首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
2.
We have identified cellular proteins that interact with the herpes simplex virus type 1 (HSV-1) origin-binding protein (UL9 protein) by screening a HeLa cell complementary DNA library by using the yeast two-hybrid system. Approximately 7 x 10(5) colonies were screened. Five of the 48 positive clones contained cDNAs that encoded the p150(Glued) component of the dynactin complex, three contained cDNAs for the neural F Box 42-kDa protein (NFB42), which is highly enriched in neural tissue, and three contained hTid-1, a human homologue of the bacterial DnaJ protein. We have focused in this report on the interaction of the viral UL9 protein with the cellular hTid-1. In vitro immunoprecipitation experiments confirmed that hTid-1 interacts with the UL9 protein. Electrophoretic mobility-shift assays indicated that the hTid-1 enhances the binding of UL9 protein to an HSV-1 origin, ori(s), and facilitates formation of the multimer from the dimeric UL9 protein. hTid-1 had no effect on the DNA-dependent ATPase or helicase activities associated with the UL9 protein. These findings implicate hTid-1 in HSV-1 DNA replication, and suggest that this cellular protein may provide a chaperone function analogous to the DnaJ protein in Escherichia coli DNA replication.  相似文献   

3.
Extracts of insect cells infected with baculoviruses recombinant for the herpes simplex virus 1 (HSV-1)-encoded enzymes that are required for its replication can promote the rolling circle replication of circular plasmid templates. Replication is independent of a HSV-1 origin of replication (oris) or the HSV-1 origin binding protein and is inhibited by the origin binding protein when the plasmid contains oris. Replication is dependent on a complex composed of the HSV-1-encoded DNA polymerase and its processivity enhancing factor (the UL42 protein), ICP8 (the HSV-1-encoded single-strand DNA binding protein), and the HSV-1-encoded helicase-primase. The complex can be purified by size-exclusion and anion-exchange chromatography.  相似文献   

4.
The neural F-box 42-kDa protein (NFB42) is a component of the SCF(NFB42) E3 ubiquitin ligase that is expressed in all major areas of the brain; it is not detected in nonneuronal tissues. We previously identified NFB42 as a binding partner for the herpes simplex virus 1 (HSV-1) UL9 protein, the viral replication-initiator, and showed that coexpression of NFB42 and UL9 in human embryonic kidney (293T) cells led to a significant decrease in the level of UL9 protein. We have now found that HSV-1 infection promotes the shuttling of NFB42 between the cytosol and the nucleus in both 293T cells and primary hippocampal neurons, permitting NFB42 to bind to the phosphorylated UL9 protein, which is localized in the nucleus. This interaction mediates the export of the UL9 protein from the nucleus to the cytosol, leading to its ubiquitination and degradation via the 26S proteasome. Because the intranuclear localization of the UL9 protein, along with other viral and cellular factors, is an essential step in viral DNA replication, degradation of the UL9 protein in neurons by means of nuclear export through its specific interaction with NFB42 may prevent active replication and promote neuronal latency of HSV-1.  相似文献   

5.
Using a spectrophotometric assay that measures the hyperchromicity that accompanies the unwinding of a DNA duplex, we have identified an ATP-independent step in the unwinding of a herpes simplex virus type 1 (HSV-1) origin of replication, Ori(s), by a complex of the HSV-1 origin binding protein (UL9 protein) and the HSV-1 single-strand DNA binding protein (ICP8). The sequence unwound is the 18-bp A + T-rich segment that links the two high-affinity UL9 protein binding sites, boxes I and II of Ori(s). P1 nuclease sensitivity of Ori(s) and single-strand DNA-dependent ATPase measurements of the UL9 protein indicate that, at 37 degrees C, the A + T-rich segment is sufficiently single stranded to permit the binding of ICP8. Binding of the UL9 protein to boxes I and II then results in the formation of the UL9 protein-ICP8 complex, that can, in the absence of ATP, promote unwinding of the A + T-rich segment. On addition of ATP, the helicase activity of the UL9 protein-ICP8 complex can unwind boxes I and II, permitting access of the replication machinery to the Ori(s) sequences.  相似文献   

