首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
3.
Substance P (SP) is an 11-amino acid tachykinin-related peptide that has anorexigenic effects in birds and mammals although the central mechanism is not well understood. Hence, the objective was to identify appetite-associated hypothalamic mechanisms in Japanese quail (Coturnix japonica). Seven days post-hatch, quail were intracerebroventricularly injected with 0, 0.25, 0.5 or 1.0 nmol of SP and monitored for 180 min. On a cumulative basis, quail that received 0.5 and 1.0 nmol of SP consumed less food for 90 min post-injection. On a non-cumulative basis, food intake was reduced in 0.5 nmol-injected birds at 30 min post-injection. Water intake was not affected. A comprehensive behavior analysis was performed, revealing that SP-injected chicks displayed less feeding pecks and reduced locomotion compared to vehicle-injected birds. To identify molecular mechanisms, the hypothalamus was isolated at 1 h post-injection and real-time PCR was performed to measure mRNA. Agouti-related peptide (AgRP) mRNA was reduced in SP-injected chicks. Immunohistochemistry was used to quantify c-Fos-expressing cells in appetite-associated hypothalamic nuclei. There were more reactive cells in the lateral hypothalamus (LH) and the paraventricular nucleus (PVN) of SP- than vehicle-injected chicks. The LH and PVN were collected for gene expression analysis. Corticotropin-releasing factor (CRF) and urotensin 2 (UTS2) mRNAs were greater in SP- than vehicle-injected chicks in the PVN. In the LH, CRF receptor sub-type 2 (CRFR2) mRNA was greater and kappa opioid receptor mRNA was reduced in SP- compared to vehicle-injected quail. Thus, SP induces a potent anorexia in quail that coincides with increased LH-specific CRFR2 mRNA and increased UTS2 mRNA in the PVN. Future studies will evaluate whether SP-induced anorexigenic effects are mediated through CRF receptors.  相似文献   

4.
《Neuropeptides》2014,48(5):305-311
Exogenous administration of substance P (SP) exerts anorexigenic effects in both chicks and rats, but the central mechanism mediating this response is poorly understood. Therefore, this study was designed to elucidate mechanisms of SP-induced anorexia using chicks as models. Chicks that received intracerebroventricular (ICV) injections of SP dose-dependably reduced their food intake with no effect on water intake. Next, the diencephalon was isolated from SP-injected chicks and mRNA expression of neuropeptide Y (NPY), corticotropin releasing factor (CRF), urocortin 3 (UCN 3) and CRF receptors were measured but were not affected. When measured in the hypothalamus, mRNA abundance of these and NPY receptors, urotensin 2 (UTS2) and melanocortin receptor 4 (MCR4) were not affected by SP-injection. Quantification of c-Fos immunoreactivity in appetite-associated hypothalamic nuclei demonstrated that the paraventricular nucleus (PVN) was activated in SP-injected chicks. Finally, in the PVN isolated from SP-injected chicks, there was increased expression of UTS2 mRNA while CRF and UCN3 were not affected. Thus, the anorexigenic effects of SP appear to be mediated by PVN activation and may involve UTS2.  相似文献   

