首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current models of synaptic transmission require retrieval of membrane from the presynaptic terminal following neurotransmitter exocytosis. Dynamin, a GTPase, is thought to be critical for this retrieval process. At ribbon synapses of retinal bipolar neurons, however, compensatory endocytosis does not require GTP hydrolysis, suggesting that endocytosis mechanisms may differ among synapses. To understand better the synaptic vesicle recycling at conventional and ribbon synapses, the distributions of dynamin and two associated proteins, amphiphysin and clathrin, were examined in the retinas of goldfish and mouse by using immunocytochemical methods. Labeling for dynamin, clathrin, and amphiphysin was distributed differentially among conventional and ribbon synapses in retinas of both species. Ribbon synapses of photoreceptors and most bipolar cells labeled only weakly for dynamin relative to conventional synapses. Amphyiphysin labeling was strong at many ribbon synapses, and labeling in rod terminals was stronger than in cone terminals in the mouse retina. Clathrin labeling was heterogeneous among ribbon synapses. Similarly to the case with amphiphysin, mouse rod terminals showed stronger clathrin labeling than cone terminals. Among conventional synapses, there was heterogeneous labeling for all three endocytic proteins. Some labeling for each protein might have been associated with postsynaptic terminals. The differential distribution of labeling for these proteins among identified synapses in the retina suggests considerable heterogeneity in the molecular mechanisms underlying synaptic membrane retrieval, even among synapses with similar active zone ultrastructure. Thus, as with exocytosis, mechanisms of synaptic membrane retrieval may be tuned by the precise complement of proteins expressed within the synaptic terminal.  相似文献   

2.
In the vertebrate retina, presynaptic terminals of photoreceptors and bipolar cells form ribbon synapses and release neurotransmitter continuously. Endocytic machinery in the ribbon synapse is likely to differ from that in conventional synapses because of the much higher rate of synaptic vesicle recycling. However, protein components of the ribbon synapse identified so far are quite similar to those of the conventional synapses. Recently we identified amphiphysin I splice variants, termed amphiphysin Ir, that are transcribed specifically in retina from the authentic amphiphysin I gene [Y. Terada et al. (2002) FEBS Lett., 519, 185-190]. Amphiphysin I is a nerve terminal-enriched protein, and involved in synaptic vesicle endocytosis as heterodimer with amphiphysin II, an isoform of amphiphysin I. We report here that the retina-specific amphiphysin Ir is expressed exclusively in the ribbon synapse and not in conventional synapses. This is the first endocytosis-related, ribbon synapse-specific protein identified in the retina. By immunoprecipitation and double-immunolabelling, amphiphysin Ir was shown to be associated not only with amphiphysin II, but also with dynamin, clathrin and alpha-adaptin that are involved in synaptic vesicle recycling. The results suggest that endocytosis of the synaptic vesicle membrane in retinal ribbon synapses proceeds through a pathway similar to the one that is used in conventional synapses, although amphiphysin Ir is substituted for amphiphysin I. Amphiphysin Ir may play an essential role in the avid endocytic activity of ribbon synapses by associating with yet unknown protein partner(s) through its large insertional domain, which is absent from the conventional amphiphysin I.  相似文献   

