首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Following antigen recognition on target cells, effector T cells establish immunological synapses and secrete cytokines. It is thought that T cells secrete cytokines in one of two modes: either synaptically (i.e., toward antigenic target cells) or multidirectionally, affecting a wider population of cells. This paradigm predicts that synaptically secreted cytokines such as IFN-γ will preferentially signal to antigenic target cells contacted by the T cell through an immunological synapse. Despite its physiological significance, this prediction has never been tested. We developed a live-cell imaging system to compare the responses of target cells and nonantigenic bystanders to IFN-γ secreted by CD8+, antigen-specific, cytotoxic T cells. Both target cells and surrounding nontarget cells respond robustly. This pattern of response was detected even at minimal antigenic T-cell stimulation using low doses of antigenic peptide, or altered peptide ligands. Although cytotoxic immunological synapses restrict killing to antigenic target cells, the effects of IFN-γ are more widespread.  相似文献   

2.

Background

T-cell activation relies on the assembly of the immunological synapse, a structure tightly regulated by the actin cytoskeleton. The precise role of the Wiskott-Aldrich syndrome protein, an actin cytoskeleton regulator, in linking immunological synapse structure to downstream signaling remains to be clarified.

Design and Methods

To address this point, CD4+ T cells from patients with Wiskott-Aldrich syndrome were stimulated with antigen-presenting cells. The structure and dynamics of the immunological synapse were studied by confocal and video-microscopy.

Results

Upon stimulation by antigen-presenting cells, Wiskott-Aldrich syndrome protein-deficient T cells displayed reduced cytokine production and proliferation. Although Wiskott-Aldrich syndrome T cells formed conjugates with antigen-presenting cells at normal frequency and exhibited normal T-cell receptor down-regulation, they emitted actin-rich protrusions away from the immunological synapse area and their microtubule organizing center failed to polarize fully towards the center of the immunological synapse. In parallel, abnormally dispersed phosphotyrosine staining revealed unfocused synaptic signaling in Wiskott-Aldrich syndrome T cells. Time-lapse microscopy confirmed the anomalous morphology of Wiskott-Aldrich syndrome T-cell immunological synapses and showed erratic calcium mobilization at the single-cell level.

Conclusions

Taken together, our data show that the Wiskott-Aldrich syndrome protein is required for the assembly of focused immunological synapse structures allowing optimal signal integration and sustained calcium signaling.  相似文献   

3.
Activation of biological functions in T lymphocytes is determined by the molecular dynamics occurring at the T cell/opposing cell interface. In the present study, a central question of cytotoxic T lymphocyte (CTL) biology was studied at the single-cell level: can two distinct activation thresholds for cytotoxicity and cytokine production be explained by intercellular molecular dynamics between CTLs and targets? In this study, we combine morphological approaches with numerical analysis, which allows us to associate specific patterns of calcium mobilization with different biological responses. We show that CTLs selectively activated to cytotoxicity lack a mature immunological synapse while exhibiting a low threshold polarized secretion of lytic granules and spike-like patterns of calcium mobilization. This finding is contrasted by fully activated CTLs, which exhibit a mature immunological synapse and smooth and sustained calcium mobilization. Our results indicate that intercellular molecular dynamics and signaling characteristics allow the definition of two activation thresholds in individual CTLs: one for polarized granule secretion (lytic synapse formation) and the other for cytokine production (stimulatory synapse formation).  相似文献   

4.
The Nef protein of HIV-1 facilitates viral replication and disease progression in vivo. Nef disturbs the organization of immunological synapses between infected CD4(+) T lymphocytes and antigen-presenting B-lymphocytes to interfere with TCR proximal signaling. Paradoxically, Nef enhances distal TCR signaling in infected CD4(+) T lymphocytes, an effect thought to be involved in its role in AIDS pathogenesis. Using quantitative confocal microscopy and cell fractionation of Nef-expressing cells and HIV-1-infected primary human T lymphocytes, we found that Nef induces intracellular compartmentalization of TCR signaling to adjust TCR responses to antigenic stimulation. Nef reroutes kinase-active pools of the TCR signaling master switch Lck away from the plasma membrane (PM) to the trans-Golgi network (TGN), thereby preventing the recruitment of active Lck to the immunological synapse after TCR engagement and limiting signal initiation at the PM. Instead, Nef triggers Lck-dependent activation of TGN-associated Ras-Erk signaling to promote the production of the T lymphocyte survival factor IL-2 and to enhance virus spread. Overexpression of the Lck PM transporter Unc119 restores Nef-induced subversions of Lck trafficking and TCR signaling. Nef therefore hijacks Lck sorting to selectively activate TGN-associated arms of compartmentalized TCR signaling. By tailoring T-lymphocyte responses to antigenic stimulation, Nef optimizes the environment for HIV-1 replication.  相似文献   