5.
Adrenocorticotropic hormone (ACTH), consisting of 39 amino acids, is most well-known for its involvement in an organism's response to stress. It also participates in satiety, as exogenous ACTH causes decreased food intake in rats. However, its anorexigenic mechanism is not well understood in any species and its effect on appetite is not reported in the avian class. Thus, the present study was designed to evaluate central ACTH's effect on food intake and to elucidate the mechanism mediating this response using broiler chicks. Chicks that received intracerebroventricular (ICV) injection of 1, 2, or 4 nmol of ACTH reduced food intake, under both ad libitum and 180 min fasted conditions. Water intake was also reduced in ACTH-injected chicks under both feeding conditions, but when measured without access to feed it was not affected. Blood glucose was not affected in either feeding condition. Following ACTH injection, c-Fos immunoreactivity was quantified in key appetite-associated hypothalamic nuclei including the ventromedial hypothalamus (VMH), dorsomedial hypothalamus, lateral hypothalamus (LH), arcuate nucleus (ARC) and the parvo- and magno-cellular portions of the paraventricular nucleus. ACTH-injected chicks had increased c-Fos immunoreactivity in the VMH, LH, and ARC. Hypothalamus was collected at 1 h post-injection, and real-time PCR performed to measure mRNA abundance of some appetite-associated factors. Neuropeptide Y, pro-opiomelanocortin, glutamate decarboxylase 1, melanocortin receptors 2–5, and urocortin 3 mRNA abundance was not affected by ACTH treatment. However, expression of corticotropin releasing factor (CRF), urotensin 2 (UT), agouti-related peptide (AgRP), and orexin (ORX), and melanocortin receptor 1 (MC1R) mRNA decreased in the hypothalamus of ACTH-injected chicks. In conclusion, ICV ACTH causes decreased food intake in chicks, and is associated with VMH, LH, and ARC activation, and a decrease in hypothalamic mRNA abundance of CRF, UT, AgRP, ORX and MC1R.  相似文献   

6.
Systemic administration of gold thioglucose (GTG) causes a hypothalamic lesion that extends from the ventral part of the ventromedial hypothalamus (VMH) to the dorsal part of the arcuate nucleus (ARC), resulting in hyperphagia and obesity in mice. In the present study, we used in situ hybridisation histochemistry to explore the effects of GTG on the central corticotrophin‐releasing hormone (CRH) system, which regulates feeding and energy homeostasis. Type 2 CRH receptor (CRHR‐2) mRNA expression decreased by 40% at 8 weeks in the VMH and by 40–60% at 2 and 8 weeks in the ARC after GTG injection. By contrast, CRHR‐2 mRNA expression in the hypothalamic paraventricular nucleus (PVN) and lateral septum was unchanged. Urocortin (Ucn) 3 mRNA expression in the perifornical area and medial amygdala decreased, whereas CRH mRNA expression in the PVN increased at 2 and 8 weeks after GTG injection. Ucn 1 mRNA expression in the Edingher–Westphal nucleus and Ucn 2 mRNA expression in the PVN were unchanged. Because Ucn 3 is an anorexigenic and a possible endogenous ligand for VMH CRHR‐2, our results suggest that decreased Ucn 3 expression and decreased VMH CRHR‐2 expression contribute, in part, to GTG‐induced hyperphagia and obesity. To determine whether VMH CRHR‐2 mediates the anorexigenic effects of Ucn 3, Ucn 3 was administered i.c.v. and food intake was measured 8 weeks after GTG treatment. Ucn 3 decreased cumulative food intake on days 4–7 after surgery compared to i.c.v. administration of vehicle in control mice. By contrast, the anorexigenic effects of i.c.v. Ucn 3 were abolished in GTG‐treated mice. Taken together, our results indicate that the Ucn 3 pathway, which innervates the VMH, is involved in appetite regulation via CRHR‐2. It remains to be determined whether CRHR‐2 in the ARC has additional roles in appetite regulation by Ucn 3.  相似文献   

7.
Information on the physiological functions of neuropeptide FF; NPFF, a morphine modulating octapeptide in avians is lacking. Thus, we designed a study to investigate the effects of central NPFF with particular emphasis on appetite-related processes. Cobb-500 chicks were intracerebroventricularly (ICV) injected with 0, 4.16, 8.32 or 16.6nmol NPFF, and feed and water intake were quantified. Feed intake was linearly decreased as NPFF dose increased, and this effect decayed over time and was not significant by 120min post-injection. Water intake was not affected by ICV NPFF. In a second exp, we observed that naloxone completely reversed the NPFF-induced decrease in feed intake. The amount of time a visible marker took to travel through the total length of the alimentary canal linearly increased as NPFF dose increased. We measured neuronal activation in the lateral hypothalamus (LH), paraventricular nucleus (PVN) dorsomedial nucleus (DMN) and ventromedial hypothalamus (VMN) of the hypothalamus, and nucleus dorsomedialis posterior thalami (DMP) of the thalamus. The DMN, DMP, PVN and VMH were all activated by ICV NPFF while the LH was not affected. Finally, we determined that the anorexigenic effect of ICV NPFF is primarily behavior specific, since behaviors unrelated to ingestion were not increased the same duration of time as was consumatory pecking. We conclude that NPFF causes anorexigenic effects in chicks that are primarily behavior specific.  相似文献   

