首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《药学学报(英文版)》2021,11(12):3847-3856
Bile acids (BAs) are amphipathic molecules important for metabolism of cholesterol, absorption of lipids and lipid soluble vitamins, bile flow, and regulation of gut microbiome. There are over 30 different BA species known to exist in humans and mice, which are endogenous modulators of at least 6 different membrane or nuclear receptors. This diversity of ligands and receptors play important roles in health and disease; however, the full functions of each individual BA in vivo remain unclear. We generated a mouse model lacking the initiating enzymes, CYP7A1 and CYP27A1, in the two main pathways of BA synthesis. Because females are more susceptible to BA related diseases, such as intrahepatic cholestasis of pregnancy, we expanded this model into female mice. The null mice of Cyp7a1 and Cyp27a1 were crossbred to create double knockout (DKO) mice. BA concentrations in female DKO mice had reductions in serum (63%), liver (83%), gallbladder (94%), and small intestine (85%), as compared to WT mice. Despite low BA levels, DKO mice had a similar expression pattern to that of WT mice for genes involved in BA regulation, synthesis, conjugation, and transport. Additionally, through treatment with a synthetic FXR agonist, GW4064, female DKO mice responded to FXR activation similarly to WT mice.  相似文献   

2.
3.
《药学学报(英文版)》2020,10(5):850-860
Organic anion transporting polypeptide 1B1 and 1B3 (OATP1B1/3) as important uptake transporters play a fundamental role in the transportation of exogenous drugs and endogenous substances into cells. Rat OATP1B2, encoded by the Slco1b2 gene, is homologous to human OATP1B1/3. Although OATP1B1/3 is very important, few animal models can be used to study its properties. In this report, we successfully constructed the Slco1b2 knockout (KO) rat model via using the CRISPR/Cas9 technology for the first time. The novel rat model showed the absence of OATP1B2 protein expression, with no off-target effects as well as compensatory regulation of other transporters. Further pharmacokinetic study of pitavastatin, a typical substrate of OATP1B2, confirmed the OATP1B2 function was absent. Since bilirubin and bile acids are the substrates of OATP1B2, the contents of total bilirubin, direct bilirubin, indirect bilirubin, and total bile acids in serum are significantly higher in Slco1b2 KO rats than the data of wild-type rats. These results are consistent with the symptoms caused by the absence of OATP1B1/3 in Rotor syndrome. Therefore, this rat model is not only a powerful tool for the study of OATP1B2-mediated drug transportation, but also a good disease model to study hyperbilirubinemia-related diseases.  相似文献   

4.
CYP4 enzymes are involved in the metabolism of xenobiotics and endogenous molecules. 20-Hydroxyeicosatetraenoic acid (20-HETE), the arachidonic acid (AA) ω-hydroxylation metabolite catalyzed by CYP4A/4F enzymes, is implicated in various biological functions. The goal of this investigation is to examine the inhibitory effects of components from Salvia miltiorrhiza(Danshen) on AA ω-hydroxylation using recombinant CYP4A11, CYP4F2, CYP4F3B, and microsomal systems. Tanshinone IIA had noncompetitive inhibition on CYP4F3B (Ki = 4.98 μM). Cryptotanshinone (Ki = 6.87 μM) and tanshinone I (Ki = 0.42 μM) had mixed-type inhibition on CYP4A11. Dihydrotanshinone I had mixed-type inhibition on CYP4A11 (Ki = 0.09 μM), and noncompetitive inhibition on CYP4F2 (Ki = 4.25 μM) and CYP4F3B (Ki = 3.08 μM). Salvianolic acid A had competitive inhibition on CYP4A11 (Ki = 19.37 μM), and noncompetitive inhibition on CYP4F2 (Ki = 15.28 μM) and CYP4F3B (Ki = 6.45 μM). Salvianolic acid C had noncompetitive inhibition on CYP4F2 (Ki = 5.70 μM) and CYP4F3B (Ki = 18.64 μM). In human kidney, human liver or rat heart microsomes, 20-HETE formation was significantly inhibited (P < 0.05) by dihydrotanshinone I (5 and 20 μM) and salvianolic acid A (20 and 50 μM). Given that low plasma concentrations of Danshen components after oral administration, Danshen preparations may not play pharmacological roles by inhibiting AA ω-hydroxylases; however, as Danshen components may reach high concentration in human intestine, drugs that have an important pre-systemic metabolism by these CYP4A/4F enzymes should avoid being co-administered with Danshen preparations.  相似文献   

