首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA.  相似文献   

2.
Previously, a selection of low molecular weight contact and respiratory allergens had tested positive in both a skin and a respiratory local lymph node assay (LLNA), but formaldehyde was negative for sensitization by inhalation. To investigate whether this was due to intrinsic properties of aldehyde sensitizers, the structurally related allergen glutaraldehyde (GA) was tested. BALB/c mice were exposed by inhalation to 6 or 18ppm GA (respiratory LLNA), both generated as a vapor and as an aerosol. Other groups received 0.25% or 2.5% GA on the skin of the ears (skin LLNA). Lymphocyte proliferation and cytokine production were measured in the draining lymph nodes. GA was positive in the skin LLNA and its cytokine profile (IL-4/IFN-γ) skewed towards a Th2-type immune response with increasing dose. Inhalation exposure did not result in increased lymphocyte proliferation or increased cytokine levels, despite comparable tissue damage (irritation) in the skin and respiratory tract. We hypothesize that the highly reactive and hydrophilic GA oligomerizes in the protein-rich mucous layer of the respiratory tract, which impedes sensitization but still facilitates local irritation. Within the context of risk assessment in respiratory allergy, our results stress the importance of prevention of skin--besides inhalation-- exposure to aldehydes like GA.  相似文献   

3.
The murine local lymph node assay (LLNA) is a method for the prospective identification of skin sensitizing chemicals. Proliferative responses induced in lymph nodes draining the site of topical application of the test chemical are measured and those chemicals that induce a stimulation index of three or more compared with concurrent vehicle-treated controls are considered to have the potential to cause skin sensitization. Dose-response data from the LLNA may be used to derive an estimate of relative skin sensitizing potency, based upon derivation of the concentration of chemical required to cause a stimulation index of 3 (EC3 value) as calculated by linear interpolation. The purpose of the present investigations was to examine the stability of LLNA responses and the consistency of derived EC3 values induced by the contact allergen paraphenylenediamine (PPD). Analyses were conducted once a month over a 4-month period in each of two independent laboratories. In all assays, and in both laboratories, PPD elicited a positive response. Although some minor differences in responses between and within laboratories were observed, the derived EC3 values were generally very consistent. In Laboratory 1, EC3 values varied between 0.06 and 0.09% PPD, whereas in Laboratory 2 the range was 0.09-0.20%. These EC3 values are consistent with clinical experience of this material insofar as it is a common and relatively potent cause of allergic contact dermatitis in humans. Taken together, these data confirm the stability of LLNA responses both with time and between laboratories and provide additional support for the use of derived EC3 values in the assessment of relative skin sensitizing potency.  相似文献   

4.
5.
Effective risk assessment and management of allergic contact dermatitis require three key factors: adequate hazard identification, measurement of the relative potency of identified hazards and an understanding of the nature, extent and duration of exposure. Suitable methods for hazard identification, such as the murine local lymph node assay (LLNA) and the guinea-pig maximization test, are well established and conditions of human exposure normally can be well anticipated. Thus, the need is for a robust and quantitative method for the estimation of relative skin sensitizing potency. One possible approach is via the analysis of LLNA dose-response data. In the LLNA, contact allergens are defined currently as those chemicals that cause a threefold or greater increase in lymph node cell proliferative activity compared with concurrent vehicle-treated controls. It is possible to estimate the concentration of a sensitizer required to generate a threefold stimulation of proliferation in draining lymph nodes; such a concentration is known as the EC3 value. Using a variety of statistical approaches to derive EC3 values from LLNA dose-response data for 10 chemicals, it has been demonstrated that simple linear interpolation between the values either side of the threefold stimulation index provides a robust assessment of the EC3 value without the need for recourse to more sophisticated statistical techniques. Provided that the appropriate concentrations of test chemical have been selected, EC3 values obtained in this way are reproducible both within and between laboratories and form the basis for examination of the utility of this approach for the estimation of relative skin sensitizing potency.  相似文献   

