首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hippocampal formation plays an essential role in associative learning like passive avoidance (PA) learning. It has been shown; orexin-containing terminals and orexin receptors densely are distributed in the hippocampal formation. We have previously demonstrated that antagonization of orexin 1 receptor (OX1R) in CA1 region of hippocampus and dentate gyrus (DG) impaired spatial memory processing. Although, there are few studies concerning function of orexinergic system on memory processing in PA task, but there is no study about physiological function of OX1R on this process. To address this, the OX1R antagonist, SB-334867-A, was injected into DG or CA1 regions of hippocampus and evaluated the influence of OX1R antagonization on acquisition, consolidation and retrieval in PA task. Our results show that, SB-334867-A administration into CA1 region impaired memory retrieval but not PA acquisition and consolidation. However, SB-334867-A administration into DG region impaired acquisition and consolidation but not PA memory retrieval. Therefore, it seems that endogenous orexins play an important role in learning and memory in the rat through OX1Rs.  相似文献   

2.
Orexins and appetite regulation   总被引:5,自引:0,他引:5  
Initial research on the functional significance of two novel hypothalamic neuropeptides, orexin-A and orexin-B, suggested an important role in appetite regulation. Since then, however, these peptides have also been shown to influence a wide range of other physiological and behavioural processes. In this paper, we review the now quite extensive literature on orexins and appetite control, and consider their additional effects within this context. Although the evidence for orexin (particularly orexin-A and the orexin-1 receptor) involvement in many aspects of ingestive physiology and behaviour is incontrovertible, central administration of orexins is also associated with increased EEG arousal and wakefulness, locomotor activity and grooming, sympathetic and HPA activity, and pain thresholds. Since the orexin system is selectively activated by signals indicating severe nutritional depletion, it would be highly adaptive for a hungry animal not only to seek sustenance but also to remain fully alert to dangers in the environment. Crucial evidence indicates that orexin-A increases food intake by delaying the onset of a behaviourally normal satiety sequence. In contrast, a selective orexin-1 receptor antagonist (SB-334867) suppresses food intake and advances the onset of a normal satiety sequence. These data suggest that orexin-1 receptors mediate the episodic signalling of satiety and appear to bridge the transition from eating to resting in the rats' feeding-sleep cycle. The argument is developed that the diverse physiological and behavioural effects of orexins can best be understood in terms of an integrated set of reactions which function to rectify nutritional status without compromising personal survival. Indeed, many of the non-ingestive effects of orexin administration are identical to the cluster of active defences mediated via the lateral and dorsolateral columns of the midbrain periaqueductal gray matter, i.e., somatomotor activation, vigilance, tachycardia, hypertension and non-opioid analgesia. In our view, therefore, the LH orexin system is very well placed to orchestrate the diverse subsystems involved in foraging under potentially dangerous circumstances, i.e., finding and ingesting food without oneself becoming a meal for someone else.  相似文献   

3.
Orexin containing neurons in the lateral hypothalamic area (LHA) produce orexin-A (hypocretin-1) and orexin-B (hypocretin-2) and send their axons to the hippocampus, which predominantly expresses orexin 1 receptors (OX1Rs) showing a higher affinity to orexin-A. Recent studies have shown that central administration of orexin-A has an effect on learning and memory but literature concerning the role of orexinergic system in cognition remains controversial. Therefore, we examined the effect of pre-training, post-training and pre-probe trial intrahippocampal CA1 administration of a selective OX1R the orexin 1 receptor antagonist SB-334867-A (1.5, 3, 6 microg/0.5 microl) on acquisition, consolidation and retrieval in a single-day testing version of Morris water maze (MWM) task. Our results show that, SB-334867-A impaired acquisition, consolidation and retrieval of MWM task as compared with the control group. This drug had no effect on escape latency of a non-spatial visual discrimination task. Therefore, it seems that endogenous orexins, especially orexin-A, play an important role in spatial learning and memory in the rat.  相似文献   

