首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid eye movement (REM) sleep is hypothesized to result from the activity of REM sleep-generating and REM sleep-inhibiting neurons. The serotoninergic (5-HT) neurons of the dorsal raphe nucleus (DRN) represents one such population of REM-sleep inhibiting neurons since they are silent during REM sleep. Consistent with the decrease in activity of 5-HT neurons, the brain extracellular levels of 5-HT are lower during REM sleep compared to wakefulness. It is not known whether serotonin release is also reduced as a consequence of REM sleep rebound. Using microdialysis sampling coupled to HPLC–ECD, we measured the extracellular levels of 5-HT and its metabolite (5-HIAA) in the medial medullary reticular formation (mMRF) of freely behaving rats during normal sleep, REM sleep deprivation as well as during REM sleep rebound. We found that the levels 5-HT and 5-HIAA were significantly decreased by REM sleep deprivation. The reduction of 5-HT release was maintained during REM sleep rebound but the extracellular level of its main metabolite was increased. In addition, even during REM sleep rebound, 5-HT release during sleep was low compared to wakefulness. Taken together these data support the permissive role of 5-HT neurotransmission for REM sleep expression.  相似文献   

2.
Extracellular levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were monitored by microdialysis in the hippocampal formation previously denervated of its serotonergic input by an intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT), and in 5,7-DHT denervated hippocampi reinnervated by grafted fetal rat serotonin neurons. Two weeks after 5,7-DHT lesion, baseline 5-HT release was reduced to levels below detection, and KCl- and p-chloro-amphetamine-evoked release was reduced by 90-95%. In the chronically denervated hippocampus (3 months after lesion), baseline 5-HT release had recovered to near-normal levels, but KCl- and p-chloroamphetamine-evoked release remained severely impaired. Addition of the 5-HT re-uptake blocker indalpine to the perfusion medium induced a 5-6-fold increase in serotonin overflow in the normal hippocampus, while the serotonin overflow in the 5,7-DHT denervated hippocampus remained unaffected. The intrahippocampal fetal raphe transplants restored 5-HT release to near-normal levels, not only under baseline conditions but also in the presence of re-uptake blockade. Both KCl- and p-chloroamphetamine-induced release had recovered in the grafted hippocampus and the responses were even greater than those seen in normal animals. In both normal and grafted hippocampus addition of the sodium channel blocker tetrodotoxin reduced 5-HT overflow to the level seen in the denervated hippocampus. The new hippocampal serotonin innervation, established by the grafts, was markedly denser than normal, and the tissue 5-HT and 5-HIAA levels were 3-4-fold higher than normal in the grafted hippocampi. The 5-HIAA level in the perfusate collected from the grafted hippocampi showed a similar increase above normal, whereas 5-HT release was maintained within the normal range, both under baseline conditions and in the presence of re-uptake blockade. The results indicate that the grafted serotonergic raphe neurons are spontaneously active at the synaptic level, despite their ectopic location. The ability of the grafted neurons to maintain 5-HT release within the normal range suggests that local regulatory mechanisms at the terminal level can compensate for abnormalities in the graft-derived innervation density.  相似文献   