3.
Vesicle-associated membrane protein (VAMP; synaptobrevin) is involved in the molecular regulation of transmitter release at the presynaptic plasma membrane. VAMP exists in two isoforms, VAMP-1 and VAMP-2, which are transcribed from two separate genes and differentially expressed in the nervous system. In situ hybridization was used to examine whether VAMP isoform mRNA expression may be altered by experimental manipulations. The effect of nerve injury on VAMP-1 and VAMP-2 mRNA levels in motoneurones of the rat lumbar spinal cord was compared with lesion-induced changes in the expression of choline acetyl transferase (ChAT) and α-calcitonin gene-related peptide (α-CGRP) mRNA. After unilateral sciatic nerve transection (axotomy), VAMP-1 mRNA expression decreased significantly in parallel with a downregulation of ChAT mRNA in axotomized motoneurones compared with the corresponding motoneurones on the contralateral unlesioned side. There was a rapid decrease in VAMP-1 and ChAT mRNA levels at 2 days after axotomy, and at 7 days there was a 65% decrease in VAMP-1 mRNA and a 48% decrease in ChAT mRNA. VAMP-1 mRNA levels continued to decrease at 14 and 21 days, while ChAT mRNA levels had returned to normal at this time. In contrast, VAMP-2 and α-CGRP mRNA levels were upregulated in axotomized motoneurones. A significant increase for both VAMP-2 and α-CGRP mRNA levels was present 2 days after axotomy, and a maximum was reached after 7 days for α-CGRP mRNA (163%) and after 14 days for VAMP-2 mRNA (587%). Immunohistochemical analysis did not reveal any detectable changes in VAMP-1- or VAMP-2-like immunoreactivity in the motoneurone cell soma after axotomy. In the proximal end of the transected sciatic nerve, there was an increase in VAMP-1- and VAMP-2-LI, which was most prominent at 2 days after lesion. The results show that, in axotomized spinal motoneurones, VAMP-1 mRNA is downregulated and VAMP-2 mRNA is upregulated, indicating differential regulation of the two separate VAMP genes and differential roles for the two VAMP isoforms in the regulation of exocytosis after nerve injury.  相似文献   

4.
Synaptic vesicle protein 2 (SV2), a ubiquitous synaptic vesicle protein, is known to participate in the regulation of Ca(2+)-mediated synaptic transmission, although its precise function has not been established. Three SV2 isoforms (SV2A, SV2B, SV2C) have been identified recently, each of which has a unique distribution in brain, suggesting synapse-specific functions. To determine if SV2A, -B, and -C are differentially distributed among synapses in the retina and the sequence of their development, we examined their distribution and expression patterns immunocytochemically in adult and developing mouse retina. The three SV2 isoforms were differentially distributed in the synapses of the two plexiform layers in the adult retina. SV2A was present in cone, but not rod, terminals in the outer plexiform layer (OPL) and in many synaptic terminals in the inner plexiform layer (IPL). SV2B was present only in the ribbon synapse-containing terminals of rod and cone photoreceptors and bipolar cells. SV2C was present in starburst amacrine cells, other conventional synapses in the IPL of unknown origin, and in presumptive interplexiform cell terminals in the INL and OPL. Each SV2 isoform was expressed in its distinct presynaptic terminals early and throughout postnatal development. In addition, SV2A was transiently expressed by developing horizontal cells. The unique distribution of each isoform suggests potentially distinct functions at different types of synapses, with SV2B having ribbon synapse-specific functions, and SV2C being important for the functions of starburst amacrine cells. Rod and cone terminals contain different complements of SV2 isoforms, indicating that ribbon synapses are not all identical. The early expression of SV2 isoforms prior to initiation of synapse formation suggests that they may have important synapse-specific roles during synaptogenesis.  相似文献   

5.
Munc13 proteins are essential regulators of exocytosis. In hippocampal glutamatergic neurons, the genetic deletion of Munc13s results in the complete loss of primed synaptic vesicles (SVs) in direct contact with the presynaptic active zone membrane, and in a total block of neurotransmitter release. Similarly drastic consequences of Munc13 loss are detectable in hippocampal and striatal GABAergic neurons. We show here that, in the adult mouse retina, the two Munc13-2 splice variants bMunc13-2 and ubMunc13-2 are selectively localized to conventional and ribbon synapses, respectively, and that ubMunc13-2 is the only Munc13 isoform in mature photoreceptor ribbon synapses. Strikingly, the genetic deletion of ubMunc13-2 has little effect on synaptic signaling by photoreceptor ribbon synapses and does not prevent membrane attachment of synaptic vesicles at the photoreceptor ribbon synaptic site. Thus, photoreceptor ribbon synapses and conventional synapses differ fundamentally with regard to their dependence on SV priming proteins of the Munc13 family. Their function is only moderately affected by Munc13 loss, which leads to slight perturbations of signal integration in the retina.  相似文献   

