAST(−/−) mice. The values of τw in GLT-1(−/−) mice and GLAST(−/−) mice were comparable to those estimated in WT mice in the presence of a potent blocker of glial glutamate transporters (2S,3S)-3-[3-(4-methoxybenzoylamino)benzyloxy]aspartate (PMB-TBOA) at 10 and 100 nM, which reduced the amplitudes of glutamate transporter currents elicited by CF stimulation in Bergmann glia to ∼81 and ∼28%, respectively. We conclude that GLT-1 plays a minor role compared to GLAST in clearing synaptically released glutamate at CF-PC synapses.  相似文献   

8.
9.
Glutamate release, in response to excess K+, from synaptosomal preparations from rat cerebellum was studied in relationship to the characteristics of stimulus-secretion coupling processes used by known transmitters and compared to those of γ-aminobutyrate (GABA), a known cerebellar neurotransmitter. The properties of glutamate release were indistinguishable from those of GABA: the release of both substances is dependent on Ca2+, antagonized by Mg2+ and stimulated by K+ depolarization and therefore mimics the essential characteristics for the release of a neurotransmitter.Evidence that parallel fiber boutons are a source of evoked glutamate release is supported by the fact that synaptosomal preparations from the cerebellar molecular layer released twice as much glutamate per tissue content as did similar preparations from whole cerebellum. Furthermore, neonatal X-irradiation of the cerebellum, which decreases the granule cell and the parallel fiber populations, results in a reduction of Ca2+-dependent glutamate release indicating that Ca2+-dependent release originates in part from parallel fiber boutons. Under these conditions neither glutamate levels nor high affinity glutamate uptake are significantly changed. These data indicate that glutamate is either a neurotransmitter of the parallel fibers or a molecule released by the stimulus-secretion coupling process along with the neurotransmitter.Depolarizing K+ concentrations in the absence of external Ca2+ also induced an increase in the efflux of glutamate and [3H]GABA. This effect was much more prominent for exogenously loaded amino acids than for endogenous glutamate. Accumulated glutamate appears to be stored in at least two separate compartments, which differed in their storage capacity and sensitivity to K+ and Ca2+. One pool, highly sensitive to K+ in the absence of Ca2+, showed a poor retention of glutamate. The second pool, sensitive to Ca2+ in the presence of a depolarizing agent, stored glutamate more stably. Since the K+-induced efflux of glutamate independent of external Ca2+ decreased after loss of the granule cells, it is likely that both glutamate compartments are present, at least in part, in neurons.  相似文献   

10.
The effect of the glial toxin α-aminoadipic acid (AAA) upon theNa+/glutamate cotransporter of acutely isolated guinea pig retinal glial cells was studied using the whole-cell voltage-clamp technique. Glutamate evoked an in ward current in these cells at negative holding potentials dependent on the presence of extracellular Na+ and intracellular K+. A reversal potential could not be found for the current. L-trans-Pyrrolidine-2.4-dicarboxylic acid (PDC), a blocker of Na+-dependent glutamate uptake, diminished the glutamate current also in our cells. Application of L-AAA also generated an inward current at negative holding potentials, without a reversal potential, being suppressed if extracellularNa+ or intracellular K+ was removed. The glutamate uptake blocker, PDC (200 μM), blocked the L-AAA (1 mM) current. Thus, L-AAA proved to be transported by the Na+/glutamate transporter of Müller cells. Hence, glutamate currents were diminished by L-AAA competitively with a Km of 499 μM at a glutamate concentration of 10 μM. The Na+/glutamate uptake was less sensitive to DL- and D-AAA block. It is suggested that the blocking effect of AAA on Na+-dependent glutamate uptake into glial cells might be involved in the well known glia toxicity of this compound.  相似文献   