4.
The orexins (hypocretins) are lateral hypothalamic (LH) neuropeptides that have been implicated in a variety of behaviors ranging from feeding to sleep and arousal. Evidence from animal models suggests a role for orexins in reward processing and drug addiction. In the present study, we investigated the direct effect of an orexin antagonist in the ventral tegmental area (VTA) on acquisition and expression of morphine conditioned place preference (CPP) induced by concurrent stimulation of the LH. Eighty-one adult male Wistar rats weighing 220–280 g were unilaterally implanted by two separate cannulae into the LH and VTA. The CPP paradigm was done; conditioning score and locomotor activity were recorded by Ethovision software. The animals received SB334867 as a selective orexin-1 receptor antagonist (0.1, 1 and 10 nmol/0.3 μl DMSO) in the VTA, just 5 min prior to intra-LH administration of ineffective dose of carbachol as a cholinergic agonist (62.5 nmol/0.5 μl saline) that stimulates orexin neurons in the LH and ineffective dose of morphine (1 mg/kg, subcutaneously) concurrently during conditioning phase (acquisition experiments) or post-conditioning phase (expression experiments). Data showed that the blockade of orexin-1 receptors in the VTA could inhibit the acquisition (development) but not expression of LH stimulation-induced morphine CPP in the rats. Our findings suggest that the orexinergic projections from the LH to the VTA are involved in the development of the LH stimulation-induced potentiation of morphine rewarding properties and orexin-1 receptors in the VTA have a substantial role in this phenomenon.  相似文献   

5.
We have previously shown that the orexin-1 antagonist SB-334867 blocks the electrophysiological effects of haloperidol and olanzapine on the activity of A9 and A10 dopamine neurons. To evaluate if orexin-1 antagonists might block other effects of antipsychotic drugs in animals, we examined the effects of SB-334867 on behavioral, neurochemical, and neuroendocrine effects of antipsychotic drugs. Pretreatment with SB-334867 (0.01-10 mg/kg, intraperitoneal [IP]) significantly decreased the catalepsy produced by the administration of haloperidol (1 mg/kg, subcutaneous [SC]), risperidone (2 mg/kg, SC), and olanzapine (10 mg/kg, SC). Administration of SB-334467 also reversed catalepsy after it had been established in animals pretreated 2 hours earlier with haloperidol. However, pretreatment with SB-334867 (1-10 mg/kg, IP) did not block the decreases in exploratory locomotor activity produced by administration of haloperidol (0.1 mg/kg, SC) or risperidone (0.3 mg/kg, SC). In addition, pretreatment with SB-334867 (1-10 mg/kg, IP) neither blocked the increased levels of dihydroxyphenylacetic acid (DOPAC) in the nucleus accumbens or striatum nor the elevation in serum prolactin produced by administration of haloperidol (0.1 mg/kg, SC) and risperidone (1 mg/kg, SC). Administration of SB-334867 alone neither changed locomotor activity and DOPAC or prolactin levels nor produced catalepsy. These results show that orexin-1 antagonists block the catoleptogenic effects of antipsychotics but do not block other locomotor, neurochemical, or neuroendocrine effects of antipsychotics. Because catalepsy is thought to be a good predictor of extrapyramidal symptoms in humans, treatment with orexin-1 antagonists might decrease the occurrence or severity of antipsychotic treatment-emergent extrapyramidal symptoms in humans.  相似文献   

6.
Orexins play an important role on the central nervous system to modulate gastric acid secretion. The orexin receptors are distributed within the hypothalamus, and expression of orexin-1 receptors (OX1R) is greatest in the anterior hypothalamus and ventromedial nucleus. Therefore, we hypothesised that ventromedial hypothalamic OX1R may be involved in the control of gastric acid secretion. To address this question, we examined the effects of orexin-A and a selective OX1R antagonist, SB-3345867, on gastric acid secretion in pyloric-ligated conscious rats. Intraventromedial injection of orexin-A (0.5–2 μg/μl) stimulated gastric acid secretion in a dose-dependent manner. This stimulatory effect of orexin-A persisted over 3 h. In some experiments, SB-3345867 (10 mg/kg i.p.) was administered 30 min before orexin-A or saline injections. We found that i.p. injection of SB-334867 suppressed stimulated gastric acid secretion induced by orexin-A (2 μg/μl). Atropine (5 mg/kg) also inhibited the stimulatory effect of central injection of orexin-A on acid secretion. In conclusion, the present study suggests that endogenous orexin-A acts on the ventromedial hypothalamus to stimulates acid secretion. This stimulatory effect is probably mediated through OX1R.  相似文献   