5.
《药学学报(英文版)》2022,12(4):1976-1986
Currently, the development of selective fluorescent probes toward targeted enzymes is still a great challenge, due to the existence of numerous isoenzymes that share similar catalytic capacity. Herein, a double-filtering strategy was established to effectively develop isoenzyme-specific fluorescent probe(s) for cytochrome P450 (CYP) which are key enzymes involving in metabolism of endogenous substances and drugs. In the first-stage of our filtering approach, near-infrared (NIR) fluorophores with alkoxyl group were prepared for the screening of CYP-activated fluorescent substrates using a CYPs-dependent incubation system. In the second stage of our filtering approach, these candidates were further screened using reverse protein-ligand docking to effectively determine CYP isoenzyme-specific probe(s). Using our double-filtering approach, probes S9 and S10 were successfully developed for the real-time and selective detection of CYP2C9 and CYP2J2, respectively, to facilitate high-throughput screening and assessment of CYP2C9-mediated clinical drug interaction risks and CYP2J2-associated disease diagnosis. These observations suggest that our strategy could be used to develop the isoform-specific probes for CYPs.  相似文献   

6.
Some grapefruit juice (GFJ) ingredients and resveratrol, a fruit-derived phytoalexin, are known to inhibit cytochrome P450 (CYP) 2C9. However, their inhibition modes and detailed inhibition kinetics remain undetermined. This study aimed to investigate the inhibitory effects of two GFJ ingredients, bergamottin (BG) and dihydroxybergamottin (DHB), and resveratrol on CYP2C9 activity in vitro. DHB inhibited CYP2C9 activity, as assessed by warfarin 7-hydroxylation, in a preincubation time-dependent manner (i.e., mechanism-based inhibition; MBI), in the same manner as CYP2C19 and CYP3A4. The maximal inactivation rate (kinact,max) was 0.0638 min−1 and 0.12- and 0.26-fold of that for CYP2C19 and CYP3A4, respectively. BG showed both MBI and time-independent competitive inhibition. Resveratrol showed non-competitive inhibition with an inhibition constant (Ki) of 3.64 μM. Unlike the inhibition of CYP2C19 and CYP3A4, resveratrol did not induce MBI. These findings are important for estimating the risk of drug interactions between CYP2C9 substrates and some beverages. (146 words)  相似文献   

7.
8.
A recent report demonstrated that sesamin strongly and non-competitively inhibits S-warfarin 7-hydroxylation activity in human liver microsomes with a Ki value of 0.2 μM. This finding suggests that sesamin predominantly binds to CYP2C9 at another site for which it has a higher affinity than its affinity for the active site, thereby inhibiting the activity of CYP2C9 non-competitively. In this study, we found that sesamin competitively inhibited the 7-hydroxylation activity of S-warfarin in human liver microsomes with a Ki value of 15.7 μM. In addition, the recombinant CYP2C9-dependent 7-hydroxylation activity of S-warfarin was competitively inhibited by sesamin with a Ki value of 13.1 μM. These results are consistent with the fact that sesamin is a good substrate of CYP2C9, and its activity follows Michaelis-Menten kinetics. As the plasma concentration of sesamin after its administration is usually lower than 0.01 μM, the inhibition of S-warfarin metabolism by sesamin does not appear to be severe.  相似文献   