11.
Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of retinal ganglion cells (RGCs) and optic nerves. Although glaucoma is often associated with elevated intraocular pressure, recent studies have shown a relatively high prevalence of normal tension glaucoma (NTG) in glaucoma patient populations. In the mammalian retina, glutamate/aspartate transporter (GLAST) is localized to Müller glial cells, whereas excitatory amino acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs. Since the loss of GLAST or EAAC1 leads to retinal degeneration similar to that seen in NTG, we examined the effects of interleukin-1 (IL-1) on RGC death in GLAST- and EAAC1-deficient mice. IL-1 promoted increased glutamate uptake in Müller cells by suppressing intracellular Na+ accumulation, which is necessary to counteract Na+-glutamate cotransport. The observed trends for the glutamate uptake increase in the wild-type (WT), GLAST- and EAAC1-deficient mice were similar; however, the baseline glutamate uptake and intracellular Na+ concentration in the GLAST-deficient mice were significantly lower than those in the wild-type mice. Consistently, pretreatment with IL-1 exhibited no beneficial effects on glutamate-induced RGC degeneration in the GLAST-deficient mice. In contrast, IL-1 significantly increased glutamate uptake by Müller cells and the number of surviving RGCs in the wild-type and EAAC1-deficient mice. Our findings suggest that the use of IL-1 for enhancing the function of glutamate transporters may be useful for neuroprotection in retinal degenerative disorders including NTG.  相似文献   

12.
Expression of the glutamate transporters in human temporal lobe epilepsy.   总被引:4,自引:0,他引:4  
Glutamate is the major excitatory neurotransmitter in the central nervous system and is implicated in the pathogenesis of neurodegenerative diseases. Five human glutamate transporters have been cloned and are responsible for the removal of potentially excitotoxic excess glutamate from the extracellular space. In this study we consider whether there are selective changes in the expression of the glutamate transporters in the medial temporal cortex and hippocampus from temporal lobe epilepsy patients, which might contribute to the development or maintenance of seizures. Since disruption of the glial transporter excitatory amino acid transporter 2 in mice results in lethal spontaneous seizures, we were interested primarily in studying changes in this transporter. Using in situ hybridization we show that there was no reduction in the level of excitatory amino acid transporter 2 encoding messenger RNA in the temporal lobe epilepsy cases compared to post mortem controls and indeed there was a relative increase in content of excitatory amino acid transporter 2 messenger RNA per cell in temporal lobe epilepsy cases. Western blotting showed that there was no change in the excitatory amino acid transporter 2 protein content in temporal lobe epilepsy cases as compared to post mortem controls. A small reduction in the level of the second astroglial transporter protein, excitatory amino acid transporter 1, was observed in temporal lobe epilepsy cases. Surprisingly, immunohistochemical experiments using a polyclonal antiexcitatory amino acid transporter 2 antibody, showed a different localization of this protein in epilepsy derived tissue as compared to post mortem controls although glial markers such as glial fibrillary acidic protein and glutamine synthase showed similar patterns of staining. However, repeating this experiment using control tissue from non-temporal lobe epilepsy biopsies demonstrated that this change in the excitatory amino acid transporter 2 transporter localization occurred post mortem. These data suggest that major changes in the level of expression of the glutamate transporters do not play an important role in the development of human temporal lobe epilepsy but may be implicated the aetiology of other types of epilepsy.  相似文献   

13.
M Eybalin  R Pujol 《Neuroscience》1983,9(4):863-871
Since glutamate has been recently proposed as a possible transmitter of the sensory hair cells in the cochlea, a radioautographic study was performed to look for the in vitro uptake of [3H] l-glutamate and [3H]l-glutamine. Several experimental conditions were applied. The control experimental procedures consisted in an incubation with one of the labelled tracers (10 min), followed by a post-incubation (3 × 10 min) without tracer. In these experiments, either with [3H]l-glutamate or [3H]l-glutamine, the following structures were labelled: inner hair cells, glial cells of the osseous spiral lamina and areas of the inner spiral and tunnel spiral bundles. When these experiments were carried out in absence of Na+, these labellings were strongly decreased. When the incubation was not followed by a post-incubation, the results differed depending on the tracer: with [3H]l-glutamate, the glial cells and the areas of inner spiral and tunnel spiral bundles were labelled, whereas with [3H]l-glutamine, mainly the inner hair cells were labelled. An addition of l-methionine-dl-sulfoximine, a glutamine synthetase inhibitor, into the incubation and post-incubation media, produced a decrease of the labelling of the inner hair cells and of the glial cells. An addition of unlabelled glutamine to the post-incubation media decreased the inner hair cell labelling, while a similar addition of unlabelled glutamate did not. In either case, neither the outer hair cells, the second type of sensory cells, nor the spiral ganglion neurons were labelled.These results suggest that in the cochlea, glutamate and glutamine have their metabolisms linked together, as in some parts of the central nervous system. Correlated to biochemical and electro physiological data these results support the hypothesis that glutamate could be the neurotransmitter of the inner hair cells.  相似文献   