8.
Activation of corticotrophin releasing factor (CRF) neurons in the paraventricular nucleus of the hypothalamus (PVN) is necessary for establishing the classic endocrine response to stress, while activation of forebrain CRF neurons mediates affective components of the stress response. Previous studies have reported that mRNA for CRF2 receptor (CRFR2) is expressed in the bed nucleus of the stria terminalis (BNST) as well as hypothalamic nuclei, but little is known about the localization and cellular distribution of CRFR2 in these regions. Using immunofluorescence with confocal microscopy, as well as electron microscopy, we demonstrate that in the BNST CRFR2-immunoreactive fibers represent moderate to strong labeling on axons terminals. Dual-immunofluorescence demonstrated that CRFR2-fibers co-localize oxytocin (OT), but not arginine-vasopressin (AVP), and make perisomatic contacts with CRF neurons. Dual-immunofluorescence and single cell RT-PCR demonstrate that in the hypothalamus, CRFR2 immunoreactivity and mRNA are found in OT, but not in CRF or AVP-neurons. Furthermore, CRF neurons of the PVN and BNST express mRNA for the oxytocin receptor, while the majority of OT/CRFR2 neurons in the hypothalamus do not. Finally, using adenoviral-based anterograde tracing of PVN neurons, we show that OT/CRFR2-immunoreactive fibers observed in the BNST originate in the PVN. Our results strongly suggest that CRFR2 located on oxytocinergic neurons and axon terminals might regulate the release of this neuropeptide and hence might be a crucial part of potential feedback loop between the hypothalamic oxytocin system and the forebrain CRF system that could significantly impact affective and social behaviors, in particular during times of stress.  相似文献   

9.
Electrolytic lesions placed in the ventromedial hypothalamus (VMH) of rats induce instant hyperphagia and excessive weight gain. Since neuropeptide Y (NPY) is a potent hypothalamic orexigenic signal, and leptin secreted by adipocytes regulates NPY output, we tested the hypothesis that altered NPYergic-leptin signaling may underlie hyperphagia in VMH-lesioned rats. VMH-lesioned rats exhibiting hyperphagia and excessive weight gain in a time-related fashion were sacrificed on days 2, 7, and 21 post-surgery. Quite unexpectedly, NPY concentrations in the hypothalamic paraventricular nucleus (PVN), a major site of NPY release for stimulation of feeding, and in other sites, such as the dorsomedial nucleus, lateral hypothalamic area and median eminence-arcuate nucleus decreased, with the earliest diminution occurring on day 2 in the PVN only. In vitro basal and K+-evoked NPY release from the PVN of VMH-lesioned rats was significantly lower than that of controls. Analysis of hypothalamic NPY gene expression showed that although the daily decrease in NPY mRNA from 0800 to 2200 h occurred as in control rats, NPY mRNA concentrations were markedly reduced at these times in the hypothalami of VMH-lesioned rats. Leptin synthesis in adipocytes as indicated by leptin mRNA levels was also profoundly altered in VMH-lesioned rats. The daily pattern of increase in adipocyte leptin mRNA at 2200 h from 0800 h seen in controls was abolished, higher levels of leptin gene expression at 2200 h were maintained at 0800 h. The pattern of increase in serum leptin and insulin levels diverged in VMH-lesioned rats. Serum insulin concentration increased to maximal on day 2 and remained at that level on day 21-post-lesion; serum leptin levels on the other hand, increased slowly in a time-related fashion during this period. These results demonstrate that hyperphagia and excessive weight gain in VMH-lesioned rats are associated with an overall decrease in hypothalamic NPY and augmented leptin signaling to the hypothalamus. The divergent time course of increases in serum leptin and insulin levels suggest independent mechanisms responsible for their augmented secretion, and neither these hormones nor VMH lesions altered the daily rhythm in NPY gene expression. These observations underscore the existence of an independent mechanism controlling the daily rhythm in hypothalamic NPY gene expression and suggest that leptin feedback action requires an intact VMH.  相似文献   