3.
We assessed the role of GABA(B) receptors in the control of serotonergic (5-HT) neurons of the dorsal raphe nucleus (DRN) by using microdialysis in vivo and intra- and extracellular recording in vitro in the rat. The GABA(B) agonist R(+)baclofen (but not the inactive S(-)enantiomer) enhanced the 5-HT output in the DRN (4. 7-fold at 15 mg/kg s.c.) and, to a much lesser extent, striatum of unanesthetized rats. Phaclofen (2 mg/kg s.c.) antagonized the effects of 6 mg/kg R(+)baclofen in dorsal striatum. Using dual-probe microdialysis, R(+)baclofen (0.1-100 microM) applied in the DRN enhanced the local 5-HT output (4.5-fold at 100 microM) but decreased that in striatum at 100 microM. At concentrations higher than 100 microM there was a moderate decrement in the elevation of 5-HT in the DRN. In midbrain slices, bath R(+)baclofen exerted a biphasic effect on DRN 5-HT neurons. Consistent with a reduced striatal 5-HT release when infused in the DRN, R(+)baclofen (0.1-30 microM) induced an outward current in 5-HT neurons (IC(50) = 1.4 microM). Lower R(+)baclofen concentrations (0.01-1 microM) preferentially reduced GABAergic inhibitory postsynaptic currents induced by N-methyl-D-aspartate (20 microM) in 5-HT neurons (IC(50) = 72 nM). Using extracellular recordings, R(+)baclofen (300 nM) enhanced the ability of NMDA to induce firing in a subpopulation of serotonergic neurons. These results are consistent with a preferential activation by a low concentration of R(+)baclofen of presynaptic GABA(B) receptors on GABAergic afferents that could disinhibit 5-HT neurons and increase 5-HT release.  相似文献   

4.
Funada M  Hara C 《Brain research》2001,901(1-2):247-251
We investigated the effects of psychological stress, lacking direct physical stimulus, on the release of 5-hydroxytryptamine (5-HT) and dopamine (DA) in the basolateral nucleus of the amygdala (BLA) and the dorsal raphe nuclei (DRN) in the rat using the in vivo microdialysis technique with dual probes, one in each region of the same animals. Psychological stress was employed using the communication box paradigm. Psychological stress for 1 h significantly increased dialysate 5-HT levels in the DRN and the BLA. Psychological stress-induced 5-HT release in the BLA was significantly greater than those in the DRN, indicating that modifications of the serotonergic neurons in the BLA are more sensitive to psychological stress than are those of the DRN. Psychological stress also increased DA release in the BLA, while the dialysate DA levels in the DRN were unchanged. These results suggest that psychological stress preferentially activates ascending serotonergic neurons from the DRN to the BLA but not those of dopaminergic neurons. Furthermore, our findings indicate that both the serotonergic neurons and the dopaminergic neurons in the BLA may have a distinct role to play in the neuronal responses to psychological stress.  相似文献   

5.
For direct measurement of the extracellular concentration of serotonin (5-HT) in the dorsal raphe nucleus (DRN) over the sleep-wake cycle we used the technique of in vivo microdialysis in six freely moving, naturally sleeping cats whose behavioral state was polygraphically determined. Perfusate samples from microdialysis probes histologically localized to the DRN showed the following significantly different levels of extracellular 5-HT, with the numbers in parentheses indicating successively the mean value in fmol/5 μl perfusate sample, the % level relative to waking, and the sample n:waking (4.02, 100%, n = 38) > slow wave sleep (2.02, 50%, n = 30) > REM sleep (1.61, 38%, n = 17). These data, to our knowledge the first direct DRN 5-HT measurements during behavioral state changes, directly parallel the levels of serotonergic neuronal action potential activity and suggest that DRN extracellular 5-HT is determined by this action potential activity through synaptic release by recurrent axonal collaterals in the DRN.  相似文献   

6.
Analysis of constitutive Engrailed (En) null mice previously implicated the two En homeobox paralogs in the development of serotonin (5-HT) neurons. An unresolved question is whether En plays intrinsic roles in these neurons. Here, we show that En1 and En2 are expressed in maturing 5-HT neurons that will form the dorsal raphe nucleus (DRN) and part of the median raphe nucleus. Although En1 expression in 5-HT neurons persists postnatally, En2 expression is extinguished by embryonic day 17.5. To investigate intrinsic serotonergic functions for En1/2, we generated compound conditional En mutants with floxed alleles and a cre recombinase line that becomes active in postmitotic fetal 5-HT neurons. We present evidence in support of a requirement for En1/2 in the maturation of DRN cytoarchitecture. The disruption of DRN cytoarchitecture appears to result from a defect in secondary migration of serotonergic cell bodies toward the midline rather than disruption of their primary ventral migration away from the ventricular zone. Furthermore, En1/2 are required for perinatal maintenance of serotonergic identity and postnatal forebrain 5-HT levels. Increased numbers of caspase-3-expressing cells and loss of significant numbers of 5-HT neuron cell bodies, indicative of apoptosis, occurred after loss of serotonergic identity. Analysis of an allelic series of conditional mutants showed that En1 is the predominant functional En paralog in maturing 5-HT neurons, although a small contribution from En2 was reproducibly detected. Together, our findings reveal complex intrinsic functions for En in maturing 5-HT neurons, hence necessitating a reinterpretation of their roles in 5-HT system development.  相似文献   