5.
Although both naive and effector T lymphocytes interact with antigen-expressing cells, the functional outcome of these interactions is distinct. Naive CD8(+) T cells are activated to proliferate and differentiate into effector cytolytic T lymphocytes (CTL), whereas CTL interact with specific targets, such as tumor cells, to induce apoptotic death. We recently observed that several molecules linked to actin cytoskeleton dynamics were up-regulated in effector vs. naive CD8(+) T cells, leading us to investigate whether T cell differentiation is accompanied by changes in actin-dependent processes. We observed that both naive and effector CD8(+) T cells underwent T cell receptor capping and formed stable conjugates with antigen-specific antigen-presenting cells. However, the characteristics of the immunological synapse were distinct. Whereas accumulation of signaling molecules at the T cell/antigen-presenting cell contact site was detectable in both naive and effector CD8(+) T cells, only effector cells developed a central supramolecular activation cluster as defined by punctate focusing of PKC theta, phospho-PKC theta, and phospho-ZAP70. Extended kinetics, CD28 costimulation, and high-affinity antigenic peptide did not promote PKC theta focusing in naive cells. Nonetheless, naive CD8(+) T cells polarized the microtubule organizing center, produced IL-2, proliferated, and differentiated into effector cells. Our results suggest that the formation of a central supramolecular activation cluster is not required for activation of naive CD8(+) T cells and support the notion that one role of an organized immune synapse is directed delivery of effector function.  相似文献   

6.
The formation of supramolecular activation clusters within the immunological synapse, crucial for sustained signaling and T lymphocyte activation, requires costimulation-dependent reorganization of the actin cytoskeleton. Here we have identified the actin-remodeling protein cofilin as a key player in this process. Cell-permeable peptides that block costimulation-induced cofilin/F-actin interactions in untransformed human T lymphocytes impair receptor capping and immunological synapse formation at the interface between T cells and antigen-presenting cells. As a consequence, T cell activation, as measured by cytokine production and proliferation, is inhibited.  相似文献   

7.
Intercellular transfer of proteins across the immunological synapse is emerging as a common outcome of immune surveillance. We previously reported that target-cell MHC class I protein transfers onto natural killer (NK) cells expressing cognate killer Ig-like receptors (KIRs). We now show that, for both murine and human cells, target cells expressing inhibitory MHC class I ligands acquire cognate inhibitory NK receptors. Other cell-surface proteins, but not a cytoplasmic dye, also transferred from human NK cells to target cells across an inhibitory immunological synapse. The number of KIRs acquired from NK cells correlated with the level of expression of cognate MHC class I protein on target cells. Treatment with cytoskeletal inhibitors demonstrated that the target-cell cytoskeleton influences intercellular transfer of proteins in both directions. In contrast to constitutively expressed KIRs, a fraction of acquired KIRs could be removed by mild acid wash, demonstrating a difference between some of the acquired KIRs and constitutively expressed KIRs. An accumulation of phosphotyrosine at the location of the transferred KIRs implies a signaling capacity for NK cell proteins transferred to target cells. Thus, intercellular protein transfer between immune cells is bidirectional and could facilitate new aspects of immune cell communication.  相似文献   