6.
We have investigated the cytokine response pattern following sensitisation (induction) of BALB/c mice with different chemicals (dinitrochlorobenzene, dinitrofluorobenzene, oxazolone, glutaraldehyde, formaldehyde, trimellitic anhydride, croton oil) and elicitation (challenge) of contact allergy in sensitised animals. The results of our investigations showed that different chemicals induced both T helper (Th) 1 cytokines [interleukin (IL) 2, interferon beta (IFNgamma) [corrected] and Th2 cytokines (IL-4, IL-10) at different stages during murine contact allergy. We also confirmed our previous findings that IL-4 and IL-10 release were up-regulated during the challenge phase regardless the contact allergen used, whereas the release of IFNgamma [corrected] did not show a clear preference for being up- or down-regulated. In our hands, the increased expression of Th2 cytokines after challenge exposure to contact allergens appeared as a stable marker of secondary contact allergenic responses. Quantitative differences in the expression of IL-4 were observed between different contact allergens. The present results clearly indicate that skin sensitisers were able to elicit cytokine response patterns, which could not be related to a clear-cut Th1 or Th2 type of cytokine response. Furthermore, dermal application of contact allergens produced different kinetics of cytokine secretion upon induction and challenge. In our hands, the co-expression of Th1 and Th2 type cytokines appeared as a universal consequence of dermal application of contact allergens to responsive mice. Our results indicate that co-expression of Th1 and Th2 cytokines during contact allergy is an important feature of murine contact allergy in responsive mice and that chemicals differ in their potency to induce the expression of these cytokines. Furthermore, the results do not support the view that different chemicals induce Th1 or Th2 cytokines in a mutually exclusive manner depending on their preference for inducing either contact or respiratory allergy. The results are expected to renew the discussion about the usefulness of the Th1/Th2 paradigm in certain areas of immunotoxicology.  相似文献   

7.
The Local Lymph Node Assay (LLNA) is the most common in vivo regulatory toxicology test for skin sensitisation, quantifying potency as the EC3, the concentration of chemical giving a threefold increase in thymidine uptake in the local lymph node. Existing LLNA data can, along with clinical data, provide useful comparator information on the potency of sensitisers. Understanding of the biological variability of data from LLNA studies is important for those developing non-animal based risk assessment approaches for skin allergy. Here an existing set of 94 EC3 values for 12 chemicals, all tested at least three times in the same vehicle have been analysed by calculating standard deviations (SD) for logEC3 values. The SDs range from 0.08 to 0.22. The overall SD for the 94 logEC3 values is 0.147. Thus the 95% confidence limits (2xSD) for LLNA EC3 values are within a factor of 2, comparable to those for physico-chemical measurements such as partition coefficients and solubility. The residual SDs of Quantitative Mechanistic Models (QMMs) based on physical organic chemistry parameters are similar to the overall SD of the LLNA, indicating that QMMs of this type are unlikely to be bettered for predictive accuracy.  相似文献   

