首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Obese Zucker rats (OZR) are hyperinsulenemic, hyperglycemic and dyslipidemic and develop salt dependent hypertension. Since salt sensitivity is considered to be due to impaired handling of renal sodium excretion, these studies were conducted in the obese and lean Zucker rats (LZR) anesthetized with Inactin to evaluate renal function under basal conditions and during acute isotonic fluid volume expansion (VE). Mean Arterial blood pressure (MBP), heart rate (HR), renal blood flow(RBF) and glomerular filtration rate (GFR) were not significantly different between the lean Zucker rats fed normal diet or that fed salt rich diet(8% NaCI). However, basal UV and UNaV were significantly greater in the LZR fed high salt. During VE essentially identical increases occurred in GFR, UV and UNaV in both the lean groups. In the OZR fed salt rich diet also, there were no significant changes in the heart rate, RBF and GFR. However, arterial blood pressure of the OZR fed salt rich diet was significantly greater than that of the OZR on the normal diet as well as that of both the lean groups. Also, as in the LZR, basal UV and UNaV were significantly greater in the salt fed obese rats. During volume expansion there were no impairments in the ability of the obese groups fed normal or salt rich diet to eliminate sodium and water during volume load. In fact, the net sodium and water excretions during and 60 min after VE in both the obese groups were significantly greater than that of corresponding lean groups. Furthermore, these values in the OZR fed salt rich diet were significantly greater than that of the obese rats on normal salt diet perhaps due to the contribution of pressure natriuretic mechanisms'. These data demonstrate that although OZR are salt sensitive, the renal mechanisms that would collectively respond to acute isotonic VE were fully functional. An unexpected and a novel finding in these studies is that the salt rich diet, in addition to increasing arterial blood pressure also significantly lowered plasma of insulin levels and enhanced glucose and cholesterol levels in the obese Zucker rats.  相似文献   

2.
Dopamine causes natriuresis and diuresis via activation of D1 receptors located on the renal proximal tubules and subsequent inhibition of the sodium transporters, Na-H exchanger and Na+/K+ ATPase. We have reported that dopamine fails to inhibit the activities of these two transporters in the obese Zucker rats (OZR). The present study was designed to examine the functional consequence of this phenomenon by determining the natriuretic and diuretic response to D1 receptor activation in lean Zucker rats (LZR) and OZR. In 11-12 week-old OZR and LZR, natriuretic and diuretic responses to intravenously administered D1 receptor agonist, SKF 38393 (3 microg/kg/min for 30 min) were measured under Inactin anesthesia. Plasma insulin and glucose levels were significantly higher in the obese rats as compared to the lean rats. Intravenous infusion of SKF 38393 caused significant increases in urine flow, urinary sodium excretion (U(Na)V), fractional excretion of sodium (FE(Na)), and glomerular filtration rate (GFR) in the lean rats. However, the natriuretic and diuretic response to SKF 38393 was markedly blunted in OZR. Infusion of SKF 38393 did not cause significant changes in the mean blood pressure and heart rate in either of the two groups. We suggest that the diminished natriuretic response to D1 receptor activation in OZR is the consequence of the previously reported defect in the D1 receptor-G-protein coupling and the failure of dopamine to inhibit the sodium transporters in these animals.  相似文献   

3.
Dopamine causes natriuresis and diuresis via activation of D1 receptors located on the renal proximal tubules and subsequent inhibition of the sodium transporters, Na‐H exchanger and Na+/K+ ATPase. We have reported that dopamine fails to inhibit the activities of these two transporters in the obese Zucker rats (OZR). The present study was designed to examine the functional consequence of this phenomenon by determining the natriuretic and diuretic response to D1 receptor activation in lean Zucker rats (LZR) and OZR. In 11–12 week‐old OZR and LZR, natriuretic and diuretic responses to intravenously administered D1 receptor agonist, SKF 38393 (3 µg/kg/min for 30 min) were measured under Inactin® anesthesia. Plasma insulin and glucose levels were significantly higher in the obese rats as compared to the lean rats. Intravenous infusion of SKF 38393 caused significant increases in urine flow, urinary sodium excretion (UNaV), fractional excretion of sodium (FENa), and glomerular filtration rate (GFR) in the lean rats. However, the natriuretic and diuretic response to SKF 38393 was markedly blunted in OZR. Infusion of SKF 38393 did not cause significant changes in the mean blood pressure and heart rate in either of the two groups. We suggest that the diminished natriuretic response to D1 receptor activation in OZR is the consequence of the previously reported defect in the D1 receptor–G‐protein coupling and the failure of dopamine to inhibit the sodium transporters in these animals.  相似文献   