9.
Tofacitinib (TFT), a JAK inhibitor used for the treatment of rheumatoid arthritis and other diseases, is associated with severe liver injury that is believed to be caused by its reactive aldehyde or epoxide metabolites. In this study, we synthesized six tofacitinib analogs designed to avoid the formation of reactive metabolites and evaluated their JAK3 inhibitory activity, metabolic stability, CYP3A time-dependent inhibition, and cytotoxicity. Our data indicated that purine analog 3, which showed little inhibition of CYP3A and cytotoxicity and inhibited JAK3 in the nanomolar range, could be a safer drug candidate than TFT. In addition, the results of the bioactivation study using TFT and its analogs suggest that the epoxide metabolite might contribute to TFT-induced CYP3A4 mechanism-based inhibition and hepatic toxicity.  相似文献   

10.
11.
《药学学报(英文版)》2020,10(9):1669-1679
Proteolysis targeting chimeras (PROTACs) are dual-functional hybrid molecules that can selectively recruit an E3 ubiquitin ligase to a target protein to direct the protein into the ubiquitin-proteasome system (UPS), thereby selectively reducing the target protein level by the ubiquitin-proteasome pathway. Nowadays, small-molecule PROTACs are gaining popularity as tools to degrade pathogenic protein. Herein, we present the first small-molecule PROTACs that can induce the α1A-adrenergic receptor (α1A-AR) degradation, which is also the first small-molecule PROTACs for G protein-coupled receptors (GPCRs) to our knowledge. These degradation inducers were developed through conjugation of known α1-adrenergic receptors (α1-ARs) inhibitor prazosin and cereblon (CRBN) ligand pomalidomide through the different linkers. The representative compound 9c is proved to inhibit the proliferation of PC-3 cells and result in tumor growth regression, which highlighted the potential of our study as a new therapeutic strategy for prostate cancer.  相似文献   

12.
In the field of drug development, technology for producing human metabolites at a low cost is required. In this study, we explored the possibility of using prokaryotic water-soluble cytochrome P450 (CYP) to produce human metabolites. Streptomyces griseolus CYP105A1 metabolizes various non-steroidal anti-inflammatory drugs (NSAIDs), including diclofenac, mefenamic acid, flufenamic acid, tolfenamic acid, meclofenamic acid, and ibuprofen. CYP105A1 showed 4′-hydroxylation activity towards diclofenac, mefenamic acid, flufenamic acid, tolfenamic acid, and meclofenamic acid. It should be noted that this reaction specificity was similar to that of human CYP2C9. In the case of mefenamic acid, another metabolite, 3′-hydroxymethyl mefenamic acid, was detected as a major metabolite. Substitution of Arg at position 73 with Ala in CYP105A1 dramatically reduced the hydroxylation activity toward diclofenac, flufenamic acid, and ibuprofen, indicating that Arg73 is essential for the hydroxylation of these substrates. In contrast, substitution of Arg84 with Ala remarkably increased the hydroxylation activity towards diclofenac, mefenamic acid, and flufenamic acid. Recombinant Rhodococcus erythrocyte cells expressing the CYP105A1 variant R84A/M239A showed complete conversion of diclofenac into 4′-hydroxydiclofenac. These results suggest the usefulness of recombinant R. erythropolis cells expressing actinomycete CYP, such as CYP105A1, for the production of human drug metabolites.  相似文献   

13.
14.
《药学学报(英文版)》2020,10(1):153-158
Parenteral nutrition-associated liver disease (PNALD) is a liver dysfunction caused by various risk factors presented in patients receiving total parenteral nutrition (TPN). Omega-6 rich Intralipid® and omega-3 rich Omegaven® are two intravenous lipid emulsions used in TPN. TPN could affect the hepatic expression of genes in anti-oxidative stress, but it's unknown whether TPN affects genes in drug metabolism. In this study, either Intralipid®- or Omegaven®-based TPN was administered to mice and the expression of a cohort of genes involved in anti-oxidative stress or drug metabolism was analyzed, glutathione (GSH) levels were measured, and protein levels for two key drug metabolism genes were determined. Overall, the expression of most genes was downregulated by Intralipid®-based TPN (Gstp1, Gstm1, 3, 6, Nqo1, Ho-1, Mt-1, Gclc, Gclm, Cyp2d9, 2f2, 2b10, and 3a11). Omegaven® showed similar results as Intralipid® except for preserving the expression of Gstm1 and Cyp3a11, and increasing Ho-1. Total GSH levels were decreased by Intralipid®, but increased by Omegaven®. CYP3A11 protein levels were increased by Omegaven®. In conclusion, TPN reduced the expression of many genes involved in anti-oxidative stress and drug metabolism in mice. However, Omegaven® preserved expression of Cyp3a11, suggesting another beneficial effect of Omegaven® in protecting liver functions.  相似文献   