6.
We had previously demonstrated that the herpes simplex virus 1 (HSV-1) single-stranded DNA-binding protein (ICP8) can specifically stimulate the helicase activity of the HSV-1 origin-binding protein (UL9). We show here that this functional stimulation is a manifestation of a tight interaction between UL9 protein and ICP8. By using protein-affinity chromatography, we have demonstrated the specific binding of purified UL9 protein to immobilized ICP8 and vice versa. Furthermore, ICP8 is specifically retained by a column on which the C-terminal 37-kDa DNA-binding domain of the UL9 protein was immobilized. The interaction between ICP8 and the DNA-binding domain of the UL9 protein was confirmed by cochromatography of the two proteins. These results suggest that the UL9 protein and ICP8 form a tight complex that functions in origin recognition and unwinding.  相似文献   

7.
8.
Base excision repair (BER) is essential for maintaining genome stability both to counter the accumulation of unusual bases and to protect from base loss in the DNA. Herpes simplex virus 1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery, including enzymes involved in nucleotide metabolism. We report on a replicative family B and a herpesvirus-encoded DNA Pol that possesses DNA lyase activity. We have discovered that the catalytic subunit of the HSV-1 DNA polymerase (Pol) (UL30) exhibits apurinic/apyrimidinic (AP) and 5′-deoxyribose phosphate (dRP) lyase activities. These activities are integral to BER and lead to DNA cleavage on the 3′ side of abasic sites and 5′-dRP residues that remain after cleavage by 5′-AP endonuclease. The UL30-catalyzed reaction occurs independently of divalent cation and proceeds via a Schiff base intermediate, indicating that it occurs via a lyase mechanism. Partial proteolysis of the Schiff base shows that the DNA lyase activity resides in the Pol domain of UL30. These observations together with the presence of a virus-encoded uracil DNA glycosylase indicates that HSV-1 has the capacity to perform critical steps in BER. These findings have implications on the role of BER in viral genome maintenance during lytic replication and reactivation from latency.  相似文献   

9.
Bromovinyldeoxyuridine (BVdUrd) is a potent antiherpesvirus compound with low cytotoxicity. To gain an insight into its selectivity and mechanism of inhibition, we chemically synthesized the 5'-triphosphate of BVdUrd, BVdUTP, and tested its effect on the activities of DNA polymerases [DNA nucleotidyltransferase (DNA directed), EC 2.7.7.7] of two herpesviruses--i.e., herpes simplex virus type 1 (HSV-1) and Epstein-Barr virus (EBV)--as well as cellular DNA polymerases alpha, beta, and gamma. The effects on the DNA polymerases were determined under assay conditions optimal for the individual polymerases. We found that the BVdUTP was considerably more inhibityory to the utilization of dTTP by the HSV-1 DNA polymerase then by the cellular DNA polymerases. For instance, as little as 1 microM BVdUTP inhibited the utilization of dTTP by HSV-1 DNA polymerase 50%, whereas the same concentration inhibited the DNA polymerase alpha and the DNA polymerase beta activities only 9% and 3%, respectively. The BVdUTP inhibited DNA synthesis by competing with the natural substrate, dTTP. The Km for dTTP and the Ki for the BVdUTP of the HSV-1 DNA polymerase were 0.66 and 0.25 microM, respectively. Kinetic analyses with the DNA polymerases alpha and beta and the EBV DNA polymerase also reflected a similar difference in sensitivity between the HSV-1 enzyme and other enzymes. Increasing the concentration of either the DNA template or the enzyme in the reaction mixture did not bring about a significant change in the extent of inhibition. Preincubation of the inhibitor with the enzyme was not necessary for inhibition. Studies on time course of inhibition revealed that the compound is inhibitory even after the initiation of DNA synthesis. These studies indicate that the ability of BVdUTP to preferentially inhibit the HSV-1 DNA polymerase may contribute towards its selective inhibition of the viral DNA replication in infected cells.  相似文献   