14.
A monoclonal antibody, IX-50, that was raised against a kainate binding protein (Mr = 49,000) from chicken cerebellum, was used in light and electron microscopic immunocytochemical studies to localize putative kainate receptors. Pre- and postembedding immunoperoxidase and immunogold methods were used in the cerebellar cortices of one to 26-day old chickens and adult rainbow trout. Immunoreactivity was detected only in association with Golgi epithelial/Bergmann glial cells. Intracellular immunoreactivity was present in the granular and agranular endoplasmic reticulum, Golgi apparatus and in lysosomes, representing the sites of synthesis, glycosylation and degradation of the protein. In the fish the granular endoplasmic reticulum was not immunoreactive. Extracellular immunoreactivity was associated with the plasma membrane. In the fish it was established that the epitope is on the outer surface of the membrane. The protein seems to be uniformly distributed along the membrane including the somata, the radial stem processes and the leafy lamellae surrounding Purkinje cell dendrites. Areas of the glial membrane in contact with other glial cells were also immunopositive. High-resolution light microscopy demonstrated all the Bergmann glial plasma membrane in the cortex, providing a "negative" image of Purkinje cell dendrites. It is apparent that Bergmann glial processes selectively outline the dendrites of the Purkinje cells by surrounding the parallel fibre terminal/Purkinje cell spine synaptic complexes. The parallel fiber terminals were highly immunoreactive for glutamate, as shown by an immunogold procedure. The association of Bergmann glial processes, carrying the Mr = 49,000 kainate binding protein, with the Purkinje cell dendrites and spine synapses could provide a basis for neuronal signalling to the Bergmann glia, possibly by glutamate.  相似文献   

15.
The compartmentation of L-glutamate in the central nervous system has been extensively studied and L-glutamine is believed to be the precursor of the neuronal releasable pool of the L-glutamate. In order to localize the sites of uptake of both L-glutamate and L-glutamine, autoradiography was used in tissue slices of adult rat cerebellum, where granule cells are considered to be glutamatergic. Incubation of the tissue with low concentrations of [3H]L-glutamate or [3H]L-glutamine produces in both cases a heavy labelling of the molecular layer. [3H]L-glutamate uptake seems to be essentially glial (Golgi epithelial cells and Bergmann fibres) while [3H]L-glutamine is more diffusely distributed over the molecular layer. Although no conclusions can be drawn on the nature of L-glutamine uptake, these results are in agreement with the model which considers L-glutamate uptake by glial cells to be the inactivating process of glutamatergic synapses.  相似文献   

16.
Glial cells in the CA1 stratum radiatum of the hippocampus of 9- to 12-day-old mice show intrinsic responses to glutamate due to the activation of -amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/ kainate receptors. In the present study we have focused on a subpopulation of the hippocampal glial cells, the complex cells, characterized by voltage-gated Na+ and K+ channels. Activation of glutamate receptors in these cells led to two types of responses, the activation of a cationic conductance, and a longer-lasting blockade of voltage-gated K+ channels. In particular, the transient (inactivating) component of the outwardly rectifying K+ current was diminished by kainate. Concomitantly, as described in Bergmann glial cells, kainate also elevated cytosolic Ca2+. This increase was due to an influx via the glutamate receptor itself. In contrast to Bergmann glial cells, the cytosolic Ca2+ increase was not a link to the K+ channel blockade, since the blockade occurred in the absence of the Ca2+ signal and, vice versa, an increase in cytosolic Ca2+ induced by ionomycin did not block the transient K+ current. We conclude that glutamate receptor activation leads to complex and variable changes in different types of glial cells; the functional importance of these changes is as yet unresolved.  相似文献   

