首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
TAL1 is ectopically expressed in about 30% of T-cell acute lymphoblastic leukemia (T-ALL) due to chromosomal rearrangements leading to the STIL-TAL1 fusion genes or due to non-coding mutations leading to a de novo enhancer driving TAL1 expression. Analysis of sequence data from T-ALL cases demonstrates a significant association between TAL1 expression and activating mutations of the PI3K-AKT pathway. We investigated the oncogenic function of TAL1 and the possible cooperation with PI3K-AKT pathway activation using isogenic pro-T-cell cultures ex vivo and in vivo leukemia models. We found that TAL1 on its own suppressed T-cell growth, in part by affecting apoptosis genes, while the combination with AKT pathway activation reduced apoptosis and was strongly driving cell proliferation ex vivo and leukemia development in vivo. As a consequence, we found that TAL1+AKTE17K transformed cells are more sensitive to PI3K-AKT pathway inhibition compared to AKTE17K transformed cells, related to the negative effect of TAL1 in the absence of activated PI3K-AKT signaling. We also found that both TAL1 and PI3K-AKT signaling increased the DNA-repair signature in T cells resulting in synergy between PARP and PI3K-AKT pathway inhibition. In conclusion, we have developed a novel mouse model for TAL1+AKTE17K driven T-ALL development and have identified a vulnerability of these leukemia cells to PI3K-AKT and PARP inhibitors.  相似文献   

3.
Cancer therapeutics is evolving to precision medicine, with the goal of matching targeted compounds with molecular aberrations underlying a patient’s cancer. While murine models offer a pre-clinical tool, associated costs and time are not compatible with actionable patient-directed interventions. Using the paradigm of T-cell acute lymphoblastic leukemia, a high-risk disease with defined molecular underpinnings, we developed a zebrafish human cancer xenotransplantation model to inform therapeutic decisions. Using a focused chemical genomic approach, we demonstrate that xenografted cell lines harboring mutations in the NOTCH1 and PI3K/AKT pathways respond concordantly to their targeted therapies, patient-derived T-cell acute lymphoblastic leukemia can be successfully engrafted in zebrafish and specific drug responses can be quantitatively determined. Using this approach, we identified a mutation sensitive to γ-secretase inhibition in a xenograft from a child with T-cell acute lymphoblastic leukemia, confirmed by Sanger sequencing and validated as a gain-of-function NOTCH1 mutation. The zebrafish xenotransplantation platform provides a novel cost-effective means of tailoring leukemia therapy in real time.  相似文献   

4.
Squamous cell carcinomas (SCCs) are one of the most frequent forms of human malignancy, but, other than TP53 mutations, few causative somatic aberrations have been identified. We identified NOTCH1 or NOTCH2 mutations in ~75% of cutaneous SCCs and in a lesser fraction of lung SCCs, defining a spectrum for the most prevalent tumor suppressor specific to these epithelial malignancies. Notch receptors normally transduce signals in response to ligands on neighboring cells, regulating metazoan lineage selection and developmental patterning. Our findings therefore illustrate a central role for disruption of microenvironmental communication in cancer progression. NOTCH aberrations include frameshift and nonsense mutations leading to receptor truncations as well as point substitutions in key functional domains that abrogate signaling in cell-based assays. Oncogenic gain-of-function mutations in NOTCH1 commonly occur in human T-cell lymphoblastic leukemia/lymphoma and B-cell chronic lymphocytic leukemia. The bifunctional role of Notch in human cancer thus emphasizes the context dependency of signaling outcomes and suggests that targeted inhibition of the Notch pathway may induce squamous epithelial malignancies.  相似文献   