4.
The present study examined intestinal dopaminergic activity and its response to high salt (HS, 1% NaCl over a period of 24 hours) intake in obese (OZR) and lean Zucker rats (LZR). The basal Na+,K+-ATPase activity (nmol Pi/mg protein/min) in the jejunum of OZR was higher than in LZR on normal salt (NS) (OZR-NS = 111.3 +/- 6.0 vs. LZR-NS = 88.0 +/- 8.3). With the increase in salt intake, the basal Na+,K+-ATPase activity significantly increased in both animals (OZR-HS = 145.9 +/- 11.8; LZR-HS = 108.8 +/- 6.7). SKF 38393 (10 nM), a specific D1-like dopamine receptor agonist, inhibited the jejunal Na+,K+-ATPase activity in OZR on HS intake, but failed to inhibit enzyme activity in OZR on NS intake and LZR on NS and HS intakes. The aromatic L-amino acid decarboxylase (AADC) activity in OZR was lower than in LZR on NS intake. The HS intake increased AADC activity in OZR, but not in LZR. During the NS intake the jejunal monoamine oxidase (MAO) activity in OZR was similar to that in LZR. The HS intake significantly decreased MAO activity in both OZR and LZR. The jejunal COMT activity in OZR was higher than in LZR on NS intake. The HS intake reduced COMT activity in OZR but not LZR. It is concluded that inhibition of jejunal Na+,K+-ATPase activity through D1 dopamine receptors is dependent on salt intake in OZR, whereas in LZR, the enzyme failed to respond to the activation of D1 dopamine receptors irrespective of their salt intake.  相似文献   

5.
The present study examined intestinal dopaminergic activity and its response to high salt (HS, 1% NaCl over a period of 24 hours) intake in obese (OZR) and lean Zucker rats (LZR). The basal Na+,K+-ATPase activity (nmol Pi/mg protein/min) in the jejunum of OZR was higher than in LZR on normal salt (NS) (OZR-NS=111.3±6.0 vs. LZR-NS=88.0±8.3). With the increase in salt intake, the basal Na+,K+-ATPase activity significantly increased in both animals (OZR-HS=145.9±11.8; LZR-HS=108.8±6.7). SKF 38393 (10?nM), a specific D1-like dopamine receptor agonist, inhibited the jejunal Na+,K+-ATPase activity in OZR on HS intake, but failed to inhibit enzyme activity in OZR on NS intake and LZR on NS and HS intakes. The aromatic L-amino acid decarboxylase (AADC) activity in OZR was lower than in LZR on NS intake. The HS intake increased AADC activity in OZR, but not in LZR. During the NS intake the jejunal monoamine oxidase (MAO) activity in OZR was similar to that in LZR. The HS intake significantly decreased MAO activity in both OZR and LZR. The jejunal COMT activity in OZR was higher than in LZR on NS intake. The HS intake reduced COMT activity in OZR but not LZR. It is concluded that inhibition of jejunal Na+,K+-ATPase activity through D1 dopamine receptors is dependent on salt intake in OZR, whereas in LZR, the enzyme failed to respond to the activation of D1 dopamine receptors irrespective of their salt intake.  相似文献   

6.
OBJECTIVE: To test the hypothesis that reduced skeletal muscle microvessel density (MVD) in obese Zucker rats (OZR) is independent of chronic elevations in mean arterial pressure (MAP). METHODS: Microvessels in cross sections of gastrocnemius muscle from lean Zucker rats (LZR) and OZR were labeled with Griffonia simplicifolia I lectin, visualized with fluorescence microscopy and vessel number within sections was determined using imaging software. Rats were used at different ages to assess correlations between the temporal development of hypertension and microvascular rarefaction. Additionally, rats were chronically treated with captopril or hydralazine as antihypertensive therapies to examine the development of microvascular rarefaction in the absence of elevated blood pressure. RESULTS: MVD in muscle of OZR was reduced by approximately 17% versus LZR by 10-11 weeks of age, prior to any elevation in MAP. By 15-17 weeks, OZR exhibited a approximately 23% reduction in MVD and a approximately 25 mmHg increase in MAP. Treatment with hydralazine prevented elevated MAP in OZR, although this was not associated with an improved MVD. Captopril treatment also prevented elevated MAP in OZR, although a partial recovery of MVD toward normal levels was observed. This observation was associated with an improved insulin resistance. CONCLUSIONS: These results suggest that microvessel rarefaction in skeletal muscle of OZR manifesting the metabolic syndrome does not depend on an elevated mean arterial pressure and that other factors associated with the metabolic syndrome, possibly insulin resistance, may underlie the progressive reduction in MVD in these animals.  相似文献   