10.
We report an intracellular peptide delivery system capable of targeting specific cellular compartments. In the model system we constructed a chimeric protein consisting of the nontoxic B subunit of Escherichia coli heat-labile enterotoxin (EtxB) fused to a 27-mer peptide derived from the DNA polymerase of herpes simplex virus 1. Viral DNA synthesis takes places in the nucleus and requires the interaction with an accessory factor, UL42, encoded by the virus. The peptide, designated Pol, is able to dissociate this interaction. The chimeric protein, EtxB-Pol, retained the functional properties of both EtxB and peptide components and was shown to inhibit viral DNA polymerase activity in vitro via disruption of the polymerase-UL42 complex. When added to virally infected cells, EtxB-Pol had no effect on adenovirus replication but specifically interfered with herpes simplex virus 1 replication. Further studies showed that the antiviral peptide localized in the nucleus, whereas the EtxB component remained associated with vesicular compartments. The results indicate that the chimeric protein entered through endosomal acidic compartments and that the Pol peptide was cleaved from the chimeric protein before being translocated into the nucleus. The system we describe is suitable for delivery of peptides that specifically disrupt protein-protein interactions and may be developed to target specific cellular compartments.  相似文献   

11.
RepA, an initiation protein of R1 plasmid replication, was purified from an Escherichia coli strain overproducing the protein. The purified RepA protein specifically initiated replication in vitro of plasmid DNA bearing the replication origin of R1 plasmid (oriR). The replication, strictly dependent on added RepA protein, was independent of host RNA polymerase but required other host replication functions (DnaB and DnaC proteins, the single-stranded-DNA-binding protein SSB, and DNA gyrase). The replication was also completely dependent on the host DnaA function. In filter binding assays in high salt (0.5 M KCl) conditions, RepA specifically binds to both supercoiled and linear plasmid DNA containing the oriR sequence, whereas it binds to nonspecific DNA in low salt. DNase I-protection studies on a linearized DNA fragment revealed that DnaA protein specifically binds to a 9-base-pair DnaA-recognition sequence ("DnaA box") within oriR only when RepA is bound to the sequence immediately downstream of the DnaA box. These results indicate that initiation of R1 plasmid replication is triggered by interaction of RepA and DnaA proteins with the oriR sequence.  相似文献   

12.
Herpes simplex virus 1 contains seven genes that are necessary and sufficient for origin-dependent DNA synthesis in cultured cells. We have expressed the product of one of these genes, UL9, in insect cells by using a baculovirus expression vector. The apparent size of the UL9 protein, both in insect cells and in herpes simplex virus-infected Vero cells, is 82,000 Da. By using an immunoassay for protein-DNA interaction, we have shown that UL9 protein binds specifically to the herpes simplex virus origins of DNA replication, oriS and oriL. DNase I "footprint" analysis has shown that the UL9 protein interacts with two related sites on oriS, located on each arm of a nearly perfect palindrome. Our data strongly suggest that the origin-binding activity described previously by Elias et al. [Elias, P., O'Donnell, M. E., Mocarski, E. S. & Lehman, I. R. (1986) Proc. Natl. Acad. Sci. USA 83, 6322-6326] is the product of the UL9 gene.  相似文献   

13.
DNA polymerase alpha-primase has long been considered the primary, if not sole, replicative DNA polymerase in eukaryotic cells. However, recent experiments have provided indirect evidence that a second DNA polymerase may play a role in DNA replication. To identify cellular proteins necessary for DNA synthesis in mammalian cells, we have been studying the cell-free system developed for the replication of simian virus 40 DNA. In this report, we present direct evidence that a second DNA polymerase is required in addition to DNA polymerase alpha-primase complex to obtain efficient replication of simian virus 40 origin-containing DNA. This DNA polymerase activity is not affected by monoclonal antibodies that inhibit the activity of DNA polymerase alpha and is relatively resistant to the inhibitor [N2-(p-n-butylphenyl)-9-(2-deoxy-beta-D-ribofuranosyl)guanine 5'-triphosphate]. Moreover, the activity of the polymerase is highly dependent upon the accessory protein, proliferating-cell nuclear antigen. These characteristics are consistent with the hypothesis that this second DNA polymerase is DNA polymerase delta.  相似文献   