5.
Despite improvements in treatment results for pediatric T-cell acute lymphoblastic leukemia, approximately 20% of patients relapse with dismal prognosis. PTEN inactivation and NOTCH1 activation are known frequent leukemogenic events but their effect on outcome is still controversial. We analyzed the effect of PTEN inactivation and its interaction with NOTCH1 activation on treatment response and long-term outcome in 301 ALL-BFM treated children with T-cell acute lymphoblastic leukemia. We identified PTEN mutations in 52 of 301 (17.3%) of patients. In univariate analyses this was significantly associated with increased resistance to induction chemotherapy and a trend towards poor long-term outcome. By contrast, patients with inactivating PTEN and activating NOTCH1 mutations showed marked sensitivity to induction treatment and excellent long-term outcome, which was similar to patients with NOTCH1 mutations only, and more favorable than in patients with PTEN mutations only. Notably, in the subgroup of patients with a prednisone- and minimal residual disease (MRD)-response based medium risk profile, PTEN-mutations without co-existing NOTCH1-mutations represented an MRD-independent highly significant high-risk biomarker. Mutations of PTEN highly significantly indicate a poor prognosis in T-ALL patients who have been stratified to the medium risk group of the BFM-protocol. This effect is clinically neutralized by NOTCH1 mutations. Although these results have not yet been explained by an obvious molecular mechanism, they contribute to the development of new molecularly defined stratification algorithms. Furthermore, these data have unexpected potential implications for the development of NOTCH1 inhibitors in the treatment of T-cell acute lymphoblastic leukemia in general, and in those with a combination of PTEN and NOTCH1 mutations in particular.  相似文献   

6.
7.
Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients.  相似文献   

8.
Less than a third of patients with acute myeloid leukemia (AML) are cured by chemotherapy and/or hematopoietic stem cell transplantation, highlighting the need to develop more efficient drugs. The low efficacy of standard treatments is associated with inadequate depletion of CD34+ blasts and leukemic stem cells, the latter a drug-resistant subpopulation of leukemia cells characterized by the CD34+CD38- phenotype. To target these drug-resistant primitive leukemic cells better, we have designed a CD34/CD3 bi-specific T-cell engager (BTE) and characterized its anti-leukemia potential in vitro, ex vivo and in vivo. Our results show that this CD34-specific BTE induces CD34-dependent T-cell activation and subsequent leukemia cell killing in a dose-dependent manner, further corroborated by enhanced T-cell-mediated killing at the singlecell level. Additionally, the BTE triggered efficient T-cell-mediated depletion of CD34+ hematopoietic stem cells from peripheral blood stem cell grafts and CD34+ blasts from AML patients. Using a humanized AML xenograft model, we confirmed that the CD34-specific BTE had in vivo efficacy by depleting CD34+ blasts and leukemic stem cells without side effects. Taken together, these data demonstrate that the CD34-specific BTE has robust antitumor effects, supporting development of a novel treatment modality with the aim of improving outcomes of patients with AML and myelodysplastic syndromes.  相似文献   

9.
PURPOSE OF REVIEW: Although constitutively activated forms of the NOTCH1 receptor are potent inducers of T cell acute lymphoblastic leukemia/lymphoma when expressed in the bone marrow stem cells of mice, the known involvement of NOTCH1 in human T cell acute lymphoblastic leukemia/lymphoma has been restricted to very rare tumors associated with a (7;9) chromosomal translocation involving the NOTCH1 gene. This picture has changed dramatically in the past year with the discovery of frequent mutations involving NOTCH1 in human T cell acute lymphoblastic leukemia/lymphoma. RECENT FINDINGS: NOTCH1 point mutations, insertions, and deletions producing aberrant increases in NOTCH1 signaling are frequently present in both childhood and adult T cell acute lymphoblastic leukemia/lymphoma and are detected in tumors from all major molecular subtypes. These observations are particularly important in the light of experiments using human and murine T cell acute lymphoblastic leukemia/lymphoma cell lines indicating that NOTCH1 signals are required for sustained growth and, in a subset of lines, survival. This inference is based in part on experiments conducted with small molecule inhibitors of gamma-secretase, a protease required for normal NOTCH signal transduction and the activity of the mutated forms of NOTCH1 found commonly in human T cell acute lymphoblastic leukemia/lymphoma. SUMMARY: These findings support a central role for aberrant NOTCH signaling in the pathogenesis of human T cell acute lymphoblastic leukemia/lymphoma, and they provide a rationale for trials of NOTCH inhibitors, such as gamma-secretase antagonists, in this aggressive human malignancy.  相似文献   

10.
Wang Q  Qiu H  Jiang H  Wu L  Dong S  Pan J  Wang W  Ping N  Xia J  Sun A  Wu D  Xue Y  Drexler HG  Macleod RA  Chen S 《Haematologica》2011,96(12):1808-1814

Background

Mutations in the PHF6 gene were recently described in patients with T-cell acute lymphoblastic leukemia and in those with acute myeloid leukemia. The present study was designed to determine the prevalence of PHF6 gene alterations in T-cell acute lymphoblastic leukemia.