7.
The objective of this research was to examine the contribution of a moderately high fat (MHF) diet to the development of salt-sensitive hypertension in obese Zucker rats. Lean and obese Zucker rats were fed either a MHF diet or a diet of standard rat chow (control diet) for 10 weeks. From week 4 through week 10, the drinking water was supplemented with 1% NaCl. Blood pressure was measured weekly, and urinary excretion of nitric oxide metabolites (NOx) was determined at weeks 4 and 10. At week 10, renal nitric oxide synthase (NOS) activity was assessed in kidney homogenates. Blood pressures of obese, but not lean, rats on the MHF fat diet were significantly increased by salt-supplementation, whereas blood pressures of rats on the control diet were not appreciably affected. NOx excretion was increased in response to salt-supplementation in rats on the control diet, with the effect being particularly dramatic in obese rats. After salt-supplementation, NOx excretion by rats on the MHF diet was lower than rats on the control diet. In obese rats on the MHF diet, this decrease in NO production was accompanied by a reduction in renal NOS activity. These results indicate that obese rats are more inclined than lean rats to develop diet-induced hypertension in response to a moderately high fat, salt-supplemented diet. Furthermore, they suggest that MHF diet-induced defects in NO production may promote the salt-sensitivity of blood pressure in obese Zucker rats, which appear to require more NO to maintain blood pressure during a salt challenge.  相似文献   

8.
Obesity is associated with insulin resistance in the peripheral vasculature and is an important risk factor for coronary artery disease. The current study assessed whether the vascular effects and the signaling pathways of insulin are impaired in coronary arteries from a rat model of genetic obesity. Intramyocardial arteries from obese Zucker rats (OZR) and lean Zucker rats (LZR) were mounted in microvascular myographs to assess insulin vasoactive effects and the proteins of the insulin pathway were determined by Western blotting. The endothelium-dependent and nitric oxide (NO)-mediated vasorelaxant effect of insulin was similar in arteries from LZR and OZR and blunted by inhibition of phosphatidylinositol 3-kinase (PI3K) and endothelial NO synthase (eNOS), but unaltered by either mitogen activated protein kinase (MAPK) or endothelin (ET) receptor blockade. Basal levels of phospho-eNOS Ser(1177) and phospho-Akt Ser(473) were up-regulated in OZR, and insulin increased phosphorylation of eNOS and Akt in both LZR and OZR. Moreover, insulin enhanced Akt expression in LZR. Basal and insulin-stimulated levels of phospho-MAPK p42/p44 were lower in OZR and palmitic acid reduced these levels in LZR. Coronary arteries are protected from vascular IR. The results underscore the fact that preservation of insulin-mediated vasorelaxation along with an up-regulation of the Akt/eNOS pathway and an impairment of the MAPK cascade account for this protection.  相似文献   

9.
OBJECTIVE: To test the hypothesis that vasomotor control is impaired in the coronary circulation of prediabetic obese (OZR) relative to lean Zucker rats (LZR). METHODS: Cardiac function was assessed with in vivo measures of cardiac output and microvascular structure and function was assessed in vitro using videomicroscopic techniques. RESULTS: OZR showed a marked hyperdynamic circulation with an increased cardiac output and elevated stroke volume. Contrary to the stated hypothesis, the authors found no diminution of vasodilator function and no augmentation of vasoconstriction. Indeed, dilation to acetylcholine was potentiated and vasoconstriction to endothelin was reduced in OZR compared to LZR. Structural characteristics of small coronary arteries were similar between LZR and OZR. CONCLUSIONS: Taken together, these results indicate that obesity, as manifested in the prediabetic OZR, does not impair coronary vasomotor control. This lack of dysfunction in the presence of the same risk factors that affect other beds may reflect a reversal of vascular injury by the increased metabolism and coronary blood flow caused by hyperdynamic cardiac function early in obesity.  相似文献   

