共查询到20条相似文献,搜索用时 15 毫秒
1.
《Drug metabolism and pharmacokinetics》2020,35(2):220-227
Organic anion-transporting polypeptide (OATP) 1A2 is expressed on the apical sides of intestinal and renal epithelial cells and considered to be involved in the intestinal absorption and renal reabsorption of drugs. Although the transport activity of OATP1A2 is considered to be pH-dependent, the effects of pH on its kinetic parameters and on the potency of OATP1A2 inhibitors are yet to be elucidated. Some OATP are known to have multiple binding sites (MBS), but it remains unclear whether OATP1A2 has MBS. In the present study, we evaluated the influence of pH on the OATP1A2-mediated uptake of estrone 3-sulfate using OATP1A2-expressing HEK293 cells. The uptake of 0.3 μM estrone 3-sulfate by HEK293-OATP1A2 cells was pH-dependent. OATP1A2 exhibited bimodal saturation kinetics at pH 6.3 and 7.4. Compared with that seen at pH 6.3 (5.62 μM), the Km value of the high-affinity site was 8-fold higher at pH 7.4 (43.2 μM). In addition, the influence of pH on the potency of inhibitors varied among the examined inhibitors. These results suggest that the transport properties of OATP1A2 under lower pH conditions, such as those found in the microenvironments of the small intestinal mucosa and distal tubules, differ from those seen under neutral pH conditions. 相似文献
2.
《药学学报(英文版)》2019,9(6):1163-1173
Collectively migrating tumor cells have been recently implicated in enhanced metastasis of epithelial malignancies. In oral squamous cell carcinoma (OSCC), αv integrin is a crucial mediator of multicellular clustering and collective movement in vitro; however, its contribution to metastatic spread remains to be addressed. According to the emerging therapeutic concept, dissociation of tumor clusters into single cells could significantly suppress metastasis-seeding ability of carcinomas. This study aimed to investigate the anti-OSCC potential of novel endostatin-derived polypeptide PEP06 as a cluster-dissociating therapeutic agent in vitro. Firstly, we found marked enrichment of αv integrin in collectively invading multicellular clusters in human OSCCs. Our study revealed that metastatic progression of OSCC was associated with augmented immunostaining of αv integrin in cancerous lesions. Following PEP06 treatment, cell clustering on fibronectin, migration, multicellular aggregation, anchorage-independent survival and colony formation of OSCC were significantly inhibited. Moreover, PEP06 suppressed αv integrin/FAK/Src signaling in OSCC cells. PEP06-induced loss of active Src and E-cadherin from cell–cell contacts contributed to diminished collective migration of OSCC in vitro. Overall, these results suggest that PEP06 polypeptide 30 inhibiting αv integrin/FAK/Src signaling and disrupting E-cadherin-based intercellular junctions possesses anti-metastatic potential in OSCC by acting as a cluster-dissociating therapeutic agent. 相似文献
3.
4.
Orotate, a nutritional compound typically utilized as an intermediate in pyrimidine synthesis, has been suggested to undergo renal reabsorption. However, the detailed mechanisms involved in the process remain unclear, with only urate transporter 1 (URAT1/SLC22A12) being indicated as a transporter involved in its tubular uptake. As an attempt to identify transporters involved in that to help clarify the mechanisms, we examined a possibility that organic anion transporter 10 (OAT10/SLC22A13), which is present at the brush border membrane in renal tubular epithelial cells, could transport orotate. The operation of human OAT10 for orotate transport was demonstrated indeed and analyzed in detail in Madin-Darby canine kidney II cells introduced with this transporter by stable transfection. Orotate transport by OAT10 was found to be kinetically saturable with a biphasic characteristic and dependent on Cl−. These are unique characteristics previously unknown in its operation for the other substrates. Orotate transport by OAT10 was, on the other hand, inhibited by several anionic compounds known as OAT10 inhibitors. Finally, the rat ortholog of OAT10 was found not to be able to transport orotate, indicating animal species differences in that function. Thus, human OAT10 has been demonstrated to operate for orotate transport with unique characteristics. 相似文献
5.
6.