8.
CBA/J and CBA/Ca mice are the recommended strains for local lymph node assays (LLNAs). Here, we report quantitative and qualitative comparisons between both mouse strains to provide useful information for the strain selection of sensitization testing. LLNA was conducted, in accordance with Organisation for Economic Co‐operation and Development Test Guideline No. 429, with CBA/J and CBA/Ca mice using five chemicals including typical contact sensitizers and non‐sensitizers: 2,4‐dinitrochlorobenzene (DNCB), isoeugenol, α‐hexylcinnamic aldehyde (HCA), propylene glycol (PG), and hexane; then outcomes were compared based on the raw data (disintegrations per minute, DPM), stimulation index (SI) values, EC3 values and positive/negative decisions. Although a significant difference was noted between DPM values derived from each strain of mice, SI values exhibited no considerable difference. The EC3 values for DNCB in CBA/J and CBA/Ca mice were 0.04 and 0.03, those for isoeugenol were 1.4 and 0.9, and those for HCA were 7.7 and 6.0, respectively. All EC values derived from each test system were almost equivalent and were within the range of acceptance criteria of the ICCVAM performance standard for LLNA. Positive/negative outcomes for all test chemicals were consistent. In conclusion, no considerable differences were observed in the final outcomes derived from CBA/J and CBA/Ca mice in LLNA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
There are currently no validated animal models that can identify low molecular weight (LMW) respiratory sensitizers. The Local Lymph Node Assay (LLNA) is a validated animal model developed to detect contact sensitizers using skin exposure, but all LMW respiratory sensitizers tested so far were also positive in this assay. Discrimination between contact and respiratory sensitizers can be achieved by the assessment of cytokine profiles. In a LLNA using the inhalation route, both contact and respiratory sensitizers enhanced proliferation in the draining lymph nodes. The question was if their cytokine profiles were affected by the route of exposure. Male BALB/c mice were exposed head/nose-only during 3 consecutive days to the respiratory sensitizers trimellitic anhydride, phthalic anhydride, toluene diisocyanate, hexamethylene diisocyanate (HDI), and isophorone diisocyanate; the contact sensitizers dinitrochlorobenzene (DNCB), oxazolone (OXA) and formaldehyde (FA), and the irritant methyl salicylate (MS). Three days after the last exposure the draining lymph nodes were excised and cytokine production was measured after ex vivo stimulation with Concanavalin A. Skin application was used as a positive control. After inhalation exposure the respiratory sensitizers induced more interleukin-4 (IL-4) and interleukin (IL-10) compared to the contact sensitizers, whereas the contact sensitizers, except formaldehyde, induced relatively more interferon-γ (IFN-γ) production. When IL-4 and IFN-γ were plotted as a function of the proliferative response, it was shown that IL-4 could be used to identify respiratory sensitizers, except HDI, at concentration levels inducing intermediate stimulation indices. HDI could be distinguished from DNCB and OXA at high SI values. In contrast, contact sensitizers could only be identified when IFN-γ was measured at high stimulation indices. The skin positive control, tested at high concentrations, showed comparable results for IL-4 and IL-10, whereas IFN-γ levels could not be used to discriminate between respiratory and contact sensitizers. The contact sensitizer FA and the irritant MS did not induce significant cytokine production after inhalation and skin exposure. In conclusion, the respiratory LLNA is able to identify and distinguish strong contact and respiratory sensitizers when simultaneously proliferation and cytokine production are assessed in the upper respiratory tract draining LNs.  相似文献   

10.
The murine local lymph node assay (LLNA) is currently recognized as a stand-alone test method for determining the skin sensitizing potential of chemicals. It has been incorporated into the official test guidelines published by some authorities, including the OECD. To avoid the use of radioisotopes, efforts have been made recently to develop non-radioisotopic modifications of the LLNA. A non-radioisotopic modification of the LLNA was developed previously using 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA). However, the non-RI LLNA was found to be somewhat less sensitive than the standard assay. This study reports the advantage of using mice of the CBA/N strain in the non-RI LLNA to improve the sensitivity of this method. The non-RI LLNA was performed using CBA/JN and CBA/N mice exposed to one of four confirmed skin sensitizers, 2,4-dinitrochlorobenzene (DNCB), eugenol (EG), isoeugenol (IEG) or alpha-hexylcinnamic aldehyde (HCA), and to one non-sensitizer, propylene glycol (PG). The EC3 values for DNCB, IEG, EG, HCA and PG were calculated to be 0.1%, 9.6%, 40.6%, 45.5% and >50% in CBA/JN mice and 0.08%, 1.9%, 10.7%, 20.3% and >50% in CBA/N mice, respectively. The EC3 values for DNCB, IEG, EG, HCA and PG in the standard LLNA using CBA/Ca mice and radioisotopes were reported elsewhere as being 0.08%, 1.3%, 13.0%, 8.0% and >50%, respectively. The EC3 values derived from the CBA/N mice in the non-RI LLNA were nearly equivalent to the EC3 values obtained using the standard radioisotopic LLNA with CBA/Ca mice. These data suggest that the use of CBA/N mice may provide a realistic opportunity to develop a version of the LLNA that does not have a requirement for the use of radioisotopes, but which nevertheless has sensitivity approaching, or comparable to, the standard method.  相似文献   

