首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hamaguchi I  Ooka A  Brun A  Richter J  Dahl N  Karlsson S 《Blood》2002,100(8):2724-2731
Diamond-Blackfan anemia (DBA) is a congenital bone marrow failure syndrome characterized by a specific deficiency in erythroid progenitors. Forty percent of the patients are blood transfusion-dependent. Recent reports show that the ribosomal protein S19 (RPS19) gene is mutated in 25% of all patients with DBA. We constructed oncoretroviral vectors containing the RPS19 gene to develop gene therapy for RPS19-deficient DBA. These vectors were used to introduce the RPS19 gene into CD34(+) bone marrow (BM) cells from 4 patients with DBA with RPS19 gene mutations. Overexpression of the RPS19 transgene increased the number of erythroid colonies by almost 3-fold. High expression levels of the RPS19 transgene improved erythroid colony-forming ability substantially whereas low expression levels had no effect. Overexpression of RPS19 had no detrimental effect on granulocyte-macrophage colony formation. Therefore, these findings suggest that gene therapy for RPS19-deficient patients with DBA using viral vectors that express the RPS19 gene is feasible.  相似文献   

2.
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Among these genes, ribosomal protein S19 (RPS19) is mutated most frequently. Generation of animal models for diseases like DBA is challenging because the phenotype is highly dependent on the level of RPS19 down-regulation. We report the generation of mouse models for RPS19-deficient DBA using transgenic RNA interference that allows an inducible and graded down-regulation of Rps19. Rps19-deficient mice develop a macrocytic anemia together with leukocytopenia and variable platelet count that with time leads to the exhaustion of hematopoietic stem cells and bone marrow failure. Both RPS19 gene transfer and the loss of p53 rescue the DBA phenotype implying the potential of the models for testing novel therapies. This study demonstrates the feasibility of transgenic RNA interference to generate mouse models for human diseases caused by haploinsufficient expression of a gene.  相似文献   

3.
P Jaako  S Debnath  K Olsson  D Bryder  J Flygare  S Karlsson 《Blood》2012,120(11):2225-2228
Diamond-Blackfan anemia (DBA) is a congenital erythroid hypoplasia caused by a functional haploinsufficiency of genes encoding for ribosomal proteins. Recently, a case study reported a patient who became transfusion-independent in response to treatment with the amino acid L-leucine. Therefore, we have validated the therapeutic effect of L-leucine using our recently generated mouse model for RPS19-deficient DBA. Administration of L-leucine significantly improved the anemia in Rps19-deficient mice (19% improvement in hemoglobin concentration; 18% increase in the number of erythrocytes), increased the bone marrow cellularity, and alleviated stress hematopoiesis. Furthermore, the therapeutic response to L-leucine appeared specific for Rps19-deficient hematopoiesis and was associated with down-regulation of p53 activity. Our study supports the rationale for clinical trials of L-leucine as a therapeutic agent for DBA.  相似文献   

4.
Diamond-Blackfan anemia is an autosomal dominant disease due to mutations in nine ribosomal protein encoding genes. Because most mutations are loss of function and detected by direct sequencing of coding exons, we reasoned that part of the approximately 50% mutation negative patients may have carried a copy number variant of ribosomal protein genes. As a proof of concept, we designed a multiplex ligation-dependent probe amplification assay targeted to screen the six genes that are most frequently mutated in Diamond-Blackfan anemia patients: RPS17, RPS19, RPS26, RPL5, RPL11, and RPL35A. Using this assay we showed that deletions represent approximately 20% of all mutations. The combination of sequencing and multiplex ligation-dependent probe amplification analysis of these six genes allows the genetic characterization of approximately 65% of patients, showing that Diamond-Blackfan anemia is indisputably a ribosomopathy.Key words: Diamond-Blackfan anemia, multiplex ligation-dependent probe amplification, ribosomal protein gene deletion  相似文献   

5.
Diamond-Blackfan anemia is a congenital hypoproliferative macrocytic anemia and 5q- syndrome myelodysplastic syndrome is an acquired hypoproliferative macrocytic anemia. Their common erythroid phenotype reflects a shared pathophysiology-haploinsufficiency of one of many ribosomal proteins and somatic deletion of one allele of the ribosomal protein S14 gene, respectively. Although these abnormalities lead to defective ribosome biogenesis, why ribosomal protein hemizygosity results in anemia is not certain. Here, we characterize the hematopoietic phenotype of mice lacking one allele of the ribosomal protein S6 gene. The mice have an erythroid phenotype similar to both Diamond-Blackfan anemia and the 5q- syndrome and lenalidomide therapy improves their anemia.  相似文献   

6.