10.
Calcitonin gene-related peptide (CGRP) is released from the gastrointestinal tract following ingestion and causes satiety in mammals. Its effects on appetite in non-mammalian vertebrates are unreported. In Experiment 1, fasted chicks reduced food and water intake after central injection of CGRP. These effects were not associated with increased plasma corticosterone concentration. In Experiment 2, we showed that the effect on water intake was independent of food intake. In Experiment 3, central CGRP caused increased c-Fos immunoreactivity in the arcuate (ARC) nucleus, paraventricular nucleus (PVN), periventricular (PHN) and ventromedial (VMH) hypothalamic nuclei. The results of Experiment 4 demonstrate that intraperitoneal injection of CGRP also causes reduced food and water intake. c-Fos immunoreactivity was increased in the ARC, PHN, PVN and VMH in Experiment 5 after intraperitoneal injection of CGRP. Lastly in Experiment 6, we showed that central CGRP changes the type of pecks from feeding to exploratory, and reduces the number of escape attempts. The effect of CGRP appears to be primary on appetite in chicks. In conclusion, the mechanisms of CGRP induced satiety have some similarities and differences between avian and rodent models. The results presented here provide new insight into the evolution of vertebrate satiety regulatory mechanisms.  相似文献   

11.
Using radioactive in situ hybridisation, the distribution of prodynorphin mRNA in the brains of C57Bl/6 mice was systemically investigated, and double-labelling in situ hybridisation was used to determine the extent to which neuropeptide Y (NPY) and prodynorphin mRNAs were co-expressed. Our results demonstrate that prodynorphin mRNA expression in the mouse brain is localised at specific subregions of the olfactory bulb, cortex, hippocampus, amygdala, basal ganglia, thalamus, hypothalamus, mesencephalon and myelencephalon. Among the regions displaying the most intense labelling were the olfactory tubercle, lateral septum (LS), caudate putamen (Cpu), central amygdaloid nucleus (Ce), paraventricular hypothalamic nucleus (PVN), supraoptic nucleus (SO), lateral hypothalamic area (LHA), ventromedial hypothalamic nucleus (VMH), lateral reticular nucleus (LRt) and solitary tract nucleus (NTS). In the arcuate nucleus of the hypothalamus (Arc), double-labelling in situ hybridisation revealed that prodynorphin expressing neurons also contained NPY mRNA, with a co-localisation rate of approximately 88% in the lateral part of the Arc, and 79% in the dorsal part of the Arc, respectively, suggesting potential overlapping functions of these two neurotransmitters in feeding type behaviour.  相似文献   

12.
Neuropeptide Y (NPY), which exists in very high concentrations in the brain, has been shown to elicit a powerful feeding response and a small drinking response in satiated rats. In order to delineate the brain sites sensitive to these effects, NPY was injected through chronic guide cannulas into seven different brain regions, and the food and water intake of satiated rats was measured one hr postinjection. Injection of NPY (78 pmoles) into hypothalamic areas, namely the paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), and lateral hypothalamus (LH), elicited a strong feeding response; in contrast, injections into extra-hypothalamic areas, namely the amygdala, thalamus, and periaqueductal gray, were completely ineffective. Administration of NPY into the PVN and VMH also elicited a small drinking response; however, all other areas, including the LH, were insensitive to this effect. The findings that NPY was effective in the hypothalamus, as opposed to sites anterior, posterior, lateral or dorsal to this structure, suggest a hypothalamic site(s) of action for this neuropeptide.  相似文献   