6.
Rab3A is a synaptic vesicle-associated protein found throughout the nervous system, but its precise function is unknown. Genetic knock-out studies show that Rab3A is not necessary for vesicular release or replenishment at conventional synapses in the brain. Here we explore the function of Rab3A at ribbon synapses in the retina of the tiger salamander (Ambystoma tigrinum). Fluorescently labeled Rab3A, delivered into rods and cones through a patch pipette, binds to and dissociates from synaptic ribbons. Experiments using nonphosphorylatable GDP analogs and a GTPase-deficient Rab3A mutant indicate that ribbon binding and dissociation are governed by a GTP hydrolysis cycle. Paired recordings from presynaptic photoreceptors and postsynaptic OFF-bipolar cells show that the Rab3A mutant blocks synaptic release in an activity-dependent manner, with more frequent stimulation leading to more rapid block. The frequency dependence of block by exogenous Rab3A suggests that it acts competitively with synaptic vesicles to interfere with their resupply to release sites. Together, these findings suggest a crucial role of Rab3A in delivering vesicles to Ca2?-dependent release sites at ribbon synapses.  相似文献   

7.
The mechanism underlying transmitter release from retinal horizontal cells is poorly understood. We investigated the possibility of vesicular transmitter release from mammalian horizontal cells by examining the expression of synaptic proteins that participate in vesicular transmitter release at chemical synapses. Using immunocytochemistry, we evaluated the cellular and subcellular distribution of complexin I/II, syntaxin-1, and synapsin I in rabbit retina. Strong labeling for complexin I/II, proteins that regulate a late step in vesicular transmitter release, was found in both synaptic layers of the retina, and in somata of A- and B-type horizontal cells, of gamma-aminobutyric acid (GABA)- and glycinergic amacrine cells, and of ganglion cells. Immunoelectron microscopy demonstrated the presence of complexin I/II in horizontal cell processes postsynaptic to rod and cone ribbon synapses. Syntaxin-1, a core protein of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) complex known to bind to complexin, and synapsin I, a synaptic vesicle-associated protein involved in the Ca(2+)-dependent recruitment of synaptic vesicles for transmitter release, were also present in the horizontal cells and their processes at photoreceptor synapses. Photoreceptors and bipolar cells did not express any of these proteins at their axon terminals. The presence of complexin I/II, syntaxin-1, and synapsin I in rabbit horizontal cell processes and tips suggests that a vesicular mechanism may underlie transmitter release from mammalian horizontal cells.  相似文献   

8.
Bassoon is a 420-kDa presynaptic protein which is highly concentrated at the active zones of nerve terminals of conventional synapses, both excitatory glutamatergic and inhibitory GABAergic, in rat brain. It is thought to be involved in the organization of the cytomatrix at the site of neurotransmitter release. In the retina, there are two structurally and functionally distinct types of synapses: ribbon and conventional synapses. Antibodies against bassoon were applied to sections of rat and rabbit retina. Strong punctate immunofluorescence was found in the outer and inner plexiform layers. Using pre- and post-embedding immunostaining and electron microscopy, bassoon was localized in the outer plexiform layer at ribbon synapses formed by rods and cones but was absent from basal synaptic contacts formed by cones. In the inner plexiform layer a different picture emerged. As in the brain, bassoon was found at conventional inhibitory GABAergic synapses, made by amacrine cells, but it was absent from the bipolar cell ribbon synapses. These data demonstrate differences in the molecular composition of the presynaptic apparatuses of outer and inner plexiform layer ribbon synapses. Thus, differential equipment with cytomatrix proteins may account for the functional differences observed between the two types of ribbon synapses in the retina.  相似文献   