7.
We investigated age-related changes in learning and memory performance and behavioural extinction in the water maze; and in endogenous levels of serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in the neocortex, hippocampus, thalamus and dorsal raphe nucleus of Wistar rats. Another aim was to assess the correlation between behavioural and biochemical parameters, which were measured in rodents of two different ages: 5 months (adults) and 16 months (middle-aged). The middle-aged subjects succeeded in learning the behavioural task, albeit with significantly worse performance when compared to adult animals. Aging also had significant main effects on memory and extinction. An age-dependent decrease in 5-HIAA levels was observed in both hippocampus and dorsal raphe nucleus (DRN). The decrease in DRN 5-HIAA was paralleled by a decrease in 5-HIAA/5-HT ratio in this brain area, which was significantly correlated to the animals’ spatial memory performance and behavioural extinction. In addition, using middle-aged rats, a 2 × 2 factorial study was carried out to examine the effects of food restriction and chronic ethanol consumption on rat's performance in a spatial behavioural task and on central serotonergic parameters. None of these two treatments had a significant effect on the behavioural and biochemical parameters assessed, with the exception of extinction index, which was significantly affected by ethanol consumption. Long-term ethanol ameliorated the impairment in behavioural flexibility caused by aging. In conclusion, long-term ethanol consumption may have a role in protecting against age-related deficit in behavioural extinction. Moreover, the present results also indicate that DRN serotonergic system is involved in spatial memory and behavioural extinction.  相似文献   

8.
Tao R  Auerbach SB 《Brain research》2003,961(1):109-120
The dorsal (DRN) and median raphe nuclei (MRN) are two major sources of serotonergic projections to forebrain that are involved in regulation of behavioral state and motor activity, and implicated in affective disorders such as depression and schizophrenia. To investigate afferent influences on serotonergic neurons, this study compared the role of endogenous GABA and glutamate in the DRN and MRN using microdialysis and measurement of locomotor activity in freely behaving rats. Local infusion of the GABA(A) receptor antagonist bicuculline increased serotonin (5-HT) efflux in the DRN but not the MRN. In contrast, infusion of glutamate receptor antagonists produced larger decreases in 5-HT efflux in the MRN compared with the DRN. Moreover, glutamate receptor antagonists attenuated the increase in 5-HT efflux produced by GABA receptor blockade in the DRN. Thus, the disinhibitory effect of GABA blockers could be ascribed in part to an enhanced influence of glutamate. Measurements of locomotor activity indicate that changes in 5-HT were not simply correlated with behavioral activity induced by drug infusion. In summary, the role of inhibitory and excitatory afferents was strikingly different in the DRN and MRN. GABA afferents were the predominant tonic influence on serotonergic neurons in the DRN. In contrast, glutamatergic but not GABAergic afferents had a strong tonic influence on serotonergic neurons in the MRN.  相似文献   