13.
Administration of neuropeptide Y (NPY) intracerebroventricularly (i.c.v.) results in the release of a number of hypothalamic and pituitary hormones and stimulation of feeding and suppression of sexual behavior. In this study, we sought to identify cellular sites of NPY action by evaluating perikaryal Fos-like immunoreactivity (FLI), a marker of cellular activation, in those hypothalamic and extrahypothalamic sites previously implicated in the control of neuroendocrine function and feeding behavior. Additionally, we compared the topography of FLI in these brain sites when food was either available ad libitum or withheld after NPY injection (1 nmol/3 μl, i.c.v.). The results showed that one hour after NPY injection a large number of cells in the parvocellular region of the paraventricular nucleus (PVN) were FLI-positive in the absence of food consumption. However, in association with food intake, a significant number of cells were intensely stained in the magnocellular region of the PVN. An analogous increase in FLI in association with feeding was apparent in the supraotic nucleus (SON), the dorsomedial nucleus and the bed nucleus of the stria terminalis in the hypothalamus. Anong the extrahypothalamic sites, feeding facilitated FLI in a large number of cells located in the lateral subdivision of the central amygdaloid nucleus and the lateral subdivision of the solitary tract. FLI was observed in a moderate number of cells in the hypothalamic arcuate nucleus (ARC) and ventromedial nucleus, and this response was not changed by feeding. Cumulatively, these results show that neurons in a number of discrete hypothalamic and extrahypothalamic sites, previously implicated in the control of neuroendocrine function and feeding behavior, are activated by NPY and further, a divergent pattern of c-fos expression emerged in some of these sites if feeding occurs after NPY injection. Stimulation of FLI in cells of the PVN, SON and ARC by NPY imply the presence of NPY target cells that play a role in the neuroendocrine control of pituitary function. The finding that NPY induced FLI in cells located in the parvocellular subdivision of the PVN even in the absence of feeding, imply that cells involved in initiation of food intake by NPY may reside in this subdivision of the PVN. On the other hand, the appearance of Fos-cells in the magnocellular subdivision of the PVN in response to feeding, suggests neural mechanisms that operate during the post-ingestion period, including those associated with termination of NPY-induced feeding, may impinge upon this subdivision of the PVN.  相似文献   

14.
Neurons containing serotonin (5-HT), a potent anorexic agent, come into contact with neuropeptide Y-ergic neurons, that project from the arcuate nucleus (ARC) to the paraventricular nucleus (PVN). NPY powerfully stimulates feeding and induces obesity when injected repeatedly into the PVN. We hypothesize that 5-HT tonically inhibits the ARC-PVN neurons and that balance between the two systems determines feeding and energy homeostasis. This study aimed to determine whether central injection of the 5-HT synthesis inhibitor p-chlorophenylalanine (pCPA), which increases feeding, increased hypothalamic NPY and NPY mRNA levels. pCPA (10 mg/kg in 3 μl) was administered into the third ventricle either as a single injection (n = 8) or daily for 7 days (n = 8). Control rats received a similar injection of saline. pCPA significantly increased food intake compared with controls after both single and repeated injections (P < 0.05). NPY levels were measured by radioimmunoassay in microdissected hypothalamic extracts. NPY levels in the acutely treated group were significantly increased in the paraventricular nucleus (PVN; by 41%,P = 0.01), anterior hypothalamic area (AHA; by 34%,P < 0.01) and lateral hypothalamic area (LHA; by 41%,P < 0.02). In the 7-day-treated group, NPY levels were also increased in the same areas, i.e. PVN (by 24%,P < 0.01), AHA (by 30%,P < 0.01) and LHA (by 38%,P = 0.01). There were no significant changes in the ARC or any other region or in hypothalamic NPY mRNA levels. pCPA administration increased NPY levels in several regions notably the PVN. This is a major site of NPY release, where NPY injection induces feeding. We suggest that the hyperphagia induced by pCPA is mediated by increased NPY levels and secretion in the PVN. This is further evidence for interactions between NPY and 5-HT in the control of energy homeostasis.  相似文献   