Design and Methods

We analyzed the incidence and prognostic value of PHF6 mutations in 96 Chinese patients with T-cell acute lymphoblastic leukemia. PHF6 deletions were screened by real-time quantitative polymerase chain reaction and array-based comparative genomic hybridization. Patients were also investigated for NOTCH1, FBXW7, WT1, and JAK1 mutations together with CALM-AF10, SET-NUP214, and SIL-TAL1 gene rearrangements.

Results

PHF6 mutations were identified in 11/59 (18.6%) adult and 2/37 (5.4%) pediatric cases of T-cell acute lymphoblastic leukemia, these incidences being significantly lower than those recently reported. Although PHF6 is X-linked and mutations have been reported to occur almost exclusively in male patients, we found no sex difference in the incidences of PHF6 mutations in Chinese patients with T-cell acute lymphoblastic leukemia. PHF6 deletions were detected in 2/79 (2.5%) patients analyzed. NOTCH1 mutations, FBXW7 mutations, WT1 mutations, JAK1 mutations, SIL-TAL1 fusions, SET-NUP214 fusions and CALM-AF10 fusions were present in 44/96 (45.8%), 9/96 (9.4%), 4/96 (4.1%), 3/49 (6.1%), 9/48 (18.8%), 3/48 (6.3%) and 0/48 (0%) of patients, respectively. The molecular genetic markers most frequently associated with PHF6 mutations were NOTCH1 mutations (P=0.003), SET-NUP214 rearrangements (P=0.002), and JAK1 mutations (P=0.005). No differences in disease-free survival and overall survival between T-cell acute lymphoblastic leukemia patients with and without PHF6 mutations were observed in a short-term follow-up.

Conclusions

Overall, these results indicate that, in T-cell acute lymphoblastic leukemia, PHF6 mutations are a recurrent genetic abnormality associated with mutations of NOTCH1, JAK1 and rearrangement of SET-NUP214.  相似文献   

11.
Modulated expression of notch1 during thymocyte development   总被引:9,自引:2,他引:7  
Hasserjian  RP; Aster  JC; Davi  F; Weinberg  DS; Sklar  J 《Blood》1996,88(3):970-976
The Notch gene family encodes transmembrane proteins that have been implicated in control of diverse cellular differentiation events in the fly, frog, and mouse. Mammalian Notch1 is expressed at high levels in thymus and is mutated in a subset of human T-cell acute lymphoblastic neoplasms, suggesting a role in T-cell differentiation. To investigate the patterns of expression of NOTCH1 protein in thymocytes of the developing and mature thymus, antibodies raised against NOTCH1 were used to perform immunohistochemical and flow cytometric analyses. Strong staining for NOTCH1 within the fetal murine thymus was observed as early as 13.5 days postcoitum. By 17.5 days postcoitum, preferential staining of superficial cortical thymocytes was observed, with weak staining of developing medulla. Flow cytometric analysis and immunohistochemical staining of flow-sorted cells confirmed that the highest levels of NOTCH1 expression in adult murine thymus were present in immature cortical thymocytes (CD24high, CD4-CD8-). In contrast, NOTCH1 expression was low or absent in more mature cortical thymocytes (CD24low, CD4+CD8+), whereas intermediate levels of expression were observed in CD4+CD8- and CD4-CD8+ cells. These data indicate a dynamic pattern of NOTCH1 expression during T-cell differentiation and suggest that downregulation of NOTCH1 may be required for maturation of cortical thymocytes.  相似文献   