10.
The objective of this research was to examine the contribution of a moderately high fat (MHF) diet to the development of salt-sensitive hypertension in obese Zucker rats. Lean and obese Zucker rats were fed either a MHF diet or a diet of standard rat chow (control diet) for 10 weeks. From week 4 through week 10, the drinking water was supplemented with 1% NaCl. Blood pressure was measured weekly, and urinary excretion of nitric oxide metabolites (NO(x)) was determined at weeks 4 and 10. At week 10, renal nitric oxide synthase (NOS) activity was assessed in kidney homogenates. Blood pressures of obese, but not lean, rats on the MHF fat diet were significantly increased by salt-supplementation, whereas blood pressures of rats on the control diet were not appreciably affected. NO(x) excretion was increased in response to salt-supplementation in rats on the control diet, with the effect being particularly dramatic in obese rats. After salt-supplementation, NO(x) excretion by rats on the MHF diet was lower than rats on the control diet. In obese rats on the MHF diet, this decrease in NO production was accompanied by a reduction in renal NOS activity. These results indicate that obese rats are more inclined than lean rats to develop diet-induced hypertension in response to a moderately high fat, salt-supplemented diet. Furthermore, they suggest that MHF diet-induced defects in NO production may promote the salt-sensitivity of blood pressure in obese Zucker rats, which appear to require more NO to maintain blood pressure during a salt challenge.  相似文献   

11.
Renal clearance studies were conducted in conscious, chronically catheterized obese and lean Zucker rats to investigate the natriuretic responses to i) acute IV infusion of isotonic NaCl= 5% of total body weight and ii) IV infusion of α rat atrial natriuretic peptide (ANP) in a dose of 300 ng/kg/min. In the baseline state, arterial blood pressure (BP) was significantly higher in obese vs lean rats. Absolute values of GFR and sodium excretion were similar but lower in obese vs lean rats when factored for body weight. In the 2 h period during and after NaCl infusion, obese rats showed a greater natriuresis vs lean while BP rose significantly and similarly. ANP infusion was natriuretic in obese rats but had no effect on lean rats. ANP lowered BP in both groups but BP remained higher in obese vs lean rats at all times. These studies show that in the chronic, unstressed preparation the 6–8 month old, female Zucker obese rat has a higher BP vs the 6–8 month old lean Zucker. The short term natriuretic response to either a NaCl load or ANP infusion is greater in obese vs lean Zuckers and the depressor response to ANP is intact in obese Zuckers. Thus the higher BP in this model of obesity is unlikely to be due to either a defective response to ANP or to a defect in the renal response to acute sodium challenge.  相似文献   

12.
Background and AimThe purpose of this study was to evaluate the effects of exercise training on cardiac apoptotic pathways in obesity.Methods and ResultsSixteen lean Zucker rats (LZR) and sixteen obese Zucker rats (OZR) of 5–6 months of age as well as the other sixteen obese rats were subjected to treadmill running exercise for 1 h everyday for 3 months (OZR-EX). After exercise training or sedentary status of the rats, the excised hearts from the three groups were measured by heart weight index, H&E staining, TUNEL assays and Western blotting. Cardiac TUNEL-positive apoptotic cells, the protein levels of TNF alpha, Fas ligand, Fas receptors, Fas-associated death domain (FADD), Bad, Bax, activated caspase 8, activated caspase 9, and activated caspase 3 were higher in OZR than those in LZR. The protein levels of TNF alpha, Fas ligand, Fas receptors, FADD, activated caspase 8, and activated caspase 3 (Fas pathway) and the protein levels of Bad, Bax, Bax-to-Bcl2 ratio, activated caspase 9, and activated caspase 3 (mitochondria pathway) were lower in OZR-EX than those in OZR.ConclusionCardiac Fas-dependent and mitochondria-dependent apoptotic pathways become more activated in obesity. Exercise training can prevent obesity-activated cardiac Fas-dependent and mitochondria-dependent apoptotic pathways. Our findings demonstrate a new therapeutic effect of exercise training to prevent delirious cardiac Fas-mediated and mitochondria-mediated apoptosis in obesity.  相似文献   