14.
We previously isolated an HSV-1 mutant, KOS-NA, that contains two non-synonymous mutations in UL39. One of the mutations, resulting in an R950H amino acid substitution in ICP6, renders KOS-NA severely neuro-attenuated and significantly reduces HSV-1 latency. Vaccination of mice with KOS-NA prior to corneal challenge provides significant protection against HSV-1-mediated eye diseases even at a very low immunizing dose, indicating its utility as a vaccine scaffold. Because KOS-NA contains a neuro-attenuating mutation in a single gene, we sought to improve its safety by deleting a portion of the UL29 gene whose protein product, ICP8, is essential for viral DNA replication. Whereas KOS-NA reduced replication of HSV-1 challenge virus in the corneal epithelium and protected mice against blepharitis and keratitis induced by the challenge virus, KOS-NA/8- and an ICP8- virus were significantly less efficacious except at higher doses. Our results suggest that the capacity to replicate, even at significantly reduced levels compared with wild-type HSV-1, may be an important feature of an effective vaccine. Means to improve safety of attenuated viruses as vaccines without compromising efficacy should be sought.  相似文献   

15.
The UL9 gene of herpes simplex virus type 1 encodes an origin-binding protein. UL9 protein purified from baculovirus vector-infected insect cells forms a stable complex with DNA containing the herpes simplex virus origin of DNA replication, oriS. Contained within oriS are two UL9 protein-binding sites, I and II, bracketing an (A + T)-rich region. UL9 protein, visualized by electron microscopy, binds selectively at the site of the origin and covers approximately 120 base pairs. Upon formation of the nucleoprotein complex, the apparent contour length of the DNA is shortened, suggesting that this amount of DNA is wrapped or condensed by the protein. A nucleoprotein complex of similar size and structure forms on an inactive origin deleted for binding site II. Multiple intermolecular interactions occur. In particular, UL9 nucleoprotein complexes interact in trans with other UL9 nucleoprotein complexes such that dimer DNA molecules are formed with a junction at the position of protein binding. The DNA molecules in these intermolecular complexes are aligned predominantly in a parallel orientation.  相似文献   

16.
We report that herpes simplex virus 1 (HSV-1) infection can activate and exploit a cellular DNA damage response that aids viral replication in nonneuronal cells. Early in HSV-1 infection, several members of the cellular DNA damage-sensing machinery are activated and accumulate at sites of viral DNA replication. When this cellular response is abrogated, formation of HSV-1 replication centers is retarded, and viral production is compromised. In neurons, HSV-1 replication centers fail to mature, and the DNA damage response is not initiated. These data suggest that the failure of neurons to mount a DNA damage response to HSV-1 may contribute to the establishment of latency.  相似文献   

17.
p37 and p40 are two cloned gene products of the five-subunit human cellular DNA replication factor activator 1 (A1) protein complex (also called replication factor C). Here, we describe the solubilization, purification, and characterization of these two proteins that were overproduced in Escherichia coli. Using a nitrocellulose filter binding assay, we demonstrated that the purified A1 p37 protein associated with DNA preferentially at the primer terminus, a property resembling that of the A1 complex. We also show that in the presence of relatively high levels of salt, the recombinant p37 protein alone activated DNA polymerase epsilon but not polymerase delta in catalyzing the elongation of DNA chains. The p40 protein specifically associated with cellular p37 and proliferating-cell nuclear antigen (PCNA) present in HeLa cell cytosolic extract. The addition of purified p40 protein abolished the in vitro polymerase delta-catalyzed DNA elongation reaction dependent on both PCNA and A1. However, this inhibition was reversed by excess polymerase delta, suggesting a specific interaction between the polymerase and the p40 protein. Thus, while p37 binds DNA at the primer end and has a specific affinity for pol epsilon, p40, which binds ATP, interacts with PCNA and pol delta. These activities are essential for the DNA elongation reactions that lead to the synthesis of leading-strand DNA and the maturation of Okazaki fragments.  相似文献   