11.
Quantitative risk assessment for skin sensitization is directed towards the determination of levels of exposure to known sensitizing substances that will avoid the induction of contact allergy in humans. A key component of this work is the predictive identification of relative skin sensitizing potency, achieved normally by the measurement of the threshold (the “EC3” value) in the local lymph node assay (LLNA). In an extended series of studies, the accuracy of this murine induction threshold as the predictor of the absence of a sensitizing effect has been verified by conduct of a human repeated insult patch test (HRIPT). Murine and human thresholds for a diverse set of 57 fragrance chemicals spanning approximately four orders of magnitude variation in potency have been compared. The results confirm that there is a useful correlation, with the LLNA EC3 value helping particularly to identify stronger sensitizers. Good correlation (with half an order of magnitude) was seen with three-quarters of the dataset. The analysis also helps to identify potential outlier types of (fragrance) chemistry, exemplified by hexyl and benzyl salicylates (an over-prediction) and trans-2-hexenal (an under-prediction).  相似文献   

12.
The local lymph node assay (LLNA) is used to identify allergens by means of dermal exposure. For hazard identification, besides identification also the distinction between contact and respiratory allergens is of importance. We have previously shown that a modified LLNA can be used to identify respiratory allergens, on the basis of Con A induced IL-4 production. Here we show a good qualitative correlation between mRNA expression and production of IFN-gamma and IL-4. This suggests that distinction between contact and respiratory allergens may also be studied at the mRNA expression level. Secondly, another assay, similar to the modified LLNA but differing in the duration and the number of allergen applications as well as in the ex vivo culture conditions, here denoted as 'longer' assay, has been reported to be able to identify contact allergens, on the basis of (spontaneous) IFN-gamma production. In the present study we have compared these assays. Similar to our previous findings, in the modified LLNA exposure to the respiratory allergen trimellitic anhydride (TMA) resulted in a approximately 10-fold higher Con A induced IL-4 production compared with the contact allergen dinitrochlorobenzene (DNCB), while exposure to both allergens resulted in a similar Con A induced IFN-gamma production. In the 'longer' assay, TMA exposure resulted in Con A induced IL-4 production whereas DNCB exposure did not. Importantly, only a 2-fold higher spontaneous IFN-gamma production was induced by DNCB compared with TMA, the difference being not statistically significant. Thus, although the 'longer' assay indeed showed a somewhat higher IFN-gamma induction by DNCB compared with TMA, the magnitude and robustness of this effect question its applicability. These results favor the modified LLNA since it is shorter, and combines identification of allergens (by cell proliferation) with identification of respiratory allergens (by IL-4 production). Compounds that induce cell proliferation with a low concomitant IL-4 production may thus be identified as contact allergens, although the need to positively identity such allergens remain.  相似文献   

13.
The identification and characterization of chemicals that possess skin-sensitizing potential are typically performed using predictive tests. However, human exposure to skin-sensitizing chemicals often occurs via a matrix (vehicle) that differs from that used in these tests. It is thus important to account for the potential impact of vehicle differences when undertaking quantitative risk assessment for skin sensitization. This is achieved through the application of a specific sensitization assessment factor (SAF), scaled between 1 and 10, when identifying an acceptable exposure level. The objective of the analysis described herein is to determine the impact of vehicle differences on local lymph node assay (LLNA) EC3 values (concentrations of test chemical required to provoke a 3-fold increase in lymph node cell proliferation). Initially, the inherent variability of the LLNA was investigated by examining the reproducibility of EC3 values for 14 chemicals that have been tested more than once in the same vehicle (4:1 acetone:olive oil, AOO). This analysis reveals that the variability in EC3 value for these chemicals following multiple assessments is <5-fold. Next, data from the literature and previously unpublished studies were compiled for 18 chemicals that had been assessed in the LLNA using at least 2 of 15 different vehicles. These data demonstrate that often the variability in EC3 values observed for a given chemical in different vehicles is no greater than the 5-fold inherent variability observed when assessing a chemical in the same vehicle on multiple occasions. However, there are examples where EC3 values for a chemical differ by a factor of more than 10 between different vehicles. These observations were often associated with an apparent underestimation of potency (higher EC3 values) with predominantly aqueous vehicles or propylene glycol. These data underscore the need to consider vehicle effects in the context of skin-sensitization risk assessments.  相似文献   