13.
Clinical studies have demonstrated that the pressor response to acute stress is larger in obese versus lean individuals. We therefore tested the hypotheses that the pressor response to behavioral stress is greater in obese (OZRs) versus lean Zucker rats (LZRs) and that reduced beta-adrenergic-mediated vasodilation contributes to the enhanced pressor response. Animals were restrained and subjected to acute pulsatile air jet stress (3 minutes), followed by a poststress period of 20 minutes; beta-adrenergic blockade was achieved with propranolol (5 mg/kg, IV) given 15 minutes before the start of air jet stress. Mean arterial pressure (MAP) was continuously monitored by telemetry. Untreated OZRs responded with a greater integrated pressor response (area under the curve [AUC]) to acute stress (41.2+/-6.1 versus 21.2+/-3.3 mm Hgx3 minutes, OZR versus LZR; P<0.05) and significantly reduced poststress recovery of MAP. Beta-adrenergic blockade had no effect on stress AUC in either LZRs or OZRs but significantly attenuated the poststress recovery of MAP in LZRs only (poststress AUC: -100.1+/-48.1 versus 49.0+/-13.5 mm Hgx20 minutes, untreated versus propranolol; P<0.05). In anesthetized animals, significantly smaller increases in mesenteric vascular conductance contributed to blunted depressor responses to isoproterenol in OZRs versus LZRs, suggesting that beta-adrenergic stimulation causes a greater reduction in total peripheral resistance in lean versus obese animals. We conclude that beta-adrenergic-mediated vasodilation facilitates blood pressure recovery after stress and that this pathway is compromised in an animal model of morbid obesity, resulting in the impaired ability to regulate blood pressure during stress.  相似文献   

14.
Androgen levels are lower in obese men as compared with normal weight individuals. However, there are no safety data regarding the chronic use of androgen supplements in middle-aged men. The present study was undertaken to determine the cardiovascular and metabolic effects of chronic (10 weeks) testosterone treatment in male obese Zucker rats, starting at 22 weeks of age, when testosterone levels were significantly decreased. Testosterone supplements increased plasma levels, 10-fold in both obese Zucker rats and lean Zucker rats. In obese Zucker rats, testosterone supplements reduced body weight, plasma insulin, and cholesterol levels and improved the oral glucose tolerance test. None of these parameters were affected in lean Zucker rats. Mean arterial pressure was significantly increased in obese Zucker rats but not lean Zucker rats. Testosterone supplements increased proteinuria and accelerated renal injury in lean Zucker rats only. Thus, treatment of obese men with chronic testosterone supplements should be done with careful monitoring of blood pressure.  相似文献   

15.
In the rat, elevated arterial pressure is not consistently associated with obesity. The purpose of this study was to compare measurements of blood pressure, cardiac output, and total peripheral resistance in obese and lean Zucker rats on different NaCl intakes. Obese and lean rats drank either water or isotonic NaCl for 18 days. Tail systolic blood pressures of saline-drinking obese rats were higher than all other groups (p less than 0.05). NaCl intake did not affect blood pressure in lean rats, and blood pressures of water-drinking obese rats did not differ from those of lean controls. In a subsequent experiment, direct arterial pressures and cardiac outputs (thermodilution) were measured in separate groups of conscious rats that had been maintained on a 1% or 4% NaCl intake for 12 weeks. Arterial pressure was higher (p less than 0.01) in obese rats fed 4% NaCl (130 +/- 4 mm Hg) than in obese rats fed 1% NaCl (118 +/- 2 mm Hg) or than in lean rats fed either NaCl intake (118 +/- 3 mm Hg and 116 +/- 3 mm Hg, respectively). Cardiac output of obese rats was higher than that of lean rats (p less than 0.01); however, the NaCl-induced increase of blood pressure was accounted for by an increase of peripheral resistance (p less than 0.01). Thus, in contrast to the lean Zucker rat, arterial pressure of the obese Zucker rat is increased by a high dietary intake of NaCl.  相似文献   