12.
Further improvement of outcome in childhood acute lymphoblastic leukemia could be achieved by identifying additional high-risk patients who may benefit from intensified treatment. We earlier identified PTPRC (CD45) gene expression as a potential new stratification marker and now analyzed the prognostic relevance of CD45 protein expression. CD45 was measured by flow cytometry in 1065 patients treated according to the ALL-BFM-2000 protocol. The 75th percentile was used as cut-off to distinguish a CD45-high from a CD45-low group. As mean CD45 expression was significantly higher in T-cell acute lymphoblastic leukemia than in B-cell-precursor acute lymphoblastic leukemia (P<0.0001), the analysis was performed separately in both groups. In B-cell-precursor acute lymphoblastic leukemia we observed a significant association of a high CD45 expression with older age, high initial white blood cell count, ETV6/RUNX1 negativity, absence of high hyperdiploidy (P<0.0001), MLL/AF4 positivity (P=0.002), BCR/ABL1 positivity (P=0.007), prednisone poor response (P=0.002) and minimal residual disease (P<0.0001). In T-cell acute lymphoblastic leukemia we observed a significant association with initial white blood cell count (P=0.0003), prednisone poor response (P=0.01), and minimal residual disease (P=0.02). Compared to CD45-low patients, CD45-high patients had a lower event-free survival rate (B-cell-precursor acute lymphoblastic leukemia: 72±3% versus 86±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 60±8% versus 78±4%, P=0.02), which was mainly attributable to a higher cumulative relapse incidence (B-cell-precursor acute lymphoblastic leukemia: 22±3% versus 11±1%, P<0.0001; T-cell acute lymphoblastic leukemia: 31±8% versus 11±3%, P=0.003) and kept its significance in multivariate analysis considering sex, age, initial white blood cell count, and minimal residual disease in B-cell-precursor- and T-cell acute lymphoblastic leukemia, and additionally presence of ETV6/RUNX1, MLL/AF4 and BCR/ABL1 rearrangements in B-cell-precursor acute lymphoblastic leukemia (P=0.002 and P=0.025, respectively). Consideration of CD45 expression may serve as an additional stratification tool in BFM-based protocols. (ClinicalTrials.gov identifier: NCT00430118)  相似文献   

13.
Göthert JR  Brake RL  Smeets M  Dührsen U  Begley CG  Izon DJ 《Blood》2007,110(10):3753-3762
The acquired activation of stem cell leukemia (SCL) during T lymphopoiesis is a common event in T-cell acute lymphoblastic leukemia (T-ALL). Here, we generated tamoxifen (TAM)-inducible transgenic mice (lck-ER(T2)-SCL) to study the consequences of acquired SCL activation during T-cell development. Aberrant activation of SCL in thymocytes resulted in the accumulation of immature CD4(+)CD8(+) (double-positive, DP) cells by preventing normal surface expression of the T-cell receptor alphabeta (TCRalphabeta) complex. SCL-induced immature DP cells were further characterized by up-regulated NOTCH1 and generated noncycling polyclonal CD8(+)TCRbeta(low) cells. The prevalence of these cells was SCL dependent because TAM withdrawal resulted in their disappearance. Furthermore, we observed that SCL activation led to a dramatic up-regulation of NOTCH1 target genes (Hes-1, Deltex1, and CD25) in thymocytes. Strikingly, NOTCH1 target gene up-regulation was already observed after short-term SCL induction, implying that enhanced NOTCH signaling is mediated by SCL and is not dependent on secondary genetic events. These data represent the basis for a novel pathway of SCL-induced leukemogenesis and provide a functional link between SCL and NOTCH1 during this process.  相似文献   

14.
At present, the only curative therapy for patients with T-cell malignancies is allogeneic stem cell transplant, which has associated risks and toxicities. Novel agents have been tried in relapsed T-cell acute lymphoblastic leukemia (T-ALL), but only one, with 20%–30% complete remission rates, has been approved by the US Food and Drug Administration. T-ALL is a heterogeneous disease, but it has universal overexpression of CD7 as well as several other T-cell markers, such as CD2 and CD5. T cells engineered to express a chimeric antigen receptor (CAR) are a promising cancer immunotherapy. Such targeted therapies have shown great potential for inducing both remissions and even long-term relapse-free survival in patients with B-cell leukemia and lymphoma. UCART7 for CD7+ T-cell malignancies is in development for treatment of relapsed T-ALL in children and adults. It may also have potential in other CD7+ hematologic malignancies that lack both effective therapies and targeted therapies. The challenges encountered and progress made in developing a novel fratricide-resistant “off-the-shelf” CAR-T (or UCART7) that targets CD7+ T-cell malignancies are discussed here.  相似文献   

15.
Demarest RM  Dahmane N  Capobianco AJ 《Blood》2011,117(10):2901-2909
T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic neoplasm characterized by malignant expansion of immature T cells. Activated NOTCH (Notch(IC)) and c-MYC expression are increased in a large percentage of human T-ALL tumors. Furthermore, c-MYC has been shown to be a NOTCH target gene. Although activating mutations of Notch have been found in human T-ALL tumors, there is little evidence that the c-MYC locus is altered in this neoplasm. It was previously demonstrated that Notch and c-Myc-regulated genes have a broadly overlapping profile, including genes involved in cell cycle progression and metabolism. Given that Notch and c-Myc appear to function similarly in T-ALL, we sought to determine whether these two oncogenes could substitute for each other in T-ALL tumors. Here we report that NOTCH(IC) is able to maintain T-ALL tumors formed in the presence of exogenous NOTCH(IC) and c-MYC when exogenous c-MYC expression is extinguished. In contrast, c-MYC is incapable of maintaining these tumors in the absence of NOTCH(IC). We propose that failure of c-MYC to maintain these tumors is the result of p53-mediated apoptosis. These results demonstrate that T-ALL maintenance is dependent on NOTCH(IC), but not c-MYC, demonstrating that NOTCH is oncogenic dominant in T-ALL tumors.  相似文献   