9.
In recent years significant progress has been made in the elucidation of the molecular assembly of the postsynaptic density at synapses, whereas little is known as yet about the components of the presynaptic active zone. Piccolo and Bassoon, two structurally related presynaptic cytomatrix proteins, are highly concentrated at the active zones of both excitatory and inhibitory synapses in rat brain. In this study we used immunocytochemistry to examine the cellular and ultrastructural localization of Piccolo at synapses in the rat retina and compared it with that of Bassoon. Both proteins showed strong punctate immunofluorescence in the outer and the inner plexiform layers of the retina. They were found presynaptically at glutamatergic ribbon synapses and at conventional GABAergic and glycinergic synapses. Although the two proteins were coexpressed at all photoreceptor ribbon synapses and at some conventional amacrine cell synapses, at bipolar cell ribbon synapses only Piccolo was present. Our data demonstrate similarities but also differences in the molecular composition of the presynaptic apparatuses of the synapses in the retina, differences that may account for the functional differences observed between the ribbon and the conventional amacrine cell synapses and between the photoreceptor and the bipolar cell ribbon synapses in the retina.  相似文献   

10.
A model of the ribbon synapse was developed to replicate both pre- and postsynaptic functions of this glutamatergic juncture. The presynaptic portion of the model is rich in anatomical and physiological detail and includes multiple release sites for each ribbon based on anatomical studies of presynaptic terminals, presynaptic voltage at the terminal, the activation of voltage-gated calcium channels and a calcium-dependent release mechanism whose rate varies as a function of the calcium concentration that is monitored at two different sites which control both an ultrafast, docked pool of vesicles and a release ready pool of tethered vesicles. The postsynaptic portion of the program models diffusion of glutamate and the physiological properties of glutamatergic neurotransmission in target cells. We demonstrate the behavior of the model using the retinal bipolar cell to ganglion cell ribbon synapse. The model was constrained by the anatomy of salamander bipolar terminals based on the ultrastructure of these synapses and presynaptic contacts were placed onto realistic ganglion cell morphology activated by a range of ribbon synapses (46-138). These inputs could excite the cell in a manner consistent with physiological observations. This model is a comprehensive, first-generation attempt to assemble our present understanding of the ribbon synapse into a domain that permits testing our understanding of this important structure. We believe that with minor modifications of this model, it can be fine tuned for other ribbon synapses.  相似文献   

11.
Previous studies have demonstrated that ribbon synapses in the retina do not contain the t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor) syntaxin 1A that is found in conventional synapses of the nervous system. In contrast, ribbon synapses of the retina contain the related isoform syntaxin 3. In addition to its localization in ribbon synapses, syntaxin 3 is also found in nonneuronal cells, where it has been implicated in the trafficking of transport vesicles to the apical plasma membrane of polarized cells. The syntaxin 3 gene codes for four different splice forms, syntaxins 3A, 3B, 3C, and 3D. We demonstrate here by using analysis of EST databases, RT-PCR, in situ hybridization, and Northern blot analysis that cells in the mouse retina express only syntaxin 3B. In contrast, nonneuronal tissues, such as kidney, express only syntaxin 3A. The two major syntaxin isoforms (3A and 3B) have an identical N-terminal domain but differ in the C-terminal half of the SNARE domain and the C-terminal transmembrane domain. These two domains are thought to be directly involved in synaptic vesicle fusion. The interaction of syntaxin 1A and syntaxin 3B with other synaptic proteins was examined. We found that both proteins bind Munc18/N-sec1 with similar affinity. In contrast, syntaxin 3B had a much lower binding affinity for the t-SNARE SNAP25 compared with syntaxin 1A. By using an in vitro fusion assay, we could demonstrate that vesicles containing syntaxin 3B and SNAP25 could fuse with vesicles containing synaptobrevin2/VAMP2, demonstrating that syntaxin 3B can function as a t-SNARE.  相似文献   