16.
Obese 7–8 mo-old female Zucker rats (fa/fa) and their lean littermates (Fa/?) exhibited the same percentage increase in body weight during a 50-day period when both groups of animals were fed a highly palatable snack food diet (SF). A subsequent 50-day period of refeeding with standard laboratory chow caused rats of both genotypes to shed the excess weight gained on SF. These findings suggest that lean and obese Zucker female rats are comparably responsive to a highly palatable diet. When a second group of female fa/fa rats were fed either SF or another palatable, semipurified high fat diet for 135 days, beginning at 2–3 mo of age, they were found to have substantially more fat cells in all depots studied that did female (fa/fa) rats that had been fed only chow. Thus, the obese Zucker rat is also comparable to normal rats with respect to the phenomenon of diet-induced adipocyte hyperplasia.  相似文献   

17.
Some in vivo and ex vivo studies demonstrated a resistance to the vasodilating effects of nitric oxide (NO) in insulin-resistant states and, in particular, obese Zucker rats (OZR). To evaluate the biochemical basis of this phenomenon, we aimed to identify defects of the NO/cGMP/cGMP-dependent protein kinase (PKG) pathway in cultured vascular smooth muscle cells (VSMCs) from OZR and lean Zucker rats (LZR) by measuring: 1) NO donor ability to increase cGMP in the absence and presence of inhibitors of soluble guanylate cyclase (sGC) and phosphodiesterases (PDEs); 2) NO and cGMP ability to induce, via PKG, vasodilator-stimulated phosphoprotein (VASP) phosphorylation at serine 239 and PDE5 activity; 3) protein expression of sGC, PKG, total VASP, and PDE5; 4) superoxide anion concentrations and ability of antioxidants (superoxide dismutase+catalase and amifostine) to influence the NO/cGMP/PKG pathway activation; and 5) hydrogen peroxide influence on PDE5 activity and VASP phosphorylation. VSMCs from OZR vs. LZR showed: 1) baseline cGMP concentrations higher, at least in part owing to reduced catabolism by PDEs; 2) impairment of NO donor ability to increase cGMP, even in the presence of PDE inhibitors, suggesting a defect in the NO-induced sGC activation; 3) reduction of NO and cGMP ability to activate PKG, indicated by the impaired ability to phosphorylate VASP at serine 239 and to increase PDE5 activity via PKG; 4) similar baseline protein expression of sGC, PKG, total VASP, and PDE5; and 5) higher levels of superoxide anion. Antioxidants partially prevented the defects of the NO/cGMP/PKG pathway observed in VSMCs from OZR, which were reproduced by hydrogen peroxide in VSMCs from LZR, suggesting the pivotal role of oxidative stress.  相似文献   

18.
The purpose of this study was to investigate the peripheral vascular and metabolic adaptations induced by aerobic training in normoglycemic (11-week-old) and hyperglycemic (18-week-old) insulin-resistant male obese Zucker rats (OZR). OZR were treadmill trained 6-11 (T6-11), 11-18 (T11-18), or 6-18 (T6-18) weeks of age at 15 m/min. 17 percent grade, 1 hour/day, 5 days/week. Forty-eight hours after the last training session and after a 12 hour fast, a tail vein blood sample was obtained for analysis of glucose and insulin concentrations, cholesterol, and glycosylated hemoglobin fraction. Glucose uptake and hindlimb vascular resistance were measured during extracorporeal perfusion of the hindlimb (1.0mU insulin/ml). Trained animals were compared to sedentary age-matched obese (S-OZR) and lean (LZR) animals. S-OZR were hyperinsulinemic and obese at 6 weeks of age, mildly hypercholesterolemic and hyperglycemic at 11 weeks, and profoundly hyperglycemic at 18 weeks. Training did not affect body weight or serum cholesterol. Fasting insulin and glucose concentrations were not different between sedentary and trained OZR, except T6-18 which had higher insulin and lower glucose concentrations. The insulin/glucose ratio was lower in OZR animals and was not altered by 6-7 week training (T6-11, T11-18), but was normalized by 12 week training (T6-18). No significant differences in glycosylated hemoglobin fractions were observed between groups. Normalization of glucose uptake was observed in trained 11-week-old OZR, and a statistically non-significant (P = 0.10) 40 percent improvement was observed in trained 18-week-old OZR. Hindlimb vascular resistance was elevated in the S-OZR, relative to LZR, at 11 and 18 weeks of age, and was reduced with training. One hour/day exercise training normalized hindlimb vascular resistance and glucose uptake in 11-week-old OZR, but only moderately improves these vascular and metabolic variables in 18-week-old hyperglycemic animals. Prolonged (12 weeks) training reduced the severity of fasting hyperglycemia in older animals, but at the expense of an increased fasting insulin concentration.  相似文献   