8.
Ramsay AG  Clear AJ  Fatah R  Gribben JG 《Blood》2012,120(7):1412-1421
Cancer immune evasion is an emerging hallmark of disease progression. We have demonstrated previously that impaired actin polymerization at the T-cell immunologic synapse is a global immune dysfunction in chronic lymphocytic leukemia (CLL). Direct contact with tumor cells induces defective actin polarization at the synapse in previously healthy T cells, but the molecules mediating this dysfunction were not known. In the present study, we show via functional screening assays that CD200, CD270, CD274, and CD276 are coopted by CLL cells to induce impaired actin synapse formation in both allogeneic and autologous T cells. We also show that inhibitory ligand-induced impairment of T-cell actin dynamics is a common immunosuppressive strategy used by both hematologic (including lymphoma) and solid carcinoma cells. This immunosuppressive signaling targets T-cell Rho-GTPase activation. Of clinical relevance, the immunomodulatory drug lenalidomide prevented the induction of these defects by down-regulating tumor cell-inhibitory molecule expression. These results using human CLL as a model cancer establish a novel evasion mechanism whereby malignant cells exploit multiple inhibitory ligand signaling to down-regulate small GTPases and lytic synapse function in global T-cell populations. These findings should contribute to the design of immunotherapeutic strategies to reverse T-cell tolerance in cancer.  相似文献   

9.
One very striking feature of T-cell recognition is the formation of an immunological synapse between a T cell and a cell that it is recognizing. Formation of this complex structure correlates with cytotoxicity in the case of killer (largely CD8(+)) T-cell activity, or robust cytokine release and proliferation in the case of the much longer lived synapses formed by helper (CD4(+)) T cells. Here we have used electron microscopy and 3D tomography to characterize the synapses of antigen-specific CD4(+) T cells recognizing B cells and dendritic cells at different time points. We show that there are at least four distinct stages in synapse formation, proceeding over several hours, including an initial stage involving invasive T-cell pseudopodia that penetrate deeply into the antigen-presenting cell, almost to the nuclear envelope. This must involve considerable force and may serve to widen the search for potential ligands on the surface of the cell being recognized. We also show that centrioles and the Golgi complex are always located immediately beneath the synapse and that centrioles are significantly shifted toward the late contact zone with either B lymphocytes or bone marrow-derived dendritic cells such as antigen-presenting cells, and that there are dynamic, stage-dependent changes in the organization of microtubules beneath the synapse. These data reinforce and extend previous data on cytotoxic T cells that one of the principal functions of the immunological synapse is to facilitate cytokine secretion into the synaptic cleft, as well as provide important insights into the overall dynamics of this phenomenon.  相似文献   

10.
Spatial organization of signaling complexes is a defining characteristic of the immunological synapse (IS), but its impact on cell communication is unclear. In T cell–APC pairs, more IL-2 is produced when CD28 clusters are segregated from central supramolecular activation cluster (cSMAC)-localized CD3 and into the IS periphery. However, it is not clear in these cellular experiments whether the increased IL-2 is driven by the pattern itself or by upstream events that precipitate the patterns. In this article, we recapitulate key features of physiological synapses using planar costimulation arrays containing antibodies against CD3 and CD28, surrounded by ICAM-1, created by combining multiple rounds of microcontact printing on a single surface. Naïve T cells traverse these arrays, stopping at features of anti-CD3 antibodies and forming a stable synapse. We directly demonstrate that presenting anti-CD28 in the cell periphery, surrounding an anti-CD3 feature, enhances IL-2 secretion by naïve CD4+ T cells compared with having these signals combined in the center of the IS. This increased cytokine production correlates with NF-κB translocation and requires PKB/Akt signaling. The ability to arbitrarily and independently control the locations of anti-CD3 and anti-CD28 offered the opportunity to examine patterns not precisely attainable in cell–cell interfaces. With these patterns, we show that the peripheral presentation of CD28 has a larger impact on IL-2 secretion than CD3 colocalization/segregation.  相似文献   

11.
Natural killer (NK) cells play important roles in host immunity by killing virus-infected and tumor cells. Killing of the target cell is achieved by formation of an immune synapse and localized secretion of lytic granules containing perforin and granzymes. Here, we demonstrate that Wiskott-Aldrich syndrome protein (WASp)-interacting protein (WIP), important in generation of a large complex of proteins involved in actin cytoskeleton rearrangements, is indispensable for NK cell cytotoxicity. WIP knockdown completely inhibited cytotoxicity, whereas overexpression of WIP enhanced NK cell cytolytic ability. WIP was found to colocalize with lytic granules. WIP segregated to the lysosomal fraction, where granzyme B activity was also found, and the interaction between WIP and granules was independent of WASp. Importantly, WIP knockdown inhibited polarization of lytic granules to the immune synapse, but not conjugate formation. These results indicate that WIP is involved in lytic granule transport and is essential for regulation of NK cell cytotoxic function.  相似文献   