17.
Glial glutamate transporters, GLAST and GLT-1, are co-localized in processes of Bergmann glia (BG) wrapping excitatory synapses on Purkinje cells (PCs). Although GLAST is expressed six-fold more abundantly than GLT-1, no change is detected in the kinetics of climbing fiber (CF)-mediated excitatory postsynaptic currents (CF-EPSCs) in PCs in GLAST(-/-) mice compared to the wild-type mice (WT). Here we aimed to clarify the mechanism(s) underlying this unexpected finding using a selective GLT-1 blocker, dihydrokainate (DHK), and a novel antagonist of glial glutamate transporter, (2S,3S)-3-[3-(4-methoxybenzoylamino)benzyloxy]aspartate (PMB-TBOA). In the presence of cyclothiazide (CTZ), which attenuates the desensitization of AMPA receptors, DHK prolonged the decay time constant (tau(w)) of CF-EPSCs in WT, indicating that GLT-1 plays a partial role in the removal of glutamate. The application of 100 nM PMB-TBOA, which inhibited CF-mediated transporter currents in BG by approximately 80%, caused no change in tau(w) in WT in the absence of CTZ, whereas it prolonged tau(w) in the presence of CTZ. This prolonged value of tau(w) was similar to that in GLAST(-/-) mice in the presence of CTZ. These results indicate that glial glutamate transporters can apparently retain the fast decay kinetics of CF-EPSCs if a small proportion ( approximately 20%) of functional transporters is preserved.  相似文献   

18.
Effects of glutamate and kainate (KA) on Bergmann glial cells were investigated in mouse cerebellar slices using the whole-cell configuration of the patch-clamp technique combined with SBFI-based Na+ microfluorimetry. l-Glutamate (1 mM) and KA (100 μM) induced inward currents in Bergmann glial cells voltage-clamped at −70 mV. These currents were accompanied by an increase in intracellular Na+ concentration ([Na+]i) from the average resting level of 5.2 ± 0.5 mM to 26 ± 5 mM and 33 ± 7 mM, respectively. KA-evoked signals (1) were completely blocked in the presence of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 μM), an antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/KA ionotropic glutamate receptors; (2) reversed at 0 mV, and (3) disappeared in Na+-free, N-methyl-D-glucamine (NMDG+)-containing solution, but remained almost unchanged in Na+-free, Li+-containing solution. Conversely, l-glutamate-induced signals (1) were marginally CNQX sensitive (∼10% inhibition), (2) did not reverse at a holding potential of +20 mV, (3) were markedly suppressed by Na+ substitution with both NMDG+ and Li+, and (4) were inhibited by d,l-threo-β-benzyloxyaspartate. Further, d-glutamate, l-, and d-aspartate were also able to induce Na+-dependent inward current. Stimulation of parallel fibres triggered inward currents and [Na+]i transients that were insensitive to CNQX and MK-801; hence, we suggested that synaptically released glutamate activates glutamate/Na+ transporter in Bergmann glial cells, which produces a substantial increase in intracellular Na+ concentration.  相似文献   

19.
20.
《Neuroscience letters》1986,63(2):121-124
The binding of [3H]d-aspartate ([3H]d-Asp) to human cerebellum homogenate was compared with the uptake of [3H]glutamate ([3H]Glu) by homogenates prepared from rapidly frozen human cerebral cortex. There was a close correlation between the potencies of a range of drugs for inhibiting the binding of [3H]d-Asp and the uptake of [3H]l-Glu. Compounds selective for postsynaptic Glu receptors were inactive. The findings are consistent with the labelling of high-affinity Glu uptake sites by [3H]d-Asp, which may be a valuable ligand for studying excitatory amino acid terminals in human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号