7.
Approaches that facilitate the recovery from coma would have enormous impacts on patient outcomes and medical economics. Orexin-producing neurons release orexins (also known as hypocretins) energy-dependently to maintain arousal. Hyperbaric oxygen (HBO) could increase ATP levels by preserving mitochondrial function. We investigated, for the first time, the arousal effects of HBO and orexins mechanisms in a rat model of unconsciousness induced by ketamine or ethanol. A total of 120 Sprague-Dawley male rats were used in this study. Unconsciousness was induced either by intraperitoneal injection of ketamine or ethanol. The HBO treatment (100% O2 at 3 ATA) was administered immediately after unconsciousness induction for 1 hr. SB334867, orexin-1 receptor (OX1R) inhibitor, or JNJ10397049, orexin-2 receptor (OX2R) inhibitor was administered 30 min intraperitoneally before unconsciousness induction. Loss of righting reflex test (LORR) and Garcia test were used to evaluate the unconsciousness duration and neurological deficits after recovering from unconsciousness, respectively. Enzyme-linked immunosorbent assay was used to measure brain tissue ATP and orexin A levels. Ketamine or ethanol injection resulted in LORR immediately and neurological deficits 6 hr after unconsciousness induction. HBO treatment significantly reduced the LORR duration, improved Garcia scores and unregulated ATP and orexin A levels in the brain tissue. Administration of OX1R inhibitor or OX2 R inhibitor abolished arousal and neurological benefits of HBO. In conclusion, HBO exerted arousal-promoting effects on unconscious rats induced by ketamine or ethanol. The underlying mechanism was via, at least in part, ATP/orexin A upregulation. HBO may be a practical clinical approach to accelerate unconsciousness recovery in patients.  相似文献   

8.
Orexins including two peptides, orexin‐A and orexin‐B, are produced in the posterior lateral hypothalamus. Much evidence has indicated that central orexinergic systems play numerous functions including energy metabolism, feeding behavior, sleep/wakefulness, and neuroendocrine and sympathetic activation. Morphological studies have shown that the hippocampal CA1 regions receive orexinergic innervation originating from the hypothalamus. Positive orexin‐1 (OX1) receptors are detected in the CA1 regions. Previous behavioral studies have shown that microinjection of OX1 receptor antagonist into the hippocampus impairs acquisition and consolidation of spatial memory. However, up to now, little has been known about the direct electrophysiological effects of orexin‐A on hippocampal CA1 neurons. Employing multibarrel single‐unit extracellular recordings, the present study showed that micropressure administration of orexin‐A significantly increased the spontaneous firing rate from 2.96 ± 0.85 to 8.45 ± 1.86 Hz (P < 0.001) in 15 out of the 23 hippocampal CA1 neurons in male rats. Furthermore, application of the specific OX1 receptor antagonist SB‐334867 alone significantly decreased the firing rate from 4.02 ± 1.08 to 2.11 ± 0.58 Hz in 7 out of the 17 neurons (P < 0.05), suggesting that endogenous orexinergic systems modulate the firing activity of CA1 neurons. Coapplication of SB‐334867 completely blocked orexin‐A–induced excitation of hippocampal CA1 neurons. The PLC pathway may be involved in activation of OX1 receptor–induced excitation of CA1 neurons. Taken together, the present study's results suggest that orexin‐A produces excitatory effects on hippocampal neurons via OX1 receptors. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
Orexin is a member of neuropeptides which was first identified in the hypothalamus. The globus pallidus is a key structure in the basal ganglia, which is involved in both normal motor function and movement disorders. Morphological studies have shown the expression of both OX1 and OX2 receptors in the globus pallidus. Employing single unit extracellular recordings and behavioural tests, the direct in vivo electrophysiological and behavioural effects of orexin‐A in the globus pallidus were studied. Micro‐pressure administration of orexin‐A significantly increased the spontaneous firing rate of pallidal neurons. Correlation analysis revealed a negative correlation between orexin‐A induced excitation and the basal firing rate. Furthermore, application of the specific OX1 receptor antagonist, SB‐334867, decreased the firing rate of pallidal neurons, suggesting that endogenous orexinergic systems modulate the firing activity of pallidal neurons. Orexin‐A increased the excitability of pallidal neurons through both OX1 and OX2 receptors. In 6‐hydroxydopamine parkinsonian rats, orexin‐A‐induced increase in firing rate of pallidal neurons was stronger than that in normal rats. Immunostaining revealed positive OX1 receptor expression in the globus pallidus of both normal and parkinsonian rats. Finally, postural test showed that unilateral microinjection of orexin‐A led to contralateral deflection in the presence of systemic haloperidol administration. Further elevated body swing test revealed that pallidal orexin‐A and SB‐334867 induced contralateral‐biased swing and ipsilateral‐biased swing respectively. Based on the electrophysiological and behavioural findings of orexin‐A in the globus pallidus, the present findings may provide a rationale for the pathogenesis and treatment of Parkinson's disease.  相似文献   