12.
Vertebrates have ribbon synapses in the retina and in other sensory structures that are specialized for rapid, tonic release of synaptic vesicles (1). The lamellar sheets of the ribbon situated at right angles to the plasma membrane are lined with synaptic vesicles that undergo exocytosis under the influence of Ca(2+). Synaptic ribbons act as a conveyer belt to accelerate the release of this ready supply of synaptic vesicles at the presynaptic membranes. Although the protein composition of the terminals of ribbon synapses is generally similar to that of ordinary synapses in nervous tissue, much less is known about the composition of the ribbons themselves. RIM, a universal component of presynaptic active zones that interacts with rab3 on the synaptic vesicle, has been localized to the ribbons (2). In addition, the kinesin motor protein, KIF3A, is associated with the ribbons and other organelles in presynaptic nerve terminals (3). Recently, an approximately 120 kDa protein called RIBEYE has been identified in purified ribbons of bovine retina. The RIBEYE cDNA was cloned and its gene identified in the database.  相似文献   

13.
Regeneration of functionally normal synapses is required for functional recovery after degenerative central nervous system insults and requires proper expression and targeting of presynaptic proteins by regenerating neurons. The reconstitution of presynaptic terminals by regenerating adult neurons is poorly understood, however. We examined the intrinsic ability of regenerating adult retinal photoreceptors to reconstitute properly differentiated presynaptic terminals in the absence of target contact. The expression and localization of vesicle-associated membrane protein (VAMP), synaptic vesicle protein 2 (SV2), synaptophysin, synapsin I, and synaptosomal-associated protein of 25 kDa (SNAP-25) was assessed immunocytochemically. Photoreceptor terminals in the intact retina contain VAMP, SV2, synaptophysin, and SNAP-25, but not synapsin I. Isolated, regenerating adult photoreceptors intrinsically expressed the proper complement of synaptic vesicle proteins in the absence of target contact: VAMP, SV2, and synaptophysin were present at all stages of regenerative growth; synapsin I was never expressed. At early stages of regenerative growth, VAMP, SV2, and synaptophysin were diffusely localized in the cell, with prominent VAMP labeling distributed along the plasma membrane. SV2 and synaptophysin rapidly localized to regenerated terminals, but VAMP accumulated much more slowly, indicating that these proteins are trafficked independently. In contrast, labeling for SNAP-25, which is associated with the presynaptic plasma membrane, was undetectable in regenerating photoreceptors, suggesting that SNAP-25 expression is target-regulated. Thus, regenerating photoreceptors can intrinsically regulate the expression of the proper set of synaptic vesicle proteins. Proper expression of other presynaptic proteins, such as SNAP-25, and proper subcellular localization of synaptic proteins such as VAMP, however, may require extrinsic cues such as target contact.  相似文献   

14.
GTP-binding rab proteins, present in synaptic vesicles and endocrine secretory granules, have been shown to be involved in the control of regulated exocytosis. We found rab3 proteins in immunoblots of diverse areas of the mouse central nervous system (spinal cord, olfactory bulb, hippocampus, cerebellum and neocortex). Immunohistochemical observations at light- and electron-microscopical levels in the hippocampus and other areas revealed rab3 proteins in virtually all synaptic fields and terminals of the areas investigated. In the retina, rab3A immunoreactivity was confined to the inner and outer plexiform layers. Ultrastructural examination revealed that rab3A was present in conventional terminals in the inner plexiform layer and in horizontal cell processes of the outer plexiform layer. In contrast ribbon synapses, which play a key role in transferring information from the photoreceptor cells to the central nervous system, were immunonegative. We also tested whether other proteins of the rab3 family are present in ribbon synapses. However, using an antibody recognizing rab3B and rab3C in addition to rab3A, we found no immunoreactivity in these synapses. Interestingly, we observed also no immunoreactivity for synaptosomal-associated protein 25 (SNAP-25) in ribbon synapses, but conventional synapses and horizontal cell processes were heavily stained. Our data show that the known rab3 and SNAP-25 isoforms, which are components of the secretory apparatus of conventional synapses, are absent from ribbon synapses of the retina. Our observations suggest different mechanisms of transmitter exocytosis in conventional and ribbon terminals.  相似文献   