《药学学报(英文版)》2021,11(8):2449-2468
Orally administered drug entities have to survive the harsh gastrointestinal environment, penetrate the enteric epithelia and circumvent hepatic metabolism before reaching the systemic circulation. Whereas the gastrointestinal stability can be well maintained by taking proper measures, hepatic metabolism presents as a formidable barrier to drugs suffering from first-pass metabolism. The pharmaceutical academia and industries are seeking alternative pathways for drug transport to circumvent problems associated with the portal pathway. Intestinal lymphatic transport is emerging as a promising pathway to this end. In this review, we intend to provide an updated overview on the rationale, strategies, factors and applications involved in intestinal lymphatic transport. There are mainly two pathways for peroral lymphatic transport—the chylomicron and the microfold cell pathways. The underlying mechanisms are being unraveled gradually and nowadays witness increasing research input and applications. 相似文献
7.
《药学学报(英文版)》2021,11(9):2798-2818
Inflammatory bowel disease (IBD) is a chronic intestinal disease with painful clinical manifestations and high risks of cancerization. With no curative therapy for IBD at present, the development of effective therapeutics is highly advocated. Drug delivery systems have been extensively studied to transmit therapeutics to inflamed colon sites through the enhanced permeability and retention (EPR) effect caused by the inflammation. However, the drug still could not achieve effective concentration value that merely utilized on EPR effect and display better therapeutic efficacy in the inflamed region because of nontargeted drug release. Substantial researches have shown that some specific receptors and cell adhesion molecules highly expresses on the surface of colonic endothelial and/or immune cells when IBD occurs, ligand-modified drug delivery systems targeting such receptors and cell adhesion molecules can specifically deliver drug into inflamed sites and obtain great curative effects. This review introduces the overexpressed receptors and cell adhesion molecules in inflamed colon sites and retrospects the drug delivery systems functionalized by related ligands. Finally, challenges and future directions in this field are presented to advance the development of the receptor-mediated targeted drug delivery systems for the therapy of IBD. 相似文献
8.
《药学学报(英文版)》2019,9(5):986-996
Imipenem is a carbapenem antibiotic. However, Imipenem could not be marketed owing to its instability and nephrotoxicity until cilastatin, an inhibitor of renal dehydropeptidase-I (DHP-I), was developed. In present study, the potential roles of renal organic anion transporters (OATs) in alleviating the nephrotoxicity of imipenem by cilastatin were investigated in vitro and in rabbits. Our results indicated that imipenem and cilastatin were substrates of hOAT1 and hOAT3. Cilastatin inhibited hOAT1/3-mediated transport of imipenem with IC50 values comparable to the clinical concentration, suggesting the potential to cause a clinical drug–drug interaction (DDI). Moreover, imipenem exhibited hOAT1/3-dependent cytotoxicity, which was alleviated by cilastatin and probenecid. Furthermore, cilastatin and probenecid ameliorated imipenem-induced rabbit acute kidney injury, and reduced the renal secretion of imipenem. Cilastatin and probenecid inhibited intracellular accumulation of imipenem and sequentially decreased the nephrocyte toxicity in rabbit primary proximal tubule cells. Renal OATs, besides DHP-I, was also the target of interaction between imipenem and cilastatin, and contributed to the nephrotoxicity of imipenem. This therefore gives in part the explanation about the mechanism by which cilastatin protected against imipenem-induced nephrotoxicity. Thus, OATs can potentially be used as a therapeutic target to avoid the renal adverse reaction of imipenem in clinic. 相似文献
9.
《Drug metabolism and pharmacokinetics》2019,34(5):317-324
Quantitative evaluations of the functions of uptake and efflux transporters directly in vivo is desired to understand an efficient hepatobiliary transport of substrate drugs. Pitavastatin is a substrate of organic anion transporting polypeptides (OATPs) and canalicular efflux transporters; thus, it can be a suitable probe for positron-emission tomography (PET) imaging of hepatic transporter functions. To characterize the performance of [18F]PTV-F1, an analogue of pitavastatin, we investigated the impact of rifampicin (a typical OATP inhibitor) coadministration or Bcrp (breast cancer resistance protein) knockout on [18F]PTV-F1 hepatic uptake and efflux in rats by PET imaging. After intravenous administration, [18F]PTV-F1 selectively accumulated in the liver, and the radioactivity detected in plasma, liver, and bile mainly derived from the parent PTV-F1 during the PET study (∼40 min). Coadministration of rifampicin largely decreased the hepatic uptake of [18F]PTV-F1 by 73%. Because of its lower clearance in rats, [18F]PTV-F1 is more sensitive for monitoring changes in hepatic OATP1B function that other previously reported OATP1B PET probes. Rifampicin coadministration also significantly decreased the biliary excretion of radioactivity by 65%. Bcrp knockout did not show a significant impact on its biliary excretion.[18F]PTV-F1 enables quantitative analysis of the hepatobiliary transport system for organic anions. 相似文献
10.