10.
The orexins are hypothalamic neuropeptides and their role in reward processing and drug addiction has been demonstrated. The extent of involvement of each orexin receptor in the acquisition and expression of conditioned place preference (CPP) for morphine is still a matter of controversy. We investigated the functional differences between orexin-1 and -2 receptor blockade in the ventral tegmental area (VTA) on the acquisition and expression of morphine CPP. A total of 86 adult male Wistar rats weighing 250 ± 30 g (age 7–8 weeks) received intra-VTA microinjection of either SB334867 (0.1, 1 and 10 nM), a selective orexin-1 receptor (OX1R) antagonist, or TCS-OX2-29 (1, 5 and 25 nM), a selective orexin-2 receptor (OX2R) antagonist. To measure the acquisition, the animals received each antagonist (SB334867 or TCS-OX2-29) 5 min prior to subcutaneous injection of morphine (5 mg/kg) during the conditioning phase. To measure the CPP expression, the animals received each antagonist on the post-conditioning phase. The CPP conditioning score was recorded by Ethovision software. Data showed that intra-VTA microinjection of OX1-R antagonist significantly attenuated morphine CPP acquisition, during the conditioning phase, and expression, during the post-conditioning phase. Intra-VTA microinjection of OX2-R antagonist also significantly attenuated morphine CPP acquisition and expression in the mentioned phases. Our results showed the orexin role in learning and memory and indicate that orexin receptors (OX1R and OX2R) function in the VTA is essential for both acquisition and expression of morphine reward in rats in the CPP model.  相似文献   

11.
Intracerebroventricular (i.c.v.) administration of the novel hypothalamic neuropeptide orexin-A stimulates food intake in rats, and delays the onset of behavioural satiety (i.e. the natural transition from feeding to resting). Furthermore, preliminary findings with the selective orexin-1 receptor antagonist, SB-334867, suggest that orexin-A regulation of food intake is mediated via the orexin-1 receptor. At present, however, little is known about either the intrinsic effects of SB-334867 on the normal structure of feeding behaviour, or its effects upon orexin-A-induced behavioural change. In the present study, we have employed a continuous monitoring technique to characterize the effects of SB-334867 (3-30 mg/kg, i.p.) on the microstructure of rat behaviour during a 1-h test with palatable wet mash. Administered alone, SB-334867 (30 mg/kg, but not lower doses) significantly reduced food intake and most active behaviours (eating, grooming, sniffing, locomotion and rearing), while increasing resting. Although suggestive of a behaviourally nonselective (i.e. sedative) action, the structure of feeding behaviour was well-preserved at this dose level, with the reduction in behavioural output clearly attributable to an earlier onset of behavioural satiety. As previously reported, orexin-A (10 microg per rat i.c.v.) stimulated food intake, increased grooming and delayed the onset of behavioural satiety. Pretreatment with SB-334867 dose-dependently blocked these effects of orexin-A, with significant antagonism evident at dose levels (3-10 mg/kg) below those required to produce intrinsic behavioural effects under present test conditions. Together, these findings strongly support the view that orexin-A is involved in the regulation of feeding patterns and that this influence is mediated through the orexin-1 receptor.  相似文献   