18.
The herpes simplex virus 1 (HSV-1) genome is extremely rich in guanine tracts that fold into G-quadruplexes (G4s), nucleic acid secondary structures implicated in key biological functions. Viral G4s were visualized in HSV-1 infected cells, with massive virus cycle-dependent G4-formation peaking during viral DNA replication. Small molecules that specifically interact with G4s have been shown to inhibit HSV-1 DNA replication. We here investigated the antiviral activity of TMPyP4, a porphyrin known to interact with G4s. The analogue TMPyP2, with lower G4 affinity, was used as control. We showed by biophysical analysis that TMPyP4 interacts with HSV-1 G4s, and inhibits polymerase progression in vitro; in infected cells, it displayed good antiviral activity which, however, was independent of inhibition of virus DNA replication or entry. At low TMPyP4 concentration, the virus released by the cells was almost null, while inside the cell virus amounts were at control levels. TEM analysis showed that virus particles were trapped inside cytoplasmatic vesicles, which could not be ascribed to autophagy, as proven by RT-qPCR, western blot, and immunofluorescence analysis. Our data indicate a unique mechanism of action of TMPyP4 against HSV-1, and suggest the unprecedented involvement of currently unknown G4s in viral or antiviral cellular defense pathways.  相似文献   

19.
Werner syndrome is a Mendelian disorder of man that produces a number of manifestations resembling human aging. This disorder is caused by inactivation of the wrn gene, a member of the RecQ family of DNA helicases. The helicase and exonuclease activities of the Werner protein (WRN) suggest that it functions in DNA transactions, but the physiological function of WRN remains elusive. We present several lines of evidence that WRN interacts specifically with the p50 subunit of polymerase delta, the major DNA polymerase required for chromosomal DNA replication. P50, identified by yeast two-hybrid screening, interacts physically with the C terminus of WRN. Native WRN protein coimmunoprecipitates with p50 in a cellular fraction enriched in nucleolar proteins, and this immunocomplex also includes p125, the catalytic subunit of polymerase delta. In subcellular localization studies of cells transfected with WRN, p50 and p125 redistribute to the nucleolus and colocalize with WRN. These results suggest that one of the functions of WRN protein is to directly modify DNA replication via its interaction with p50 and abet dynamic relocalization of the DNA polymerase delta complexes within the nucleus.  相似文献   

20.
The herpes simplex virus DNA polymerase consists of two subunits--a catalytic subunit and an accessory subunit, UL42, that increases processivity. Mutations affecting the extreme C terminus of the catalytic subunit specifically disrupt subunit interactions and ablate virus replication, suggesting that new antiviral drugs could be rationally designed to interfere with polymerase heterodimerization. To aid design, we performed circular dichroism (CD) spectroscopy and analytical ultracentrifugation studies, which revealed that a 36-residue peptide corresponding to the C terminus of the catalytic subunit folds into a monomeric structure with partial alpha-helical character. CD studies of shorter peptides were consistent with a model where two separate regions of alpha-helix interact to form a hairpin-like structure. The 36-residue peptide and a shorter peptide corresponding to the C-terminal 18 residues blocked UL42-dependent long-chain DNA synthesis at concentrations that had no effect on synthesis by the catalytic subunit alone or by calf thymus DNA polymerase delta and its processivity factor. These peptides, therefore, represent a class of specific inhibitors of herpes simplex virus DNA polymerase that act by blocking accessory-subunit-dependent synthesis. These peptides or their structures may form the basis for the synthesis of clinically effective drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号