15.
Galanin-like peptide (GALP) is a neuropeptide implicated in the regulation of feeding behaviour, metabolism and reproduction. GALP is an endogenous ligand of the galanin receptors, which are widely expressed in the hypothalamus. GALP is predominantly expressed in arcuate nucleus (ARC) neurones, which project to the paraventricular nucleus (PVN) and medial preoptic area (mPOA). Intracerebroventricular or intraparaventricular (iPVN) injection of GALP acutely increases food intake in rats. The effect of GALP injection into the mPOA on feeding behaviour has not previously been studied. In the present study, intra-mPOA (imPOA) injection of GALP potently increased 0-1-h food intake in rats. The dose-response effect of imPOA GALP administration on food intake was similar to that previously observed following iPVN administration. The effects of GALP (1 nmol) or galanin (1 nmol) on food intake were then compared following injection into the PVN, mPOA, ARC, dorsal medial nucleus (DMN), lateral hypothalamus and rostral preoptic area (rPOA). GALP (1 nmol) increased food intake to a similar degree when injected into the imPOA or iPVN, but produced no significant effect when injected into the ARC, DMN, lateral hypothalamus or rPOA. Similarly, galanin (1 nmol) significantly increased food intake following injection imPOA and iPVN. However, the effect was significantly smaller than that following administration of GALP (1 nmol). Galanin also had no significant effect on food intake when administered into the ARC, DMN, lateral hypothalamus and rPOA. These data suggest that the mPOA and the PVN may have specific roles in mediating the orexigenic effect of GALP and galanin.  相似文献   

16.
17.
The objective of the present study was to identify hypothalamic sites that might be implicated in the effects of neuropeptide Y (NPY) on both body temperature and food intake. For this purpose, the effects of direct microinjections of NPY in several doses (0.156–20 μg) into discrete hypothalamic nuclei on body temperature were examined in rats. To examine specificity of effects, food consumption of animals following injections was also measured. Results indicate that the influence of NPY on body temperature varies with the hypothalamic region where the peptide is administered. NPY had no effect on temperature after administration into the ventromedial (VMH) and the perifornical hypothalamus (PeF). However, a significant hypothermia was seen following administration into the preoptic (POA) and arcuate nucleus (Arc), and hyperthermia was seen after injection into the paraventricular nucleus (PVN). Finally, a biphasic effect was observed after injection into the lateral hypothalamus (LH): hyperthermia with relatively small doses and hypothermia with higher doses. Similar effects were obtained when administred into the third ventricle (3V) but in an inverted dose-related fashion: hypothermia at low and hyperthermia at higher doses. For feeding, NPY consistently increased food intake in all regions examined, with the strongest effect obtained after administration into the PeF. The present results clearly dissociate the effects of NPY on food intake and body temperature, and demonstrate that these effects are related to specific hypothalamic nuclei.  相似文献   