12.
Binding of T cells to antigen-presenting cells leads to the formation of the immunological synapse, translocation of the microtubule-organizing center (MTOC) to the synapse, and focused secretion of effector molecules. Here, we show that upon activation of Jurkat cells microtubules project from the MTOC to a ring of the scaffolding protein ADAP, localized at the synapse. Loss of ADAP, but not lymphocyte function-associated antigen 1, leads to a severe defect in MTOC polarization at the immunological synapse. The microtubule motor protein cytoplasmic dynein clusters into a ring at the synapse, colocalizing with the ADAP ring. ADAP coprecipitates with dynein from activated Jurkat cells, and loss of ADAP prevents MTOC translocation and the specific recruitment of dynein to the synapse. These results suggest a mechanism that links signaling through the T cell receptor to translocation of the MTOC, in which the minus end-directed motor cytoplasmic dynein, localized at the synapse through an interaction with ADAP, reels in the MTOC, allowing for directed secretion along the polarized microtubule cytoskeleton.  相似文献   

13.
Barreira da Silva R  Graf C  Münz C 《Blood》2011,118(25):6487-6498
Human mature dendritic cells (DCs) can efficiently stimulate natural killer (NK)-cell responses without being targeted by their cytotoxicity. To understand this important regulatory crosstalk, we characterized the development of the immunologic synapse between mature DCs and resting NK cells. Conjugates between these 2 innate leukocyte populations formed rapidly, persisted for prolonged time periods and matured with DC-derived f-actin polymerization at the synapse. Polarization of IL-12 and IL-12R to the synapse coincided with f-actin polymerization, while other activating and inhibitory molecules were enriched at the interface between DCs and NK cells earlier. Functional assays revealed that inhibition of f-actin polymerization in mature synapses led to an increase of IFN-γ secretion and cytotoxicity by NK cells. This elevated NK-cell reactivity resulted from decreased inhibitory signaling in the absence of MHC class I polarization at the interface, which was observed on inhibition of f-actin polymerization in DCs. Thus, inhibitory signaling is stabilized by f-actin at the synapse between mature DCs and resting NK cells.  相似文献   

14.
Neurons dissociated from chick embryo retina form synapses with cultured rat striated muscle cells in 35-90 min when neurite extension is uncoupled from later steps in synapse formation. The results suggest that a reaction is required for synapse formation after neurons adhere to muscle cells. All synapses between retina neurons and muscle cells are terminated in 3-10 days depending on the developmental age of the neurons. The half-lives of synapses between muscle cells and retina neurons from 8-, 12-, or 13-day embryos are 36, 26, and 5 hr and mean synapse life-times are 53, 37, and 7.1 hr, respectively. The results show that synapses turn over and that the rate of turnover increases during development. The results suggest that both synapse formation and termination rates are regulated and that the specificity of synaptic connections can be increased by selective termination of synapses.  相似文献   

15.
Cytotoxic T lymphocytes kill target cells via the polarized secretion of cytotoxic granules at the immune synapse. The lytic granules are initially recruited around the polarized microtubule-organizing center. In a dynein-dependent transport process, the granules move along microtubules toward the microtubule-organizing center in the minus-end direction. Here, we found that a kinesin-1-dependent process is required for terminal transport and secretion of polarized lytic granule to the immune synapse. We show that synaptotagmin-like protein 3 (Slp3) is an effector of Rab27a in cytotoxic T lymphocytes and interacts with kinesin-1 through the tetratricopeptide repeat of the kinesin-1 light chain. Inhibition of the Rab27a/Slp3/kinesin-1 transport complex impairs lytic granule secretion. Our data provide further molecular insights into the key functional and regulatory mechanisms underlying the terminal transport of cytotoxic granules and the latter's secretion at the immune synapse.  相似文献   