16.
Aberrant recombination between T-cell receptor genes and oncogenes gives rise to chromosomal translocations that are genetic hallmarks in several subsets of human T-cell acute lymphoblastic leukemias. The V(D)J recombination machinery has been shown to play a role in the formation of these T-cell receptor translocations. Other, non-T-cell receptor chromosomal aberrations, such as SIL-TAL1 deletions, have likewise been recognized as V(D)J recombination associated aberrations. Despite the postulated role of V(D)J recombination, the extent of the V(D)J recombination machinery involvement in the formation of T-cell receptor and non-T-cell receptor aberrations in T-cell acute lymphoblastic leukemia is still poorly understood. We performed a comprehensive in silico and ex vivo evaluation of 117 breakpoint sites from 22 different T-cell receptor translocation partners as well as 118 breakpoint sites from non-T-cell receptor chromosomal aberrations. Based on this extensive set of breakpoint data, we provide a comprehensive overview of T-cell receptor and oncogene involvement in T-ALL. Moreover, we assessed the role of the V(D)J recombination machinery in the formation of chromosomal aberrations, and propose an up-dated mechanistic classification on how the V(D)J recombination machinery contributes to the formation of T-cell receptor and non-T-cell receptor aberrations in human T-cell acute lymphoblastic leukemia.  相似文献   

17.
CALM-AF10 (also known as PICALM-MLLT10) is the commonest fusion protein in T-cell acute lymphoblastic leukemia, but its prognostic impact remains unclear. Molecular screening at diagnosis identified CALM-AF10 in 30/431 (7%) patients with T-cell acute lymphoblastic leukemia aged 16 years and over and in 15/234 (6%) of those aged up to 15 years. Adult CALM-AF10-positive patients were predominantly (72%) negative for surface (s)CD3/T-cell receptor, whereas children were predominantly (67%) positive for T-cell receptor. Among 22 adult CALM-AF10-positive patients treated according to the LALA94/GRAALL03-05 protocols, the poor prognosis for event-free survival (P=0.0017) and overall survival (P=0.0014) was restricted to the 15 T-cell receptor-negative cases. Among CALM-AF10-positive, T-cell receptor-negative patients, 82% had an early T-cell precursor phenotype, reported to be of poor prognosis in pediatric T-cell acute lymphoblastic leukemia. Early T-cell precursor acute lymphoblastic leukemia corresponded to 22% of adult LALA94/GRAALL03-05 T-cell acute lymphoblastic leukemias, but had no prognostic impact per se. CALM-AF10 fusion within early T-cell precursor acute lymphoblastic leukemia (21%) did, however, identify a group with a poor prognosis with regards to event-free survival (P=0.04). CALM-AF10 therefore identifies a poor prognostic group within sCD3/T-cell receptor negative adult T-cell acute lymphoblastic leukemias and is over-represented within early T-cell precursor acute lymphoblastic leukemias, in which it identifies patients in whom treatment is likely to fail. Its prognosis and overlap with early T-cell precursor acute lymphoblastic leukemia in pediatric T-cell acute lymphoblastic leukemia merits analysis. The clinical trial GRAALL was registered at Clinical Trials.gov number NCT00327678.  相似文献   