15.
The mammalian retina contains two synaptic layers. The outer plexiform layer (OPL) is primarily composed of ribbon synapses while the inner plexiform layer (IPL) comprises largely conventional synapses. In presynaptic terminals of ribbon synapses, electron-dense projections called ribbons are present at the synaptic plasma membranes. Ribbons bind synaptic vesicles and guide them to the synaptic membrane for fusion. In this manner, ribbons are thought to accelerate the delivery of vesicles for continuous exocytosis. In recent years, a large number of synaptic proteins has been described but it is not known if these protein colocalize in the same types of synapses. In previous studies, several proteins essential for synaptic function were not detected in ribbon synapses, suggesting that the mechanism of synaptic vesicle exocytosis may be very different in ribbon and conventional synapses. Using confocal laser scanning microscopy, we have now systematically investigated the protein composition of ribbon synapses. Our results show that, of the 19 synaptic proteins investigated, all except synapsin and rabphilin are obligatorily present in ribbon synapses. For example, rab3 which was reported to be absent from ribbon synapses, was found in bovine, rat and mouse ribbon synapses using multiple independent antibodies. In addition, we found staining in these synapses for PSD-95 and NMDA receptors, which suggested a similar design for the postsynaptic component in ribbon and conventional synapses. Our data show that ribbon synapses are more conventional in composition than reported, that most synaptic proteins are colocalized to the same type of synapse, and that synapsin and rabphilin are likely to be dispensible for basic synaptic functions.  相似文献   

16.
Scaffold proteins organize pre- and postsynaptic compartments and align pre- and postsynaptic events. Cask is a multi-domain scaffold protein essential for brain synaptic functions. Caskin1 is a recently discovered, brain-specific Cask-interacting multi-domain protein of unknown function. In the present study, we determined the localization of these scaffold proteins in the bovine retina. The retina contains tonically active ribbon synapses and conventional synapses. We found Cask highly enriched in virtually all retinal synapses. Cask was localized in close vicinity to the active zone protein RIM1/2 in ribbon and conventional synapses. Caskin1 is also enriched in retinal synapses but is present only in a subset of Cask-positive synapses. These findings suggest that Cask plays an important role in all retinal synapses. In contrast, Caskin1 appears to execute more specialized functions in distinct sets of retinal synapses, possibly for neuronal pathway formation and stabilization of distinct synaptic contacts.  相似文献   

17.
The synaptic organizations of gamma-aminobutyric acid-immunoreactive (GABA-IR, GABAergic) and non-GABA-IR (non-IR, glutamatergic) bipolar cells in salamander retina were compared by postembedding immunoelectron microscopy. A total of 238 presynaptic bipolar cell synapses were studied; 61 were GABA-IR and 177 were non-IR. Both groups were similar in that (1). they made asymmetrical ribbon synapses as well as asymmetrical non-ribbon synapses; (2). they made ribbon synapses at dyads, triads, and monads; and (3). the vast majority of ribbon synapses ( approximately 90%) were with dyads. The differences were that synapses of GABA-IR bipolar cells had a higher proportion of (1). direct contact with ganglion cells, (2). non-ribbon synapses, (3). output to GABA-IR amacrine cells, and (4). output in sublamina a. Overall, the output of GABA-IR ribbons was equally split between amacrine and ganglion cell processes, whereas for non-IR ribbons, it was approximately 2:1 in favor of amacrine cells. The ribbon:non-ribbon synapse ratio was approximately 1.2:1 (33:28) for GABA-IR but approximately 2:1 (118:59) for non-IR terminals. Thus, GABA-IR bipolar cells made more direct contacts with ganglion cells and used a higher proportion of non-ribbon synapses. GABA-IR dyads were more likely to contact GABA-IR amacrine profiles (52% vs. 38%). Finally, GABA-IR ribbon synapses were more common in sublamina a than sublamina b (2:1), whereas non-IR synapses were equally present in sublaminas a and b. This differential targeting of ganglion cells and amacrine cells in the OFF vs. ON layers indicates a difference in the role of bipolar cells in the generation of receptive field properties, depending on whether or not they use GABA as well as glutamate for their transmitter.  相似文献   