9.
Major depression is characterized by a diminished activity of the brain serotonergic system as well as by the flattening of plasma cortisol levels. Nicotine improves mood in patients with major depression and in experimentally depressed animals by increasing brain serotonin (5-HT), noradrenaline and dopamine levels. The present study was directed to determine if flattening plasma glucocorticoid levels changes nicotine's stimulatory effects upon 5-HT DRN neurons. The experiments were performed in brain slices obtained from rats previously (14 days) adrenalectomised and implanted subcutaneously with one pellet containing 75 mg of corticosterone (Adx + CSR rats). Whole cell voltage and current clamp techniques were used to study the activity of immunocitochemically identified 5-HT DRN neurons. Administration of nicotine (1 μM) in sham-operated animals produced stimulatory effects in all 5-HT DRN neurons studied. In Adx + CSR rats however, nicotine inhibited 75% of 5-HT DRN neurons and increased the potassium-dependent inward rectifying current. The inhibitory effect of nicotine upon 5-HT DRN neurons was dependent on serotonin release inside the DRN, since it was converted into a stimulatory response by the selective antagonist of 5-HT1A receptors N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexanecarboxamide (WAY100635, 25 nM). Adx + CSR rats also presented an increased function of 5-HT1A autoreceptors, since, in these rats, serotonin (1–10 μM) produced a higher increase in the potassium dependent inward rectifying current in comparison with sham-operated animals. Serotonin release inside DRN was mediated by α4β2 nicotinic acetylcholine receptors since the selective antagonist of these receptors dihydro-β-erytroidine hydrobromide (DHβE, 100 nM) blocked the inhibitory effects of nicotine 5-HT DRN neurons. These data indicate that, in the experimental model of adrenalectomised rats implanted with corticosterone pellets, nicotine increases the function of 5-HT1A receptors of 5-HT DRN neurons.  相似文献   

10.
The effect of exogenous monosialoganglioside GM1 on neurotoxin-induced lesioning of bulbo-spinal serotonergic neurons of newborn rats was studied by means of biochemical and immunocytochemical techniques. 5,7-dihydroxytryptamine (5,7-HT, a selective serotonin neurotoxin) treatment of newborn rats caused a pronounced reduction of 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) levels in the thoracic and lumbar spinal cord, while an increase of 5-HT and 5-HIAA was found in the pons medulla. These biochemical alterations were regionally correlated with similar changes in 5-HT nerve terminal density analyzed by image analysis. GM1 administration (30 mg/kg for 4 consecutive days) antagonized the reduction of 5-HT and 5-HIAA levels induced by 5,7-HT treatment in the lumbar spinal cord of 2-month-old rats, as well as the decrease of 5-HT nerve terminal density in both thoracic and lumbar spinal cord of 1- and 2-month-old rats. A minor counteracting effect of GM1 was found in the pons medulla where the neurotoxin induced an increase of 5-HT and 5-HIAA levels. These data support the hypothesis that GM1 may have a preventing action on retrograde degenerative processes following chemical lesion and/or a growth-stimulating effect on injured 5-HT neurons.  相似文献   

11.
Differential pulse voltammetry with carbon fiber electrodes was used to study serotonin (5-HT) metabolism in freely moving rats. The electrodes implanted in the striatum recorded the extracellular 5-hydroxyindoleacetic acid (5-HIAA) oxidation peak after oral tryptophan (150 mg/kg). This 5-HT precursor did not modify the 5-HIAA peak in any rat tested, but it raised 5-HIAA levels determined in total tissue by a classical biochemical method (HPLC). The administration of 5-hydroxytryptophan (5-HTP) (25 mg/kg i.p.) induced an increase of 5-HIAA detectable both in the extracellular medium by voltammetry and in tissue samples. As previously shown, dorsal raphe electrical stimulation raises extracellular 5-HIAA in the striatum and this effect is enhanced by pretreatment with tryptophan. The results suggest that tryptophan in 'normal' conditions enhances 5-HT metabolism without affecting 5-HT release unless such release is stimulated. 5-HTP increases 5-HT metabolism and release.  相似文献   