14.
Hundreds of chemicals are contact allergens but there remains a need to identify and characterise accurately skin sensitising hazards. The purpose of this review was fourfold. First, when using the local lymph node assay (LLNA), consider whether an exposure concentration (EC3 value) lower than 100% can be defined and used as a threshold criterion for classification and labelling. Second, is there any reason to revise the recommendation of a previous ECETOC Task Force regarding specific EC3 values used for sub-categorisation of substances based upon potency? Third, what recommendations can be made regarding classification and labelling of preparations under GHS? Finally, consider how to integrate LLNA data into risk assessment and provide a rationale for using concentration responses and corresponding no-effect concentrations. Although skin sensitising chemicals having high EC3 values may represent only relatively low risks to humans, it is not possible currently to define an EC3 value below 100% that would serve as an appropriate threshold for classification and labelling. The conclusion drawn from reviewing the use of distinct categories for characterising contact allergens was that the most appropriate, science-based classification of contact allergens according to potency is one in which four sub-categories are identified: ‘extreme’, ‘strong’, ‘moderate’ and ‘weak’. Since draining lymph node cell proliferation is related causally and quantitatively to potency, LLNA EC3 values are recommended for determination of a no expected sensitisation induction level that represents the first step in quantitative risk assessment.  相似文献   

15.
The murine local lymph node assay (LLNA) is a method for the predictive identification of chemicals that have a potential to cause skin sensitization. Activity is measured as a function of lymph node cell (LNC) proliferative responses stimulated by topical application of test chemicals. Those chemicals that induce a threefold or greater increase in LNC proliferation compared with concurrent vehicle controls are classified as skin sensitizers. In the present investigations we have evaluated further the reliability and accuracy of the LLNA. In the context of an international interlaboratory trial the sensitization potentials of six materials with a history of use in topical medicaments have been evaluated: benzoyl peroxide, hydroquinone, penicillin G, streptomycin sulfate, ethylenediamine dihydrochloride, and methyl salicylate. Each chemical was analyzed in the LLNA by all five laboratories. Either the standard LLNA protocol or minor modifications of it were used. Benzoyl peroxide and hydroquinone, both human contact allergens, elicited strong LLNA responses in each laboratory. Penicillin G, another material shown previously to cause allergic contact dermatitis in humans, was also positive in all laboratories. Streptomycin sulfate induced equivocal responses, in that this material provoked a positive LLNA response in only one of the five laboratories, and then only at the highest concentration tested. Ethylenediamine dihydrochloride dissolved in a 3:1 mixture of acetone with water, or in 4:1 acetone:olive oil (one laboratory), was uniformly negative. However, limited further testing with the free base of ethylene diamine yielded a positive LLNA response when applied in acetone:olive oil (AOO). Finally, methyl salicylate, a nonsensitizing skin irritant, was negative at all test concentrations in each laboratory. Collectively these data serve to confirm that the local lymph node assay is sufficiently robust to yield equivalent results when performed independently in separate laboratories and indicate also that the LLNA is of value in assessing the skin sensitization potential of topical medicaments.  相似文献   