15.
《药学学报(英文版)》2021,11(8):2306-2325
Blood–brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (e.g., intranasal treatment) for BBB bypassing are not included in this review.  相似文献   

16.
《Saudi Pharmaceutical Journal》2022,30(10):1387-1395
BackgroundMuscular atrophy (MA) is a disease of various origins, i.e., genetic or the most common, caused by mechanical injury. So far, there is no universal therapeutic model because this disease is often progressive with numerous manifested symptoms. Moreover, there is no safe and low-risk therapy dedicated to muscle atrophy. For this reason, our research focuses on finding an alternative method using natural compounds to treat MA. This study proposes implementing natural substances such as celastrol and Rhynchophylline on the cellular level, using a simulated and controlled atrophy process. Methods: Celastrol and Rhynchophylline were used as natural compounds against simulated atrophy in C2C12 cells. Skeletal muscle C2C12 cells were stimulated for the differentiation process. Atrophic conditions were obtained by the exposure to the low concertation of doxorubicin and validated by FoxO3 and MAFbx. The protective and regenerative effect of drugs on cell proliferation was determined by the MTT assay and MT-CO1, VDAC1, and prohibitin expression. Results: The obtained results revealed that both natural substances reduced atrophic symptoms. Rhynchophylline and celastrol attenuated atrophic cells in the viability studies, morphology analysis by diameter measurements, modulated prohibitin VDAC, and MT-CO1 expression. Conclusions: The obtained results revealed that celastrol and Rhynchophylline could be effectively used as a supportive treatment in atrophy-related disorders. Thus, natural drugs seem promising for muscle regeneration.  相似文献   

17.
The prostaglandin (PG) transporter SLCO2A1 regulates PGE2 signaling and interacts with many drugs, and SLCO2A1 defects is associated with PG metabolic disorders. This study aimed to characterize a non-metabolic phenolsulfonphthalein (PSP) transport mediated by SLCO2A1. PSP uptake by HEK293 cells expressing human SLCO2A1 (HEK/2A1 cells) was pH-independent and saturable with a Km value of 54.5 ± 9.5 μM PGE2 competitively inhibited PSP uptake with a Ki of 257.3 ± 22.8 nM. When PSP was intravenously (i.v.) injected, concentration-time curve showed a biphasic response. In Slco2a1-deficient (−/−) mice, AUCinf tented to decrease and the central distribution volume (V1) significantly increased, compared to wild-type (wt) counterparts. Intriguingly, Slco2a1-deficiency significantly reduced a ratio of tissue-to-plasma concentration in the lungs at 15 min after i.v. injection, suggesting that SLCO2A1 limits tissue distribution of PSP. In conclusion, these results prove that PSP is a potential surrogate for monitoring SLCO2A1 function, providing a new concept for diagnostics for the genetic diseases caused by defects in SLCO2A1 gene.  相似文献   