18.
Immunocytochemical studies have documented the presence of neuropeptide Y (NPY) in the hypothalamic paraventricular nucleus (PVN) which harbours a large number of neurones that contain corticotrophin-releasing factor (CRF). In this study the close morphological association between NPY fibres and CRF cell bodies in the PVN was confirmed. The localization of NPY terminals in the vicinity of CRF neurones forms a morphological basis for an action of NPY in the hypothalamic control of the pituitary-adrenocortical axis. We therefore microinjected NPY into the area of the PVN of both conscious, freely moving and anaesthetized rats and noted a powerful stimulatory effect on adrenocorticotropic hormone (ACTH) and corticosterone release as measured by radioimmunoassay. In experiments with conscious, freely moving rats, higher ACTH and corticosterone levels were detected following injection of NPY into the area of the PVN than following control injection (desamidated NPY). Intracerebroventricular injection of NPY produced a small, albeit significant, increase in circulating corticosterone levels as compared to control (saline-injected) rats. Anaesthetized rats responded to NPY (but not to saline) injected into the area of the PVN with elevated ACTH and corticosterone levels, while injection of NPY into the neocortex failed to affect the blood concentration of either ACTH or corticosterone. In conclusion, we have demonstrated an activating effect of NPY on the pituitary-adrenocortical axis both in conscious and anaesthetized rats which may reflect the anatomical relationship between NPY fibres and CRF neurones in the PVN.  相似文献   

19.
Neuropeptide Y (NPY) is the most potent endogenous orexigenic signal. Several lines of evidence indicate that the site of NPY action in transducing feeding signal may reside in the paraventricular nucleus (PVN) and neighboring sites in the hypothalamus. To test the hypothesis that an increase in NPY activity in the ARC-PVN pathway precedes the onset of diabetic hyperphagia, we evaluated NPY levels in seven hypothalamic nuclei and NPY gene expression in the hypothalamus at 48, 72 or 96 h after streptozotocin (STZ) treatment in rat. In STZ-treated diabetic rats, NPY gene expression in the hypothalamus and NPY levels only in the PVN significantly elevated at 48 h, while hyperphagia occurred sometimes after 48 h post-injection. These results show that augmentation in NPY neuronal activity in the ARC-PVN axis precedes the onset of increased food intake produced by STZ-induced insulinopenia. These findings affirm the hypothesis that increased NPY neurosecretion in the PVN may underlie the diabetes-induced hyperphagia.  相似文献   

20.
Corticotropin-releasing factor binding protein (CRF-BP) is a 37-kDa protein with high affinity binding sites for both corticotropin-releasing factor (CRF) and urocortin 1. Previous studies have examined the distribution of CRF-BP mRNA and peptide within the central nervous system. Due to the predominant cortical localisation, very little is known about CRF-BP in subcortical structures including the hypothalamus. The present study employed immunohistochemistry to characterise the distribution of CRF-BP-like-immunoreactive (-ir) cells and fibres in the rat hypothalamus. Bipolar and multipolar CRF-BP-ir neurones were scattered throughout the rostro-caudal extent of the hypothalamus. Distinct clusters of CRF-BP-ir neurones were identified in the anterior and posterior parvocellular and dorsal cap subdivisions of the paraventricular nucleus (PVN), as well as in the dorsal hypothalamic area, dorsomedial hypothalamic nucleus (DMN), ventral premammillary nucleus and zona incerta. CRF-BP-ir fibres extending from the third ventricle were found in the mediobasal hypothalamus and within the arcuate nucleus-median eminence region. Double immunostaining together with confocal microscopy demonstrated that the CRF-BP-immunostained fibres within the mediobasal hypothalamus coincided with vimentin immunostaining indicating that CRF-BP-ir is present within tanycytes. To define the relationship between CRF-BP-ir cells and endogenous ligands for CRF-BP, double immunohistochemistry was performed to examine possible sites within the hypothalamus where CRF- or urocortin 1-ir fibres innervate regions that contain CRF-BP-ir cell bodies. CRF-BP-ir cell bodies typically coincided with dense CRF-ir, but not urocortin 1-ir fibre innervation. CRF-ir fibre innervation was moderate to high within the anterior and posterior parvocellular subdivisions of the PVN, the dorsal cap of the PVN, DMN and the zona incerta; all regions that contained CRF-BP-ir cell populations. These studies demonstrate that, within the hypothalamus, CRF-BP-ir cells and fibres are concentrated within a circuitry known to be involved in mediating neuroendocrine and autonomic responses to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号