12.
Numerous studies have demonstrated that genetic factors significantly influence opioid ability to induce behavioral modification in mice. This differential sensitivity has been extensively studied, particularly in the DBA/2J and C57BL/6J strains. In the present study, using the "in vivo" microdialysis technique in these strains, we investigated the effect of morphine administration on the extracellular levels of dopamine (DA), serotonin (5-HT), and their metabolites in the nucleus accumbens and dorsal striatum--areas thought to be involved in morphine-induced locomotor hyperactivity. In the nucleus accumbens, morphine (20 mg/kg) significantly increased extracellular levels of DA in both strains. However, in dorsal striatum the morphine-induced increase of extracellular DA was lower in DBA/2J mice than in C57BL/6J. Moreover, morphine significantly stimulated 5-HT and 5-hydroxyindolacetic acid (5-HIAA) release both in nucleus accumbens and dorsal striatum of C57BL/6J mice, whereas it decreased 5-HT release without modifying 5-HIAA levels in DBA/2J mice. These results suggest that the different behavioral and biochemical responses to acute morphine described in these two strains could be mediated by different sensitivity of both the dopaminergic and the serotonergic systems.  相似文献   

13.
Gao J  Zhang JX  Xu TL 《Brain research》2002,945(1):60-70
Putative serotonergic dorsal raphe nucleus (DRN) neurons display a dramatic role in the modulation of behavior. However, it is not clear how this modulation is mediated. The present study investigated the modulatory effects of serotonergic projection of the DRN to the basolateral amygdala (BLA) on the sleep-waking cycle using polysomnograph (PSG) in rats. DRN microinjection of kainic acid (KA) caused insomnia immediately. From the third day, however, slow wave sleep (SWS) and paradoxical sleep (PS) increased markedly. DRN microinjection of p-chlorophenylalanine (PCPA, once a day for 2 days), which inhibits the synthesis of serotonin (5-HT), led to similar effect to KA administration. The percent of sleep-wakefulness began to change on the third day after PCPA microinjection into the DRN, and the effect was most significant on the sixth day. The percent of sleep-wakefulness started to resume on the seventh day. SWS and PS were reduced after excitation of DRN neurons by microinjection of L-glutamate (L-Glu) into the DRN. Preapplication of the nonselective 5-HT receptor antagonist methysergide (MS) into bilateral BLA blocked the effect of DRN microinjection of L-Glu. Furthermore, bilateral BLA microinjection of 5-hydroxytryptophan (5-HTP), the precursor of 5-HT, on the sixth day after microinjection of PCPA into the DRN, could reverse the effect of PCPA microinjection. These results indicate that the modulation of the DRN on sleep is partially mediated by the serotonergic projection of the DRN to the BLA.  相似文献   

14.
Extracellular levels of serotonin (5-HT), dopamine (DA) and their major metabolites 5-hydroxyindoleacetic acid (5-HIAA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA), were measured in the lateral hypothalamus of awake, freely moving rats using microdialysis combined with HPLC and electrochemical detection. To characterize the factors which control 5-HT release, the effects of various drugs were assessed. TTX had a reversible inhibitory effect on the basal levels of 5-HT, 5-HIAA, DOPAC and HVA. Infusion of K+ concomitantly increased 5-HT and DA and decreased 5-HIAA and HVA. Imipramine increased extracellular levels of 5-HT and DA and decreased 5-HIAA levels; this effect was TTX-sensitive. Systemic pargyline increased extracellular 5-HT and markedly decreased the metabolic levels. Pargyline pretreatment in the presence of imipramine, infused through the dialysis probe, slowly increased 5-HT levels above that produced by the reuptake blocker alone. Infusion with AMPH produced a dramatic, TTX-insensitive, increase in 5-HT and DA and a decrease in the metabolic levels. These results provide evidence that (1) basal release of 5-HT in the lateral hypothalamus results from neuronal activity, (2) the metabolites in the extracellular fluid derive primarily from intracellular monoamine oxidase (MAO) activity, (3) 5-HT is mainly removed from the extracellular space by a reuptake mechanism, with minimal contribution of an extracellular MAO, and (4) the AMPH-evoked release of 5-HT and DA is a Na+ channel-independent process.  相似文献   