18.
《药学学报(英文版)》2020,10(10):1835-1845
Repurposing small molecule drugs and drug candidates is considered as a promising approach to revolutionise the treatment of snakebite envenoming. In this study, we investigated the inhibiting effects of the small molecules varespladib (nonspecific phospholipase A2 inhibitor), marimastat (broad spectrum matrix metalloprotease inhibitor) and dimercaprol (metal ion chelator) against coagulopathic toxins found in Crotalinae (pit vipers) snake venoms. Venoms from Bothrops asper, Bothrops jararaca, Calloselasma rhodostoma and Deinagkistrodon acutus were separated by liquid chromatography, followed by nanofractionation and mass spectrometry identification undertaken in parallel. Nanofractions of the venom toxins were then subjected to a high-throughput coagulation assay in the presence of different concentrations of the small molecules under study. Anticoagulant venom toxins were mostly identified as phospholipases A2, while procoagulant venom activities were mainly associated with snake venom metalloproteinases and snake venom serine proteases. Varespladib was found to effectively inhibit most anticoagulant venom effects, and also showed some inhibition against procoagulant toxins. Contrastingly, marimastat and dimercaprol were both effective inhibitors of procoagulant venom activities but showed little inhibitory capability against anticoagulant toxins. The information obtained from this study aids our understanding of the mechanisms of action of toxin inhibitor drug candidates, and highlights their potential as future snakebite treatments.  相似文献   

19.
《药学学报(英文版)》2020,10(4):646-666
Drug repurposing is an efficient strategy for new drug discovery. Our latest study found that nitazoxanide (NTZ), an approved anti-parasite drug, was an autophagy activator and could alleviate the symptom of Alzheimer's disease (AD). In order to further improve the efficacy and discover new chemical entities, a series of NTZ-based derivatives were designed, synthesized, and evaluated as autophagy activator against AD. All compounds were screened by the inhibition of phosphorylation of p70S6K, which was the direct substrate of mammalian target of rapamycin (mTOR) and its phosphorylation level could reflect the mTOR-dependent autophagy level. Among these analogs, compound 22 exhibited excellent potency in promoting β-amyloid (Aβ) clearance, inhibiting tau phosphorylation, as well as stimulating autophagy both in vitro and in vivo. What's more, 22 could effectively improve the memory and cognitive impairments in APP/PS1 transgenic AD model mice. These results demonstrated that 22 was a potential candidate for the treatment of AD.  相似文献   

20.
《药学学报(英文版)》2021,11(12):3994-4007
Vascular smooth muscle cell (VSMC) migration plays a critical role in the pathogenesis of many cardiovascular diseases. We recently showed that TMEM16A is involved in hypertension-induced cerebrovascular remodeling. However, it is unclear whether this effect is related to the regulation of VSMC migration. Here, we investigated whether and how TMEM16A contributes to migration in basilar artery smooth muscle cells (BASMCs). We observed that AngII increased the migration of cultured BASMCs, which was markedly inhibited by overexpression of TMEM16A. TMEM16A overexpression inhibited AngII-induced RhoA/ROCK2 activation, and myosin light chain phosphatase (MLCP) and myosin light chain (MLC20) phosphorylation. But AngII-induced myosin light chain kinase (MLCK) activation was not affected by TMEM16A. Furthermore, a suppressed activation of integrinβ3/FAK pathway, determined by reduced integrinβ3 expression, FAK phosphorylation and F-actin rearrangement, was observed in TMEM16A-overexpressing BASMCs upon AngII stimulation. Contrary to the results of TMEM16A overexpression, silencing of TMEM16A showed the opposite effects. These in vitro results were further demonstrated in vivo in basilar arteries from VSMC-specific TMEM16A transgenic mice during AngII-induced hypertension. Moreover, we observed that the inhibitory effect of TMEM16A on BASMC migration was mediated by decreasing the activation of WNK1, a Cl-sensitive serine/threonine kinase. In conclusion, this study demonstrated that TMEM16A suppressed AngII-induced BASMC migration, thus contributing to the protection against cerebrovascular remodeling during AngII-infused hypertension. TMEM16A may exert this effect by suppressing the RhoA/ROCK2/MLCP/MLC20 and integrinβ3/FAK signaling pathways via inhibiting WNK1. Our results suggest that TMEM16A may serve as a novel therapeutic target for VSMC migration-related diseases, such as vascular remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号