18.
The dendrites of ganglion cells in the mammalian retina become extensively remodelled during synapse formation in the inner plexiform layer. In particular, after birth in the cat, many short spiny protrusions are lost from the dendrites of ganglion cells during the time when ribbon, presumably bipolar, synapses appear in the inner plexiform layer and when conventional, presumed amacrine, synapses increase significantly in number. It has therefore been postulated that these transient spines may be the initial or preferred substrates for competitive interactions between amacrine or bipolar cell terminals that subsequently result in the formation of appropriate synapses onto the ganglion cells. If so, the majority of synapses made onto developing ganglion cells should be found on these dendritic spines. To test this hypothesis, we determined the synaptic connectivity of identified ganglion cells in the postnatal cat retina during the period of peak spine loss and synapse formation. The dendritic trees of ganglion cells were intracellularly filled with Lucifer yellow that was subsequently photo-oxidized into an electron-dense product suitable for electron microscopy. In serial reconstructions of the dendrites of a postnatal day 11 (P11) alpha ganglion cell and a P14 beta ganglion cell, conventional and ribbon synapses were found predominantly on dendritic shafts. Only three out of a total of 341 dendritic spines from the two cells received direct presynaptic input, all of which were conventional synapses. Thus, our observations suggest that the transient dendritic spines are not the preferred postsynaptic sites as previously suspected. However, it is possible that these structures play a different role in synaptogenesis, such as mediating interactions between retinal neurons that may lead to cell-cell recognition, a necessary step prior to synapse formation at the appropriate target sites (Cooper and Smith, Soc. Neurosci. Abstr. , 14 , 893, 1988).  相似文献   

19.
Immunocytochemical analysis of the mouse retina   总被引:1,自引:0,他引:1  
Transgenic mice provide a new approach for studying the structure and function of the mammalian retina. In the past, the cellular organization of the mammalian retina was investigated preferentially in primates, cats, and rats but rarely in mice. In the current study, the authors applied 42 different immunocytochemical markers to sections of the mouse retina and studied their cellular and synaptic localization by using confocal microscopy. The markers applied were from three major groups: 1) antibodies against calcium-binding proteins, such as calbindin, parvalbumin, recoverin, or caldendrin; 2) antibodies that recognize specific transmitter systems, such as glycine, gamma-aminobutyric acid, or acetylcholine; and 3) antibodies that recognize transmitter receptors and show their aggregation at specific synapses. Only a few markers labeled only one cell type: Most antibodies recognized specific groups of neurons. These were analyzed in more detail in double-labeling experiments with different combinations of the antibodies. In light of their results, the authors offer a list of immunocytochemical markers that can be used to detect possible changes in the retinal organization of mutant mice.  相似文献   

20.
CAST is a novel cytomatrix at the active zone (CAZ)-associated protein. In conventional brain synapses, CAST forms a large molecular complex with other CAZ proteins, including RIM, Munc13-1, Bassoon, and Piccolo. Here we investigated the distribution of CAST and its structurally related protein, ELKS, in mouse retina. Immunofluorescence analyses revealed that CAST and ELKS showed punctate signals in the outer and inner plexiform layers of the retina that were well-colocalized with those of Bassoon and RIM. Both proteins were found presynaptically at glutamatergic ribbon synapses, and at conventional GABAergic and glycinergic synapses. Moreover, immunoelectron microscopy revealed that CAST, like Bassoon and RIM, localized at the base of synaptic ribbons, whereas ELKS localized around the ribbons. Both proteins also localized in the vicinity of the presynaptic plasma membrane of conventional synapses in the retina. These results indicated that CAST and ELKS were novel components of the presynaptic apparatus of mouse retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号