Background

Diamond-Blackfan anemia is a rare, pure red blood cell aplasia of childhood due to an intrinsic defect in erythropoietic progenitors. About 40% of patients display various malformations. Anemia is corrected by steroid treatment in more than 50% of cases; non-responders need chronic transfusions or stem cell transplantation. Defects in the RPS19 gene, encoding the ribosomal protein S19, are the main known cause of Diamond-Blackfan anemia and account for more than 25% of cases. Mutations in RPS24, RPS17, and RPL35A described in a minority of patients show that Diamond-Blackfan anemia is a disorder of ribosome biogenesis. Two new genes (RPL5, RPL11), encoding for ribosomal proteins of the large subunit, have been reported to be involved in a considerable percentage of patients.

Design and Methods

In this genotype-phenotype analysis we screened the coding sequence and intron-exon boundaries of RPS14, RPS16, RPS24, RPL5, RPL11, and RPL35A in 92 Italian patients with Diamond-Blackfan anemia who were negative for RPS19 mutations.

Results

About 20% of the patients screened had mutations in RPL5 or RPL11, and only 1.6% in RPS24. All but three mutations that we report here are new mutations. No mutations were found in RPS14, RPS16, or RPL35A. Remarkably, we observed a higher percentage of somatic malformations in patients with RPL5 and RPL11 mutations. A close association was evident between RPL5 mutations and craniofacial malformations, and between hand malformations and RPL11 mutations.

Conclusions

Mutations in four ribosomal proteins account for around 50% of all cases of Diamond-Blackfan anemia in Italian patients. Genotype-phenotype data suggest that mutation screening should begin with RPL5 and RPL11 in patients with Diamond-Blackfan anemia with malformations.  相似文献   

7.
8.

Background

Diamond-Blackfan anemia is a rare, clinically heterogeneous, congenital red cell aplasia: 40% of patients have congenital abnormalities. Recent studies have shown that in western countries, the disease is associated with heterozygous mutations in the ribosomal protein (RP) genes in about 50% of patients. There have been no studies to determine the incidence of these mutations in Asian patients with Diamond-Blackfan anemia.

Design and Methods

We screened 49 Japanese patients with Diamond-Blackfan anemia (45 probands) for mutations in the six known genes associated with Diamond-Blackfan anemia: RPS19, RPS24, RPS17, RPL5, RPL11, and RPL35A. RPS14 was also examined due to its implied involvement in 5q- syndrome.

Results

Mutations in RPS19, RPL5, RPL11 and RPS17 were identified in five, four, two and one of the probands, respectively. In total, 12 (27%) of the Japanese Diamond-Blackfan anemia patients had mutations in ribosomal protein genes. No mutations were detected in RPS14, RPS24 or RPL35A. All patients with RPS19 and RPL5 mutations had physical abnormalities. Remarkably, cleft palate was seen in two patients with RPL5 mutations, and thumb anomalies were seen in six patients with an RPS19 or RPL5 mutation. In contrast, a small-for-date phenotype was seen in five patients without an RPL5 mutation.

Conclusions

We observed a slightly lower frequency of mutations in the ribosomal protein genes in patients with Diamond-Blackfan anemia compared to the frequency reported in western countries. Genotype-phenotype data suggest an association between anomalies and RPS19 mutations, and a negative association between small-for-date phenotype and RPL5 mutations.  相似文献   

9.
Flygare J  Karlsson S 《Blood》2007,109(8):3152-3154
Diamond-Blackfan anemia (DBA) is a congenital erythroid aplasia that usually presents as macrocytic anemia during infancy. Linkage analysis suggests that at least 4 genes are associated with DBA of which 2 have been identified so far. The known DBA genes encode the ribosomal proteins S19 and S24 accounting for 25% and 2% of the patients, respectively. Herein, we review possible links between ribosomal proteins and erythropoiesis that might explain DBA pathogenesis. Recent studies and emerging findings suggest that a malfunctioning translational machinery may be a cause of anemia in patients with DBA.  相似文献   