15.
The aim of the present study was to determine the effects of fetal asphyxia (FA) on anxiety and serotonergic neurons in young adult and middle-aged rats. FA was induced at embryonic day 17 by clamping the uterine circulation for 75 min. Anxiety-related behavior was tested in an open field, and design-based stereology was used for counting serotonergic (5-hydroxytryptamine/serotonin, 5-HT) neurons in the dorsal raphe nucleus (DRN). The open field revealed increased anxiety in the 19-month-old FA rats in comparison to control animals. No significant differences were found in DRN 5-HT neuron numbers at 6 months. At 19 months, however, FA significantly lowered the mean density and volume of 5-HT neurons in the DRN as compared to controls. Further, an age-related reduction was found in the total number, the mean density and the mean volume of 5-HT neurons within the FA group. In conclusion, FA is associated with increased anxiety and age-related changes in 5-HT immunohistochemistry within the DRN. These results support the notion that insults caused by asphyxiation during critical periods of brain development could create a predisposition to serotonergic abnormalities and anxiety deficits in adulthood.  相似文献   

16.
Genetic deficiency of monoamine oxidase-A (MAO-A) induces major alterations of mood and behaviour in human. Because serotonin (5-HT) is involved in mood regulation, and MAO-A is responsible for the catabolism of 5-HT, we investigated 5-HT mechanisms in knock-out mice (2-month-old) lacking MAO-A, using microdialysis, electrophysiological, autoradiographic and molecular biology approaches. Compared to paired wild-type mice, basal extracellular 5-HT levels were increased in ventral hippocampus (+202%), frontal cortex (+96%) and dorsal raphe nucleus (DRN, +147%) of MAO-A mutant mice. Conversely, spontaneous firing rate of 5-HT neurons in the DRN (recorded under chloral hydrate anaesthesia) was approximately 40% lower in mutants. Acute 5-HT reuptake blockade by citalopram (0.2 and 0.8 mg/kg i.v.) produced a much larger increase in extracellular 5-HT levels (by approximately 4 fold) and decrease in DRN neuronal firing (with a approximately 4.5 fold decrease in the drug's ED50) in MAO-A knock-out mice, which expressed lower levels of the 5-HT transporter throughout the brain (-13 to -34% compared to wild-type levels). The potency of the 5-HT1A agonist 8-OH-DPAT to produce hypothermia and to reduce the firing of DRN serotoninergic neurons was significantly less in the mutants, indicating a desensitization of 5-HT1A autoreceptors. This was associated with a decreased autoradiographic labelling of these receptors (-27%) in the DRN. Altogether, these data indicate that, in MAO-A knock-out mice, the enhancement of extracellular 5-HT levels induces a down-regulation of the 5-HT transporter, and a desensitization of 5-HT1A autoreceptors which allows the maintenance of tonic activity of 5-HT neurons in the DRN.  相似文献   

17.
Li YQ  Li H  Kaneko T  Mizuno N 《Brain research》2001,900(1):1866-118
The morphology and electrophysiological properties of serotonergic and non-serotonergic projection neurons in the dorsal raphe nucleus (DRN) of the rat were examined in frontal brain slices. Biocytin was injected intracellularly into the intracellularly recorded neurons. Then the morphology of the recorded neurons was observed after histochemical visualization of biocytin. The recorded neurons extending their main axons outside the DRN were considered as projection neurons. Subsequently, serotonergic nature of the neurons was examined by serotonin (5-HT) immunohistochemistry. The general form of the dendritic trees is radiant and poorly branching in both 5-HT- and non-5-HT neurons. However, the dendrites of the 5-HT neurons were spiny, whereas those of the non-5-HT neurons were aspiny. The main axons of both 5-HT- and non-5-HT neurons were observed to send richly branching axon collaterals to the DRN, ventrolateral part of the periaqueductal gray and the midbrain tegmentum. In response to weak, long depolarizing current pulses, the 5-HT neurons displayed a slow and regular firing activity. The non-5-HT neurons fired at higher frequencies even when stronger current was injected. Some other differences in electrophysiological properties were also observed between the 5-HT-immunoreactive spiny projection neurons and the 5-HT-immunonegative aspiny projection neurons.  相似文献   