12.
Orexins are newfound hypothalamic neuropeptides implicated in the regulation of feeding behavior, sleep–wakefulness cycle, nociception, addiction, emotions, as well as narcolepsy. However, little is known about roles of orexins in motor control. Therefore, the present study was designed to investigate the effect of orexins on neuronal activity in the cerebellum, an important subcortical center for motor control. In this study, perfusing slices with orexin A (100 nM–1 μM) or orexin B (100 nM–1 μM) both produced neurons in the rat cerebellar interpositus nucleus (IN) a concentration-dependent excitatory response (96/143, 67.1%). Furthermore, both of the excitations induced by orexin A and B were not blocked by the low-Ca2+/high-Mg2+ medium (n = 8), supporting a direct postsynaptic action of the peptides. Highly selective orexin 1 receptor antagonist SB-334867 did not block the excitatory response of cerebellar IN neurons to orexins (n = 22), but [Ala11, D-Leu15] orexin B, a highly selective orexin 2 receptor (OX2R) agonist, mimicked the excitatory effect of orexins on the cerebellar neurons (n = 18). These results demonstrate that orexins excite the cerebellar IN neurons through OX2R and suggest that the central orexinergic nervous system may actively participate in motor control through its modulation on one of the final outputs of the spinocerebellum.  相似文献   

13.
The orexin/hypocretin system is involved in several addiction-related behaviors. In the present experiments, we examined the involvement of orexin in heroin reinforcement and relapse by administering the orexin 1 receptor antagonist SB-334867 prior to heroin self-administration or prior to cue-induced or heroin-induced reinstatement of extinguished heroin seeking in male Sprague Dawley rats. SB-334867 (30 mg/kg, intraperitoneal) reduced heroin intake during self-administration under fixed ratio-1 and progressive ratio schedules. SB-334867 also attenuated reinstatement of heroin seeking elicited by cues, but not reinstatement elicited by a heroin prime. These results indicate that orexin antagonism reduces heroin self-administration, and they support a role for orexin in cue-triggered drug relapse.  相似文献   

14.
Orexin A in the nucleus accumbens stimulates feeding and locomotor activity   总被引:5,自引:0,他引:5  
Thorpe AJ  Kotz CM 《Brain research》2005,1050(1-2):156-162
Due to the nature of processing within the accumbens shell (AccSh) and the presence of orexin receptors and varicosities within the AccSh, we hypothesized that orexin A may partly regulate feeding behavior and locomotor activity via signaling in this site. To test this hypothesis, male Sprague-Dawley rats were implanted with guide cannulae directed to the medial portion of the AccSh. Orexin A (0, 100, 500, and 1000 pmol, in 0.5 microl artificial cerebrospinal fluid) was infused into the AccSh and feeding behavior and locomotor activity were monitored. The effect of pretreatment with an orexin 1 receptor antagonist (SB334867A) on orexin A-induced feeding and locomotor activity was assessed. Orexin A augmented feeding in the 0-1 h and 1-2 h post-infusion interval (P = 0.0058 and P = 0.025, respectively) and stimulated locomotor activity in the 30-60 min, 60-90 min, and 90-120 min post-infusion intervals (P 相似文献   

15.
Acute systemic treatment with the selective orexin-1 receptor antagonist SB-334867 (30 mg/kg, i.p.) has been reported not only to inhibit food intake and to accelerate behavioural satiety in rats, but also to produce a significant loss of bodyweight over the 24 h period post-dosing. The present studies were designed to test the hypothesis that the inhibition of weight gain following acute treatment with SB-334867 is due to a persistent anorectic action of the compound. In Experiment 1, the acute effects of SB-334867 (30 mg/kg, i.p.) on food intake and behaviour in a 1 h test with palatable mash were assessed as a function of injection-test interval. Results confirmed that, when administered 30 min prior to testing, SB-334867 significantly suppressed mash intake and accelerated behavioural satiety. More importantly, significant anorexia and behavioural change were also observed when animals were tested 24 h, but not 48 h, post-dosing. As previously reported, all animals treated with the orexin-1 receptor antagonist lost bodyweight over the 24 h period following acute treatment. The generality of these findings was confirmed in Experiment 2, where acute treatment with SB-334867 (30 mg/kg, i.p.) significantly suppressed home cage chow consumption over the 24 h period post-dosing, an effect also accompanied by a significant loss of bodyweight. The results of Experiment 3 showed that, following i.p. administration of 30 mg/kg, SB-334867 has good CNS penetration, reaches peak plasma and brain concentrations at 30 min, and maintains good exposure over 4 h post-dosing. Overall, current data support the hypothesis that a persistent anorectic action contributes to the significant loss of bodyweight observed 24 h following acute dosing with SB-334867. As the compound is virtually undetectable in plasma or brain beyond 8 h post-dosing, and since nothing is known about potentially active metabolites, we consider the possibility that single dose treatment with SB-334867 results in enduring alterations to the orexin-1 receptor and/or downstream signalling pathways.  相似文献   