18.
《Haematologica》2021,106(6):1693
Patients diagnosed with anaplastic large cell lymphoma (ALCL) are still treated with toxic multi-agent chemotherapy and as many as 25-50% of patients relapse. To understand disease pathology and to uncover novel targets for therapy, we performed whole-exome sequencing of anaplastic lymphoma kinase (ALK)+ ALCL, as well as gene-set enrichment analysis. This revealed that the T-cell receptor and Notch pathways were the most enriched in mutations. In particular, variant T349P of NOTCH1, which confers a growth advantage to cells in which it is expressed, was detected in 12% of ALK+ and ALK ALCL patients’ samples. Furthermore, we demonstrated that NPM-ALK promotes NOTCH1 expression through binding of STAT3 upstream of NOTCH1. Moreover, inhibition of NOTCH1 with γ- secretase inhibitors or silencing by short hairpin RNA leads to apoptosis; cotreatment in vitro with the ALK inhibitor crizotinib led to additive/synergistic antitumor activity suggesting that this may be an appropriate combination therapy for future use in the circumvention of ALK inhibitor resistance. Indeed, crizotinib-resistant and -sensitive ALCL were equally sensitive to γ-secretase inhibitors. In conclusion, we show a variant in the extracellular domain of NOTCH1 that provides a growth advantage to cells and confirm the suitability of the Notch pathway as a second-line druggable target in ALK+ ALCL.  相似文献   

19.
Effects of concurrent inhibition of mTORC1/2 and Bcl-2/Bcl-xL in human acute myeloid leukemia cells were examined. Tetracycline-inducible Bcl-2/Bcl-xL dual knockdown markedly sensitized acute myeloid leukemia cells to the dual TORC1/2 inhibitor INK128 in vitro as well as in vivo. Moreover, INK128 co-administered with the Bcl-2/xL antagonist ABT-737 sharply induced cell death in multiple acute myeloid leukemia cell lines, including TKI-resistant FLT3-ITD mutants and primary acute myeloid leukemia blasts carrying various genetic aberrations e.g., FLT3, IDH2, NPM1, and Kras, while exerting minimal toxicity toward normal hematopoietic CD34+ cells. Combined treatment was particularly active against CD34+/CD38/CD123+ primitive leukemic progenitor cells. The INK128/ABT-737 regimen was also effective in the presence of a protective stromal microenvironment. Notably, INK128 was more potent than the TORC1 inhibitor rapamycin in down-regulating Mcl-1, diminishing AKT and 4EBP1 phosphorylation, and potentiating ABT-737 activity. Mcl-1 ectopic expression dramatically attenuated INK128/ABT-737 lethality, indicating an important functional role for Mcl-1 down-regulation in INK128/ABT-737 actions. Immunoprecipitation analysis revealed that combined treatment markedly diminished Bax, Bak, and Bim binding to all major anti-apoptotic Bcl-2 members (Bcl-2/Bcl-xL/Mcl-1), while Bax/Bak knockdown reduced cell death. Finally, INK128/ABT-737 co-administration sharply attenuated leukemia growth and significantly prolonged survival in a systemic acute myeloid leukemia xenograft model. Analysis of subcutaneous acute myeloid leukemia-derived tumors revealed significant decrease in 4EBP1 phosphorylation and Mcl-1 protein level, consistent with results obtained in vitro. These findings demonstrate that co-administration of dual mTORC1/mTORC2 inhibitors and BH3-mimetics exhibits potent anti-leukemic activity in vitro and in vivo, arguing that this strategy warrants attention in acute myeloid leukemia.  相似文献   

20.
B-cell acute lymphoblastic leukemia is the most common type of pediatric leukemia. Despite improved remission rates, current treatment regimens for pediatric B-cell acute lymphoblastic leukemia are often associated with adverse effects and central nervous system relapse, necessitating more effective and safer agents. Bafilomycin A1 is an inhibitor of vacuolar H+-ATPase that is frequently used at high concentration to block late-phase autophagy. Here, we show that bafilomycin A1 at a low concentration (1 nM) effectively and specifically inhibited and killed pediatric B-cell acute lymphoblastic leukemia cells. It targeted both early and late stages of the autophagy pathway by activating mammalian target of rapamycin signaling and by disassociating the Beclin 1-Vps34 complex, as well as by inhibiting the formation of autolysosomes, all of which attenuated functional autophagy. Bafilomycin A1 also targeted mitochondria and induced caspase-independent apoptosis by inducing the translocation of apoptosis-inducing factor from mitochondria to the nucleus. Moreover, bafilomycin A1 induced the binding of Beclin 1 to Bcl-2, which further inhibited autophagy and promoted apoptotic cell death. In primary cells from pediatric patients with B-cell acute lymphoblastic leukemia and a xenograft model, bafilomycin A1 specifically targeted leukemia cells while sparing normal cells. An in vivo mouse toxicity assay confirmed that bafilomycin A1 is safe. Our data thus suggest that bafilomycin A1 is a promising candidate drug for the treatment of pediatric B-cell acute lymphoblastic leukemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号