19.
Studies were performed in male Zucker rats to determine the metabolic effect of genetic obesity on whole body cholesterol homeostasis. Lean and obese mature Zucker rats were studied during intake of either a chow diet or a semisynthetic diet containing 10% corn oil; in addition growing animals were studied during constant body weight gain on a chow diet. Under all conditions the obese Zucker rats had significantly higher levels of total plasma cholesterol and triglyceride; however, measurements of the specific activity of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase and of the rate of whole body cholesterol synthesis by sterol balance techniques demonstrated that the lean and obese animals did not differ in their endogenous rates of cholesterol synthesis. When sterol balance data were calculated per kilogram body weight, lean male Zucker rats synthesized a greater amount of cholesterol per day than obese animals. These studies demonstrate that the obese male Zucker rat, in many ways a model of human obesity, does not overproduce cholesterol and thus fails to exhibit one of major characteristics of the obese human.  相似文献   

20.
OBJECTIVE: Obesity, non-insulin-dependent diabetes mellitus (NIDDM) and hypertension are leading causes associated with increased cardiovascular morbidity and mortality. In modern times, the combined first line antihypertensive therapy with at least two drugs with a different mechanism of action to achieve a better blood pressure control, is increasing in acceptance worldwide. The aim of the present study was to determine possible beneficial effects of the low-dose combination (LDC) of an angiotensin-converting enzyme (ACE) inhibitor, perindopril (PER), and the diuretic indapamide (IND), regarding myocardial and vessels protection in an animal model of hypertension, obesity and NIDDM, such as the obese Zucker rat (OZR), and control lean Zucker rats (LZR). DESIGN: Ten-week-old male OZR (fa/fa) and LZR (Fa/fa) were used in this study. OZR group (G1, n=8), OZR with LDC group (G2, n=8); LZR group (G3, n=8) and LZR with LDC group (G4, n=8). During 6 months, G2 and G4 received a daily dose of 1 mg/kg combination of 0.76 mg/kg PER + 0.24 mg/kg IND, (ratio of doses 0.32), by gavage, and G1 and G3 received an equal volume of vehicle throughout the experiment. In order to evaluate cardiac dimensions and left ventricular mass (LVM) transthoracic echocardiograms were performed, at baseline and at the end of the experiment. Urine and blood samples for biochemical determination were obtained. After 6 months of treatment all rats were sacrificed, hearts were harvested for light microscopy (LM), high-resolution light microscopy (HRLM), immunohistochemistry including monoclonal antibodies against transforming growth factor beta (TGFbeta1) and anti-collagen type I (COL I) and type III (COL III) and electron microscopy (EM) studies. RESULTS: At the end of the study OZR treated with LDC presented: (1) lower blood pressure (128.9 +/- 4 versus 150.3 +/- 3.6 mmHg, P< 0.05); (2) smaller cardiac dimensions (P< 0.01); (3) lower LVM/100 g body weight (0.17 +/- 0.02 versus 0.30 +/- 0.05, P< 0.01); (4) higher fractional shortening (34.5 +/- 3.2 versus 23.3 +/- 5.9%, P< 0.01) than OZR untreated. Moreover, OZR that received LDC showed higher: (1) myocyte density (48 +/- 1.5 versus 20 +/- 2.5 myocytes/area, P< 0.01); (2) capillary density (30.5 +/- 3.1 versus 9.5 +/- 1.6 capillaries/area, P<0.01); (3) myofilament thickness (12.05 +/- 0.27 versus 9.83 +/- 0.39 nm, P<0.01); and lower amounts of: (1) TGFbeta1 in myocytes (P< 0.01), interstitium (P< 0.01) and vessel wall (P< 0.05); (2) COL I and COL III (P< 0.01), and COL I /COL III ratio (P< 0.01), compared with untreated OZR. Finally, OZR-treated with LDC showed not only unsubstantial modification in carbohydrate and lipid metabolism when compared with untreated OZR, but also an improvement in insulin/glucose ratio (P< 0.05). CONCLUSION: These results suggest that LDC of PER + IND can control cardiovascular damage in OZR providing an additional help in the metabolic scenario likewise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号