16.
17.
The expression of CD45RA on CCR7- human CD8+ memory T cells is widely considered to be a marker of terminal differentiation. We studied the time course of CD45RA and CCR7 expression on human antitumoral cytotoxic T lymphocyte (CTL) clones and blood CD8+ T cells after antigenic stimulation. Our results indicate that CD45RA+ CCR7- CD8+ T cells are resting memory cells that, upon antigenic stimulation and during the next 10 days, proliferate, lose CD45RA, and transiently acquire CCR7. In the absence of further antigenic stimulation, they progressively re-express CD45RA and become CD45RA+ CCR7-. We conclude that the expression of CD45RA on these cells is indicative of the time elapsed since the last antigenic stimulation rather than the incapacity to proliferate or particularly high lytic potential. This concept leads to a reinterpretation of the significance of the presence of CD45RA+ CD8+ memory cells in patients affected by viral infections or by cancer.  相似文献   

18.
To analyze the in vivo structure of antigen-specific immunological synapses during an effective immune response, we established brain tumors expressing the surrogate tumor antigen ovalbumin and labeled antigen-specific anti-glioma T cells using specific tetramers. Using these techniques, we determined that a significant number of antigen-specific T cells were localized to the brain tumor and surrounding brain tissue and a large percentage could be induced to express IFNγ when exposed to the specific ovalbumin-derived peptide epitope SIINFEKL. Detailed morphological analysis of T cells immunoreactive for tetramers in direct physical contact with tumor cells expressing ovalbumin indicated that the interface between T cells and target tumor cells displayed various morphologies, including Kupfer-type immunological synapses. Quantitative analysis of adjacent confocal optical sections was performed to determine if the higher frequency of antigen-specific antiglioma T cells present in animals that developed an effective antitumor immune response could be correlated with a specific immunological synaptic morphology. Detailed in vivo quantitative analysis failed to detect an increased proportion of immunological synapses displaying the characteristic Kupfer-type morphology in animals mounting a strong and effective antitumor immune response as compared with those experiencing a clinically ineffective response. We conclude that an effective cytolytic immune response is not dependent on an increased frequency of Kupfer-type immunological synapses between T cells and tumor cells.  相似文献   

19.
We hypothesized that cytolytic T lymphocytes (CTL) may utilize extracellular ATP (ATPo) during the effector phase of the CTL-target cell interactions and that CTL could be the source of ATPo. It is demonstrated here that incubation of CTL with activating ligands [Con A or monoclonal antibody (mAb) to the T-cell antigen receptor (TCR)] results in the extracellular Ca2(+)-independent accumulation of the ATPo. The addition of the ATP-degrading enzymes into the mixture of CTL and target cells results in a strong inhibition of the CTL-mediated, TCR-triggered lethal-hit delivery to the target cell. In a parallel control experiment, the employed enzymes did not affect target cell-induced, TCR-triggered exocytosis of granules from CTL. Thus, the removal of ATPo with enzymes does not interfere with the activation of CTL by the target cell but does block lytic events. Cloned helper T lymphocytes also accumulate ATPo after incubation with anti-TCR mAb or Con A, suggesting the possibility that ATPo, which acts in concert with ectoprotein kinases and/or purinergic receptors, may be of general use as a messenger in cellular interactions of T lymphocytes.  相似文献   

20.
Dendritic spines are sites of the vast majority of excitatory synaptic input to hippocampal CA1 pyramidal cells. Estrogen has been shown to increase the density of dendritic spines on CA1 pyramidal cell dendrites in adult female rats. In parallel with increased spine density, estrogen has been shown also to increase the number of spine synapses formed with multiple synapse boutons (MSBs). These findings suggest that estrogen-induced dendritic spines form synaptic contacts with preexisting presynaptic boutons, transforming some previously single synapse boutons (SSBs) into MSBs. The goal of the current study was to determine whether estrogen-induced MSBs form multiple synapses with the same or different postsynaptic cells. To quantify same-cell vs. different-cell MSBs, we filled individual CA1 pyramidal cells with biocytin and serially reconstructed dendrites and dendritic spines of the labeled cells, as well as presynaptic boutons in synaptic contact with labeled and unlabeled (i.e., different-cell) spines. We found that the overwhelming majority of MSBs in estrogen-treated animals form synapses with more than one postsynaptic cell. Thus, in addition to increasing the density of excitatory synaptic input to individual CA1 pyramidal cells, estrogen also increases the divergence of input from individual presynaptic boutons to multiple postsynaptic CA1 pyramidal cells. These findings suggest the formation of new synaptic connections between previously unconnected hippocampal neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号