16.
Allergic contact dermatitis is a serious health problem. There is a need to identify and characterize skin sensitization hazards, particularly with respect to relative potency, so that accurate risk assessments can be developed. For these purposes the murine local lymph node assay (LLNA) was developed. Here, we have investigated further a modi fi cation of this assay, non-radioisotopic LLNA, which in place of tritiated thymidine to measure lymph node cell proliferation employs incorporation of 5-bromo-2'-deoxyuridine. Using this method we have examined the skin sensitizing activity of eugenol, a known human contact allergen, and its dimers 2,2'-dihydroxyl-3,3'-dimethoxy-5,5'-diallyl-biphenyl (DHEA) and 4,5'-diallyl-2'-hydroxy-2,3'-dimethoxy phenyl ether (DHEB). Activity in the guinea pig maximization test (GPMT) also measured. On the basis of GPMT assays, eugenol was classified as a mild skin sensitizer, DHEA as a weak skin sensitizer and DHEB as an extreme skin sensitizer. In the non-radioisotopic LLNA all chemicals were found to give positive responses insofar as each was able to provoke a stimulation index (SI) of >or=3 at one or more test concentrations. The relative skin sensitizing potency of these chemicals was evaluated in the non-radioisotopic LLNA by derivation of an ec(3) value (the concentration of chemical required to provoke an SI of 3). The ec(3) values calculated were 25.1% for eugenol, >30% for DHEA and 2.3% for DHEB. Collectively these data suggest that assessments of relative potency deriving from non-radioisotopic LLNA responses correlate well with evaluations based on GPMT results. These investigations provide support for the proposal that the non-radioisotopic LLNA may serve as an effective alternative to the GPMT where there is a need to avoid the use of radioisotopes.  相似文献   

17.
The local lymph node assay (LLNA) is a new and promising test in mice used to identify contact allergens by means of dermal exposure. Experimentally this assay, which comprises a sensitizing phase only, is also used to identify respiratory allergens. Another, experimentally used test in mice to identify allergens is also based on dermal exposure, but comprises both a sensitizing and effector phase. In this latter test, it has been shown that contact allergens preferentially induce a T-helper 1 (TH1) response, whereas respiratory allergens preferentially induce a T-helper 2 (TH2) response. These responses can be discriminated on the basis of cytokine production, such as IFN-gamma, which is produced by TH1 cells, and IL-4, which is produced by TH2 cells. The aim of the study was to establish whether the LLNA was sufficient to not only identify allergens but also mark them as either a contact or a respiratory allergen. To this end, LLNA responses to the contact allergen dinitrochlorobenzene (DNCB) and the respiratory allergen trimellitic anhydride (TMA) were determined using IFN-gamma and IL-4 mRNA expression and production as parameters. Topical application of TMA resulted in a threefold higher lymphocyte proliferation compared to DNCB 3 and 5 days after the first application, while a similar proliferation was found from Day 7 and onward. RT-PCR showed a similar induction of IFN-gamma and IL-4 mRNA expression. While both DNCB and TMA induced IFN-gamma production, TMA but not DNCB induced IL-4 production. Thus, only IL-4 production seemed a suitable parameter to discriminate between the two compounds. In a second study, the respiratory allergens toluene-2,4-diisocyanate (TDI) and phthalic anhydride (PA) were also assayed 7 days after the first application. Topical application of DNCB and PA resulted in a similar lymphocyte proliferation, while application of TMA and TDI resulted in a 1.8-fold higher proliferation. IFN-gamma production was similar for DNCB, TMA, and TDI, and fourfold lower for PA, while IL-4 production was similar for TMA, TDI, and PA, and 24-fold lower for DNCB. In summary, both studies showed induction of IL-4 production by respiratory allergens, with little or no induction by the contact allergen, holding promise for the possibility of identifying respiratory allergens within the LLNA by measuring IL-4 production 7 days after the first application.  相似文献   