16.
The amygdala is a complex structure involved in the regulation of emotional behaviors including fear and anxiety. The central amygdala is the main output of the amygdala and plays an important role in emotional processing. Recent studies indicate that orexin, a kind of neuropeptides responsible for maintaining wakefulness, is also associated with emotion-related behaviors, such as depression- and anxiety-like behaviors. Central amygdala receives orexinergic fibers originating from the lateral hypothalamus and expresses OX1 receptors in rats. To test the electrophysiological and behavioral effects of orexins in the central amygdala, single unit in vivo extracellular recordings, open field and elevated plus maze tests were performed in rats. Micro-pressure administration of orexin-A (0.01 mmol/L) increased the firing rate in 18 out of the 31 central amygdala neurons, while the other 13 neurons were not excited by orexin-A. The excitatory effects of orexin-A on central amygdala neurons were mainly mediated by OX1 receptors rather than OX2 receptors. Orexin-B (0.01 mmol/L) did not change the firing activity in all recorded central amygdala neurons. Selectively blocking OX1 receptors by SB-334867 (0.01 mmol/L) significantly decreased the spontaneous firing rate in 14 out of the 33 central amygdala neurons, leaving the remaining 19 neurons were not affected. However, blocking OX2 receptors by TCS-OX2–29 (0.01 mmol/L) did not change the firing activity. Finally, both open field test and elevated plus maze test showed that bilateral microinjection of orexin-A into the central amygdala induced significantly anxiolytic-like behaviors. The specific OX1 receptor antagonist tended to produce opposite effects although there was no statistical difference. The present electrophysiological and behavioral studies suggested that orexin-A participates in anxiety-like behaviors by modulating the spontaneous firing activity of central amygdala neurons.  相似文献   

17.
Previous in vivo data suggested that orexin neuropeptides (ORXA and ORXB) synthetized in hypothalamic neurons were involved in the mechanism of generation of the hippocampal formation theta rhythm. Surprisingly, this suggestion has never been directly proved by experiments using intraseptal or intrahippocampal administration of orexins. In this study, involving the use of in vitro hippocampal formation slices and in vivo model of anesthetized rat, we provide the first convergent electropharmacological evidence that in the presence of both ORXA and ORXB the hippocampal formation neuronal network is capable of producing oscillations in the theta band. This effect of orexin peptides was antagonized by selective blockers of orexin receptors (OX1R and OX2R), SB 334867 and TCS OX2 29, respectively. These results provide evidence for a novel, orexinergic mechanism responsible for the production of theta rhythm in the hippocampal formation neuronal network. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
Orexinergic system may play an important role in the regulation of anesthesia–arousal. However, which region or which pathway mediated the effect of orexins was still unclear. In current study, we investigated whether activation of orexin signals in basal forebrain (BF) may alter electroencephalographic activity, induction and emergence time to sevoflurane anesthesia in rats. Either orexin-A or orexin-B was injected into the BF while measuring electroencephalogram (EEG) under 1.0 minimum alveolar concentration (2.4%) sevoflurane anesthesia. The induction and emergence time of sevoflurane anesthesia were measured respectively after an injection of orexin receptor agonist (orexin-A or orexin-B) or antagonist (SB-334867A) into the BF also. We found that the administration of orexin-A (30, 100 pmol) and orexin-B (100 pmol) changed the burst and suppression patterns to arousal EEG in rat under sevoflurane anesthesia. Comparing with orexin-B, injection of lower dose of orexin-A induced more arousal EEG. Intrabasalis microinjection of orexin-A shorted the emergence time, whereas intrabasalis microinjection of SB-334867A (5 μg, 20 μg) delayed the emergence time to sevoflurane anesthesia, without changing anesthetic induction. These findings indicate that the orexin signals in basal forebrain, a middle region of the cholinergic ventral ascending arousal system, plays a crucial role in the anesthesia–arousal regulation.  相似文献   