11.
《药学学报(英文版)》2022,12(4):1928-1942
T cell engaging bispecific antibody (TCB) is an effective immunotherapy for cancer treatment. Through co-targeting CD3 and tumor-associated antigen (TAA), TCB can redirect CD3+ T cells to eliminate tumor cells regardless of the specificity of T cell receptor. Tissue factor (TF) is a TAA that involved in tumor progression. Here, we designed and characterized a novel TCB targeting TF (TF-TCB) for the treatment of TF-positive tumors. In vitro, robust T cell activation, tumor cell lysis and T cell proliferation were induced by TF-TCB. The tumor cell lysis activity was dependent upon both CD3 and TF binding moieties of the TF-TCB, and was related to TF expression level of tumor cells. In vivo, in both tumor cell/human peripheral blood mononuclear cells (PBMC) co-grafting model and established tumor models with poor T cell infiltration, tumor growth was strongly inhibited by TF-TCB. T cell infiltration into tumors was induced during the treatment. Furthermore, efficacy of TF-TCB was further improved by combination with immune checkpoint inhibitors. For the first time, our results validated the feasibility of using TF as a target for TCB and highlighted the potential for TF-TCB to demonstrate efficacy in solid tumor treatment. 相似文献
12.
《药学学报(英文版)》2022,12(1):246-261
The first rate-limiting enzyme of the serine synthesis pathway (SSP), phosphoglycerate dehydrogenase (PHGDH), is hyperactive in multiple tumors, which leads to the activation of SSP and promotes tumorigenesis. However, only a few inhibitors of PHGDH have been discovered to date, especially the covalent inhibitors of PHGDH. Here, we identified withangulatin A (WA), a natural small molecule, as a novel covalent inhibitor of PHGDH. Affinity-based protein profiling identified that WA could directly bind to PHGDH and inactivate the enzyme activity of PHGDH. Biolayer interferometry and LC–MS/MS analysis further demonstrated the selective covalent binding of WA to the cysteine 295 residue (Cys295) of PHGDH. With the covalent modification of Cys295, WA blocked the substrate-binding domain (SBD) of PHGDH and exerted an allosteric effect to induce PHGDH inactivation. Further studies revealed that with the inhibition of PHGDH mediated by WA, the glutathione synthesis was decreased and intracellular levels of reactive oxygen species (ROS) were elevated, leading to the inhibition of tumor proliferation. This study indicates WA as a novel PHGDH covalent inhibitor, which identifies Cys295 as a novel allosteric regulatory site of PHGDH and holds great potential in developing anti-tumor agents for targeting PHGDH. 相似文献
13.
Since accelerated metabolism produces much higher levels of reactive oxygen species (ROS) in cancer cells compared to ROS levels found in normal cells, human MutT homolog 1 (MTH1), which sanitizes oxidized nucleotide pools, was recently demonstrated to be crucial for the survival of cancer cells, but not required for the proliferation of normal cells. Therefore, dozens of MTH1 inhibitors have been developed with the aim of suppressing cancer growth by accumulating oxidative damage in cancer cells. While several inhibitors were indeed confirmed to be effective, some inhibitors failed to kill cancer cells, complicating MTH1 as a viable target for cancer eradication. In this review, we summarize the current status of developing MTH1 inhibitors as drug candidates, classify the MTH1 inhibitors based on their structures, and offer our perspectives toward the therapeutic potential against cancer through the targeting of MTH1. 相似文献
14.
《药学学报(英文版)》2022,12(1):92-106
Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted. 相似文献
15.
《药学学报(英文版)》2020,10(4):603-614
Pancreatic cancer is one of the most aggressive cancers with poor prognosis and a low 5-year survival rate. The family of P21-activated kinases (PAKs) appears to modulate many signaling pathways that contribute to pancreatic carcinogenesis. In this work, we demonstrated that PAK1 is a critical regulator in pancreatic cancer cell growth. PAK1-targeted inhibition is therefore a new potential therapeutic strategy for pancreatic cancer. Our small molecule screening identified a relatively specific PAK1-targeted inhibitor, CP734. Pharmacological and biochemical studies indicated that CP734 targets residue V342 of PAK1 to inhibit its ATPase activity. Further in vitro and in vivo studies elucidated that CP734 suppresses pancreatic tumor growth through depleting PAK1 kinase activity and its downstream signaling pathways. Little toxicity of CP734 was observed in murine models. Combined with gemcitabine or 5-fluorouracil, CP734 also showed synergistic effects on the anti-proliferation of pancreatic cancer cells. All these favorable results indicated that CP734 is a new potential therapeutic candidate for pancreatic cancer. 相似文献
16.