10.
11.
Impaired ribosome biogenesis in Diamond-Blackfan anemia   总被引:1,自引:1,他引:0  
The gene encoding the ribosomal protein S19 (RPS19) is frequently mutated in Diamond-Blackfan anemia (DBA), a congenital erythroblastopenia. The consequence of these mutations on the onset of the disease remains obscure. Here, we show that RPS19 plays an essential role in biogenesis of the 40S small ribosomal subunit in human cells. Knockdown of RPS19 expression by siRNAs impairs 18S rRNA synthesis and formation of 40S subunits and induces apoptosis in HeLa cells. Pre-rRNA processing is altered, which leads to an arrest in the maturation of precursors to the 18S rRNA. Under these conditions, pre-40S particles are not exported to the cytoplasm and accumulate in the nucleoplasm of the cells in perinuclear dots. Consistently, we find that ribosome biogenesis and nucleolar organization is altered in skin fibroblasts from DBA patients bearing mutations in the RPS19 gene. In addition, maturation of the 18S rRNA is also perturbed in cells from a patient bearing no RPS19-related mutation. These results support the hypothesis that DBA is directly related to a defect in ribosome biogenesis and indicate that yet to be discovered DBA-related genes may be involved in the synthesis of the ribosomal subunits.  相似文献   

12.

Background

Diamond-Blackfan anemia and Shwachman-Diamond syndrome are inherited bone marrow failure syndromes linked to defects in ribosome synthesis. The purpose of this study was to determine whether yeast models for Diamond-Blackfan anemia and Shwachman-Diamond syndrome differed in the mechanism by which ribosome synthesis was affected.

Design and Methods

Northern blotting, pulse-chase analysis, and polysome profiling were used to study ribosome synthesis in yeast models. Localization of 60S ribosomal subunits was assessed using RPL25eGFP.

Results

Relative to wild-type controls, each disease model showed defects in 60S subunit maturation, but with distinct underlying mechanisms. In the model of Diamond-Blackfan anemia, 60S subunit maturation was disrupted at a relatively early stage with abortive complexes subject to rapid degradation. 5S ribosomal RNA, unlike other large subunit ribosomal RNA in this model, accumulated as an extra-ribosomal species. In contrast, subunit maturation in the Shwachman-Diamond syndrome model was affected at a later step, giving rise to relatively stable pre-60S particles with associated 5S ribosomal RNA retained in the nucleus.

Conclusions

These differences between the yeast Diamond-Blackfan anemia and Shwachman-Diamond syndrome models have implications for signaling mechanisms linking abortive ribosome assembly to cell fate decisions and may contribute to the divergent clinical presentations of Diamond-Blackfan anemia and Shwachman-Diamond syndrome.  相似文献   

13.
14.
15.
Diamond-Blackfan anemia (DBA) typically presents with red blood cell aplasia that usually manifests in the first year of life. The only gene currently known to be mutated in DBA encodes ribosomal protein S19 (RPS19). Previous studies have shown that the yeast RPS19 protein is required for a specific step in the maturation of 40S ribosomal subunits. Our objective here was to determine whether the human RPS19 protein functions at a similar step in 40S subunit maturation. Studies where RPS19 expression is reduced by siRNA in the hematopoietic cell line, TF-1, show that human RPS19 is also required for a specific step in the maturation of 40S ribosomal subunits. This maturation defect can be monitored by studying rRNA-processing intermediates along the ribosome synthesis pathway. Analysis of these intermediates in CD34- cells from the bone marrow of patients with DBA harboring mutations in RPS19 revealed a pre-rRNA-processing defect similar to that observed in TF-1 cells where RPS19 expression was reduced. This defect was observed to a lesser extent in CD34+ cells from patients with DBA who have mutations in RPS19.  相似文献   

16.
Diamond-Blackfan anemia (DBA) is an inherited bone marrow failure syndrome characterized by anemia, congenital abnormalities, and cancer predisposition. Small ribosomal subunit genes RPS19, RPS24, and RPS17 are mutated in approximately one-third of patients. We used a candidate gene strategy combining high-resolution genomic mapping and gene expression microarray in the analysis of 2 DBA patients with chromosome 3q deletions to identify RPL35A as a potential DBA gene. Sequence analysis of a cohort of DBA probands confirmed involvement RPL35A in DBA. shRNA inhibition shows that Rpl35a is essential for maturation of 28S and 5.8S rRNAs, 60S subunit biogenesis, normal proliferation, and cell survival. Analysis of pre-rRNA processing in primary DBA lymphoblastoid cell lines demonstrated similar alterations of large ribosomal subunit rRNA in both RPL35A-mutated and some RPL35A wild-type patients, suggesting additional large ribosomal subunit gene defects are likely present in some cases of DBA. These data demonstrate that alterations of large ribosomal subunit proteins cause DBA and support the hypothesis that DBA is primarily the result of altered ribosomal function. The results also establish that haploinsufficiency of large ribosomal subunit proteins contributes to bone marrow failure and potentially cancer predisposition.  相似文献   