19.
Chen SR  Pan HL 《Brain research》2003,965(1-2):67-74
Spinally administered muscarinic receptor agonists or acetylcholinesterase inhibitors can produce antinociception. However, the mechanisms of the action of cholinergic agents in the spinal cord are not fully understood. Activation of spinal muscarinic receptors evokes gamma-aminobutyric acid (GABA) release, which reduces the glutamatergic synaptic input to dorsal horn neurons through GABA(B) receptors. In this study, we determined the functional role of spinal GABA(B) receptors in the antinociceptive action of intrathecal cholinergic agents in normal rats and in a rat model of diabetic neuropathic pain. Diabetes was induced by intraperitoneal streptozotocin in rats. The intrathecal catheter was inserted with its tip positioned at the lumbar spinal level. Nociceptive threshold was measured by the paw withdrawal latency in response to a radiant heat stimulus in normal rats. Mechanical allodynia in diabetic rats was determined by von Frey filaments applied to the hindpaw. The effect of intrathecal muscarine or neostigmine was examined through pretreatment with the specific GABA(B) receptor antagonist, CGP55845, or its vehicle. Intrathecal injection of muscarine or neostigmine significantly increased the withdrawal latency in response to a heat stimulus in normal rats and the withdrawal threshold in response to application of von Frey filaments in diabetic rats. Intrathecal pretreatment with CGP55845 significantly attenuated the effect of both muscarine or neostigmine in normal rats. Furthermore, the antiallodynic effect of intrathecal neostigmine and muscarine was largely eliminated by CGP55845 in diabetic rats. These data suggest that the GABA(B) receptors in the spinal cord mediate both the antinociceptive and antiallodynic actions of intrathecal muscarine or neostigmine in normal rats and in a rat model of diabetic neuropathic pain. This study provides new functional evidence that activation of spinal GABA(B) receptors is one of the important mechanisms underlying the antinociceptive action of intrathecal cholinergic agents.  相似文献   

20.
Different types of trigeminal pains are frequently associated with psychophysiological concerns. Orexin-A and orexin 1 receptor (OX1R) are involved in modulation of both trigeminal pain and anxiety responses. Ventrolateral periaqueductal gray matter (vlPAG), a controlling site for nociception and emotion, receives orexinergic inputs. Here, the role of vlPAG OX1Rs and their interaction with cannabinoid 1 (CB1) receptor was evaluated in anxiety-like behavior following capsaicin-induced dental pulp pain. Rats were cannulated in the vlPAG and orexin-A was injected at the doses of 0.17, 0.35 and 0.51 μg/rat prior to the induction of pain. The elevated plus maze (EPM) and open field (OF) tests were used for assessing the anxiety responses. In addition, the induction of c-fos, in the vlPAG, was investigated using immunofluorescence microscopy. Capsaicin-treated rats displayed significantly higher anxiogenic behavior on EPM and OF tests. Pretreatment with orexin-A (0.51 μg/rat) attenuated capsaicin-mediated nociception, while exaggerated anxiogenic responses (p < 0.05). In addition, orexin-A effects were diminished by the administration of OX1R (SB-334867, 12 μg/rat) and cannabinoid 1 (AM251, 4 μg/rat) receptor antagonists. Intradental capsaicin induced a significant increase in c-fos expression in the vlPAG that was exaggerated by orexin-A (0.51 μg/rat). Blockage of OX1R and CB1 receptors attenuated the effect of orexin-A on c-fos expression in capsaicin-treated rats. In conclusion, the data suggest that manipulation of OX1R and CB1 receptors in the vlPAG alters capsaicin-evoked anxiety like behaviors and c-fos induction in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号