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) playing crucial roles in sepsis-induced diseases, including myocardial inflammation. Nevertheless, the expression pattern and role of miR-215-5p in myocardial inflammation are still un-investigated up to now. The purpose of our study is to further inquire the effect of miR-215-5p on lipopolysaccharide (LPS)-activated inflammation injury in H9c2 cells and the possibly associated mechanisms. First of all, LPS-induced H9c2 cells models were constructed and affirmed via detection of pro-inflammatory factors, the viability and apoptosis. MiR-215-5p was overtly down-regulated in LPS-treated H9c2 cells and miR-215-5p overexpression could suppress the inflammation injury. LRRFIP1 was proved to be the target gene of miR-215-5p and meanwhile, miR-215-5p also targeted ILF3 that experimented to bind to and stabilize LRRFIP1. Final rescue assays confirmed that the overexpression of LRRFIP1 or ILF3 rescued the repressive effect of miR-215-5p up-regulation on the inflammation injury in septic H9c2. Totally, miR-215-5p exerted protective function in the inflammation injury in septic H9c2 via targeting ILF3 and LRRFIP1, suggesting an additional treatment method for sepsis-activated myocardial inflammation. 相似文献
17.
Rachael V. Dixon Eldhose Skaria Wing Man Lau Philip Manning Mark A. Birch-Machin S. Moein Moghimi Keng Wooi Ng 《药学学报(英文版)》2021,11(8):2344-2361
Recent infectious disease outbreaks, such as COVID-19 and Ebola, have highlighted the need for rapid and accurate diagnosis to initiate treatment and curb transmission. Successful diagnostic strategies critically depend on the efficiency of biological sampling and timely analysis. However, current diagnostic techniques are invasive/intrusive and present a severe bottleneck by requiring specialist equipment and trained personnel. Moreover, centralised test facilities are poorly accessible and the requirement to travel may increase disease transmission. Self-administrable, point-of-care (PoC) microneedle diagnostic devices could provide a viable solution to these problems. These miniature needle arrays can detect biomarkers in/from the skin in a minimally invasive manner to provide (near-) real-time diagnosis. Few microneedle devices have been developed specifically for infectious disease diagnosis, though similar technologies are well established in other fields and generally adaptable for infectious disease diagnosis. These include microneedles for biofluid extraction, microneedle sensors and analyte-capturing microneedles, or combinations thereof. Analyte sampling/detection from both blood and dermal interstitial fluid is possible. These technologies are in their early stages of development for infectious disease diagnostics, and there is a vast scope for further development. In this review, we discuss the utility and future outlook of these microneedle technologies in infectious disease diagnosis. 相似文献
18.
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. However, the pathogenesis of RA is not fully understood. Here, we reported that c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1, also known as JNK-interacting protein 3 (JIP3)) was significantly important for collagen-induced arthritis (CIA) in mice. Mice with JIP3 knockout (JIP3−/−) showed a significant decrease in arthritis index and swollen joint count in CIA mice. The histopathology of spleen and joint was markedly alleviated by JIP3 deficiency in CIA mice. Excessive macrophage activation in CIA mice was also inhibited by JIP3 deletion. CIA-induced RANKL/RANK/OPG system mRNA expression was blocked in JIP3-knockout mice. In addition, CIA-triggered cytokine secretion and TLRs/NF-κB activation was inactivated by JIP3-deficiency. In line with the inhibition of inflammation by JIP3-knockout, it also significantly suppressed JNK pathway activation induced by CIA, as evidenced by the down-regulation of p-JNK, p-c-Jun, AFT-2 and Elk-1 in joints. In vitro, RANKL-exposed RAW264.7 cells showed a significant reduction of osteoclast formation using TRAP staining. Moreover, JIP3 inhibition reduced the RANKL-caused expression of osteoclastic genes and inflammatory regulators, as well as activation of TLRs/NF-κB and JNK signaling pathways. Importantly, we found that promoting JNK activity could abrogate JIP3 knockdown-suppressed osteoclastic genes expression, inflammatory response and NF-κB activation. These findings suggested that JIP3 could significantly impede osteoclast formation and function by regulating JNK activation, illustrating a novel therapeutic strategy for managing arthritis and preventing bone destruction. 相似文献
19.