18.
The behavioral consequences of uncontrollable stress that are collectively called learned helplessness (LH) are mediated in part by increased levels of serotonin (5-HT) activity in the dorsal raphe nucleus (DRN) and it's projection regions. Recently, corticotropin-releasing hormone (CRH) within the DRN has been implicated in the development of LH because intra-DRN CRH produces LH at very high doses, and because intra-DRN antagonists for the CRH 2 receptor (CRHR2) block LH. Since these behavioral effects are mediated by both 5-HT excitation and CRHR2 activation, we have suggested that CRHR2 mediates excitation of DRN 5-HT neurons. However, CRH has been shown to inhibit DRN 5-HT neurons at low doses that are expected to bind to CRHR1. Since CRHR1 antagonists were ineffective in blocking LH, we have further suggested that CRHR1 might mediate the inhibition of DRN 5-HT neurons. In support of this hypothesis, although low doses of CRH that preferentially bind CRHR1 inhibit DRN 5-HT activity, higher doses at which CRH would be expected to bind both receptor subtypes no longer inhibit DRN 5-HT. In addition, high doses of CRH are required to produce LH, which is known to be mediated by 5-HT excitation, and the CRHR2 agonist urocortin II (UCN II) produces LH at much lower doses than does CRH. The present studies show that intra-DRN CRH microinjection blocks the behavioral effects produced by DRN UCN II, but only at doses that have been shown to inhibit DRN 5-HT activity. Indeed, a higher dose of CRH that has been shown to no longer inhibit DRN 5-HT activity did not affect the behavioral consequences of DRN UCN II. In a separate experiment, the effective dose of CRH blocked the usual behavioral consequences of uncontrollable stress.  相似文献   

19.
Previous research indicates that the serotonergic neurons of the caudal dorsal raphe nucleus (DRN) are activated to a greater degree by inescapable shock (IS) as compared to escapable shock (ES), causing a greater release of serotonin (5-HT) in the DRN and in target regions. This differential activation is necessary for the behavioral changes that occur after exposure to IS, but not to ES (i.e. learned helplessness/behavioral depression). Although the critical role of the DRN in learned helplessness is clear, the neural inputs to the caudal DRN which result in this selective activation are unknown. One structure that may be involved in the activation of the DRN and the induction of learned helplessness/behavioral depression is the habenular complex. In experiment 1, habenula lesions eliminated the differential rise in DRN extracellular 5-HT levels in response to IS and ES exposure by severely attenuating the rise in 5-HT for both groups. In experiment 2, sham operated and habenula lesioned rats were exposed to either ES, IS or no stress (home cage control; HCC). Twenty-four hours later, sham rats previously exposed to IS exhibited longer escape latencies as compared to both ES and HCC rats (i.e. learned helplessness). The habenular lesion eliminated the differences in escape latency between groups, thus eliminating the induction of learned helplessness/behavioral depression. These results suggest that the habenula is necessary for the differential activation of the DRN and the escape deficits produced by IS.  相似文献   

20.
Using a quantitative cytofluorimetric method to detect changes in the intracellular levels of serotonin (5-HT) in individual neurons in rat brain, we have found that the dopaminergic agonist apomorphine increases 5-HT content of dorsal raphe cell bodies without affecting cells in the median raphe nucleus. Liquid chromatographic studies revealed that apomorphine also elevated the concentrations of both 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA) in striatum, the projection site for dorsal raphe neurons. Conversely, the dopaminergic antagonist haloperidol, at a dose of 0.8 mg/kg, decreased 5-HT levels in dorsal raphe cells. A lower dose of haloperidol (0.4 mg/kg), which had no significant effect alone, completely blocked the effect of apomorphine in the dorsal raphe. These results support the hypothesis that the effects of apomorphine on serotonergic neurons are secondary to dopamine receptor stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号