17.
Danilova N  Sakamoto KM  Lin S 《Blood》2008,112(13):5228-5237
Mutations in several ribosomal proteins (RPs) lead to Diamond-Blackfan anemia (DBA), a syndrome characterized by defective erythropoiesis, congenital anomalies, and increased frequency of cancer. RPS19 is the most frequently mutated RP in DBA. RPS19 deficiency impairs ribosomal biogenesis, but how this leads to DBA or cancer remains unknown. We have found that rps19 deficiency in ze-brafish results in hematopoietic and developmental abnormalities resembling DBA. Our data suggest that the rps19-deficient phenotype is mediated by dysregulation of deltaNp63 and p53. During gastrulation, deltaNp63 is required for specification of nonneural ectoderm and its up-regulation suppresses neural differentiation, thus contributing to brain/craniofacial defects. In rps19-deficient embryos, deltaNp63 is induced in erythroid progenitors and may contribute to blood defects. We have shown that suppression of p53 and deltaNp63 alleviates the rps19-deficient phenotypes. Mutations in other ribosomal proteins, such as S8, S11, and S18, also lead to up-regulation of p53 pathway, suggesting it is a common response to ribosomal protein deficiency. Our finding provides new insights into pathogenesis of DBA. Ribosomal stress syndromes represent a broader spectrum of human congenital diseases caused by genotoxic stress; therefore, imbalance of p53 family members may become a new target for therapeutics.  相似文献   

18.
19.
Diamond-Blackfan anemia (DBA) is a congenital BM failure syndrome characterized by hypoproliferative anemia, associated physical abnormalities, and a predisposition to cancer. Perturbations of the ribosome appear to be critically important in DBA; alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, at present, only 50% to 60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide single-nucleotide polymorphism array to evaluate for regions of recurrent copy variation, we identified deletions at known DBA-related ribosomal protein gene loci in 17% (9 of 51) of patients without an identifiable mutation, including RPS19, RPS17, RPS26, and RPL35A. No recurrent regions of copy variation at novel loci were identified. Because RPS17 is a duplicated gene with 4 copies in a diploid genome, we demonstrate haploinsufficient RPS17 expression and a small subunit ribosomal RNA processing abnormality in patients harboring RPS17 deletions. Finally, we report the novel identification of variable mosaic loss involving known DBA gene regions in 3 patients from 2 kindreds. These data suggest that ribosomal protein gene deletion is more common than previously suspected and should be considered a component of the initial genetic evaluation in cases of suspected DBA.  相似文献   

20.
Diamond-Blackfan anaemia (DBA) is a cancer-prone genetic disorder characterized by pure red-cell aplasia and associated physical deformities. The ribosomal protein S19 gene (RPS19) is the most frequently mutated gene in DBA (~25%). TP53-mediated cell cycle arrest and/or apoptosis in erythroid cells have been suggested to be major factors for DBA development, but it is not clear why mutations in the ubiquitously expressed RPS19 gene specifically affect erythropoiesis. Previously, we showed that RPS19 deficiency in zebrafish recapitulates the erythropoietic and developmental phenotypes of DBA, including defective erythropoiesis with severe anaemia. In this study, we analysed the simultaneous loss-of-function of RPS19 and Tp53 in zebrafish to investigate the role of Tp53 in the erythroid and morphological defects associated with RPS19 deficiency. Co-inhibition of Tp53 activity rescued the morphological abnormalities, but did not alleviate erythroid aplasia in RPS19-deficient zebrafish. In addition, knockdown of two other RP genes, rps3a and rpl36a, which result in severe morphological abnormalities but only mild erythroid defects, also elicited an activated Tp53 response. These results suggest that a Tp53-independent but RPS19-dependent pathway could be responsible for defective erythropoiesis in RPS19-deficient zebrafish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号