18.
Melatonin is a good candidate for transdermal delivery considering its short plasma half life, low molecular weight and a favorable octanol:water partition coefficient. Nimesulide is a nonsteroidal anti-inflammatory agent used orally and rectally for inflammatory disorders. The objective of this study was to investigate the skin sensitization potential of melatonin and nimesulide using the standard murine local lymph node assay (LLNA). Melatonin (0.5, 2.5, 5.0 and 10.0%, w/v) and nimesulide (0.5, 2.5, 5.0 and 10.0%, w/v) dissolved in acetone:olive oil (4:1, AOO) was applied (25 microl) on the dorsal surface of each ear of female CBA/Ca mice for three consecutive days. On the sixth day, [3H]methyl thymidine was administered intravenously and the uptake of [3H]methyl thymidine (dpm) by the draining lymph nodes was determined by established methods. Dinitrochlorobenzene (DNCB, 0.25%, w/v) and para-aminobenzoic acid (PABA, 2.5%, w/v) were used as positive and negative control, respectively. The mean dpm obtained with melatonin and nimesulide treatment at all concentrations were not significantly different (P>0.05) from that of AOO. The stimulation index (SI) values of melatonin and nimesulide at different concentrations were close to 1. The results of the present study using the standard LLNA approved by US Interagency Coordinating Committee in the Validation of Alternative Methods (ICCVAM) indicate that melatonin and nimesulide are not skin sensitizers. However, since LLNA has shown false negatives with many drugs, clinical trials are certainly needed to exclude the possibility of a weak or delayed type skin sensitization reaction. Further studies using modified LLNA procedures (extended exposure, alternative vehicle systems, pre-abrasion, etc.) may be useful in identifying the weak or delayed type skin sensitization reactions.  相似文献   

19.
A modified local lymph node assay (LLNA) with ex vivo tritium thymidine (3H-TdR) labeling of the proliferating lymph node cells was used for determination of the allergenic potency of chemicals used in the production of rubber for latex medical gloves. Fifteen chemicals known to induce contact hypersensitivity reactions in man, including various thiuram, carbamate, and benzothiazole compounds, and one amine were tested. The EC3 (effective concentration inducing a 3-fold increase in proliferation of lymph node cells [Stimulation Index, SI = 3]) was calculated with nonlinear regression analysis, including a bootstrap method for determination of the 5-95% confidence interval of the EC3 value. This procedure identified 14 out of the 15 chemicals tested as sensitizers, while for one chemical, ZDBC, no EC3 could be calculated due to low responses and a lack of a dose-response relationship in the data obtained. The ranking order of the chemicals with increasing EC3 values (and thus decreasing allergenic potency) was found to be in the following order: ZDEC < TMTD < TETD < ZPC < ZDMC < MBTS < PTD < TMTM < MBT < MBI < PTT < ZMBT < TBTD < DEA < ZDBC. Our results indicate that the chemicals of choice for use in the production of natural rubber latex products would be for the thiuram compounds, TBTD; for the carbamates, ZDBC; and for the benzothiazoles, ZMBT. However, one has to be aware that besides potency, the total amount of residual chemical present in the final product is also important for allergy induction.  相似文献   

20.
The murine local lymph node assay (LLNA) is an internationallyaccepted assay for identification of contact allergens. TheLLNA has also been used in research studies to evaluate contactallergen potency, as well as chemical structural—allergenicactivity relationships. The 1-bromoalkanes have been used insuch a manner as they represent a chemical series with generallythe same chemical reactivity but differing in alkane carbonchain length–dependent lipid solubilities. Previous reportsnoted a biphasic LLNA response with increasing carbon chainlength that peaked at the 16-carbon chain (C16) of 1-bromohexadecane(delivered in an acetone-olive oil [AOO] vehicle; 4:1). In thepresent study, this biphasic LLNA response was confirmed, and1-bromoalkane chemical-physical factors were explored usingboth modeling tools and further laboratory studies to help understandthis finding. Volatility and effect of vehicle on 1-bromoalkanes’sensitizations were assessed. Selected 1-bromoalkanes were testedin the LLNA using the polar, protic vehicle, tetrahydrofuran-butanol(THF-BuOH; 1:1), to compare to the nonpolar (aprotic) vehicleAOO 1-bromoalkanes-LLNA responses. Enhanced 1-bromoalkane LLNAresponses were observed using the THF-BuOH vehicle but withthe greatest activity still observed for 1-bromohexadecane (C16).The shorter 1-bromoalkanes were subject to volatile losses uponapplication with approximately 75% volatile loss from a surfaceof 1-bromohexane (C6) within 5 min at room temperature. It isconcluded that multiple factors, in addition to lipid solubility,including vehicle, solvation, and retention on the skin surfacecontribute to the apparent potency of 1-bromoalkanes in theLLNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号