首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Neurotensin-like immunoreactivity (NT-LI) was demonstrated in projection neurons of the striatum and nucleus accumbens in the cat by combining immunohistochemistry and the fluorescent retrograde neuronal labeling method. In colchicine-treated cats, many neurons with NT-LI were found in the caudate nucleus, nucleus accumbens, and putamen. Most of these neurons were medium-sized neurons with spiny dendrites. NT-LI of neuronal elements in the caudate nucleus and nucleus accumbens formed dense aggregates with irregular figures, which appeared to correspond to the striosomes of Graybiel et al. (Proc. Natl. Acad. Sci. USA 75:5723-5726, '78; Exp. Brain Res. 34:189-195, '79; Neuroscience 6:377-397, '81). Fibers with NT-LI were distributed massively to the globus pallidus and ventral midbrain regions, but not to the entopeduncular nucleus. In the ventral midbrain regions, many fine varicose fibers with NT-LI were distributed to the pars compacta and pars lateralis of the substantia nigra, ventral tegmental area, and retrorubral area. In the pars reticulata of the substantia nigra, however, fibers with NT-LI were rather sparse. Examination of consecutive sections immunostained for NT, enkephalin (Enk), GABA, and substance P (SP) revealed that 50% of neurons with NT-LI in the caudate nucleus and nucleus accumbens exhibited Enk-LI, 15% showed GABA-LI, and 5% manifested both Enk-LI and GABA-LI; no NT-positive neurons in the striatum and nucleus accumbens showed SP-LI. No morphological differences were found between NT-positive neurons with Enk-LI and/or GABA-LI and those without Enk-LI and GABA-LI. Most neurons with NT-LI in the striatum and nucleus accumbens were retrogradely labeled with True Blue injected into the globus pallidus, pars compacta and pars lateralis of the substantia nigra, and ventral tegmental area. After hemitransection severing neuronal connections between the ventral midbrain regions and the forebrain structures, fibers with NT-LI and those with Enk-LI in the ventral midbrain regions were markedly reduced in number.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The organization of the dopaminergic mesostriatal fibers and their patterns of innervation of the basal ganglia in the squirrel monkey (Saimiri sciureus) were studied immunohistochemically with an antiserum raised against tyrosine hydroxylase (TH). Numerous fibers arose from midbrain TH-positive cell bodies of the substantia nigra pars compacta (group A9), the retrorubral area (group A8), and the lateral portion of the ventral tegmental area (group A10). These fibers accumulated dorsomedially to the rostral pole of the substantia nigra where they formed a massive bundle that coursed through the prerubral field and ascended along the laterodorsal aspect of the medial fore-brain bundle in the lateral hypothalamus. Some ventrally located fibers ran throughout the rostrocaudal extent of the lateral preopticohypothalamic area and could be followed up to the olfactory tubercle, whereas other fibers turned laterodorsally to invade the head of the caudate nucleus. At more dorsal levels in the lateral hypothalamus, many fiber fascicles detached themselves from the main bundle and swept laterally to reach the globus pallidus, the putamen, and the amygdala. Several TH-positive fibers coursed along the dorsal surface of the subthalamic nucleus, and some invaded the dorsomedial third of this structure. The remaining portion of the subthalamic nucleus contained relatively few TH-positive elements. In contrast, the globus pallidus received a dense dopaminergic innervation deriving mostly from two fascicles that coursed backward along the two major output pathways of the pallidum: the lenticular fasciculus caudodorsally and the ansa lenticularis rostroventrally. At the pallidal level, the labeled fibres merged within the medullary laminae and arborized profusely in the internal pallidal segment and less abundantly in the external pallidal segment. However, the caudoventral portion of the external pallidum displayed a dense field of TH-positive axonal varicosities. Other fibers ran through the dorsal two-thirds of the external pallidum en route to the putamen. The striatum contained a multitude of thin axonal varicosities among which a few long and varicosed fibers were scattered. These immunoreactive neuronal profiles were rather uniformly distributed along the rostrocaudal extent of the striatum but appeared slightly more numerous in the ventral striatum than in the dorsal striatum. The pattern of distribution of the TH-positive axonal varicosities in the dorsal striatum was markedly heterogeneous: it consisted of typical zones of poor TH immunoreactivity lying within a matrix of dense terminal labeling.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The anatomical organization of cholinergic markers such as acetylcholinesterase, choline acetyltransferase, and nerve growth factor receptors was investigated in the basal ganglia of the human brain. The distribution of choline acetyltransferase-immunoreactive axons and varicosities and their relationship to regional perikarya showed that the caudate, putamen, nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra, red nucleus, and subthalamic nucleus of the human brain receive widespread cholinergic innervation. Components of the striatum (i.e., the putamen, caudate, olfactory tubercle, and nucleus accumbens) displayed the highest density of cholinergic varicosities. The next highest density of cholinergic innervation was detected in the red nucleus and subthalamic nucleus. The level of cholinergic innervation was of intermediate density in the globus pallidus and the ventral tegmental area and low in the pars compacta of the substantia nigra. Immunoreactivity for nerve growth factor receptors (NGFr) was confined to the cholinergic neurons of the basal forebrain and their processes. Axonal immunoreactivity for NGFr was therefore used as a marker for cholinergic projections originating from the basal forebrain (Woolf et al., '89: Neuroscience 30:143-152). Although the vast majority of striatal cholinergic innervation was NGFr-negative and, therefore, intrinsic, the striatum also contained NGFr-positive axons, indicating the existence of an additional cholinergic input from the basal forebrain. This basal forebrain cholinergic innervation was more pronounced in the putamen than in the caudate. The distribution of NGFr-positive axons suggested that the basal forebrain may also project to the globus pallidus but probably not to the subthalamic nucleus, substantia nigra, or red nucleus. The great majority of cholinergic innervation to these latter three structures and to parts of the globus pallidus appeared to come from cholinergic neurons outside the basal forebrain, most of which are probably located in the upper brainstem. These observations indicate that cholinergic neurotransmission originating from multiple sources is likely to play an important role in the diverse motor and behavioral affiliations that have been attributed to the human basal ganglia.  相似文献   

4.
The course and destination of the degenerating nigrostriatal fibers were studied by selective silver impregnation methods in 37 cats with unilateral lesions in the substantia nigra.The nigrostriatal fibers ascend along the dorsomedial border of the substantia nigra to the prerubral area; they proceed for a short distance through the lateral hypothalamus, enter the medial part of the internal capsule and run in a dorsorostral direction to reach the head of the caudate nucleus and the rostral portion of the putamen. A smaller number of degenerating fibers obliquely cross the peduncular part of the internal capsule and traverse the entopeduncular nucleus and the pallidum to terminate in the central and caudal portions of the putamen.Some features of the topical distribution of the nigrostriatal tract are described. Apparently, the more anterior part of the pars compacta sends axons primarily to the head of the caudate nucleus and to the most rostral putamen. The most medially situated nigral neurons project to the fundus striati. The posteromedial cell groups of the pars compacta innervate primarily the central putamen and the caudal part of the caudate nucleus. The projection of the lateral cell group of the posterior zona compacta to the caudal putamen is sparser than from the other nigral groups, suggesting that a part of them has another destination, possibly lower in the neuraxis. The contribution of the pars reticulata to the nigrostriatal connections seems to be modest, according to the small number of neurons; they project to the lateral caudate and putamen. Thus, the ascending nigrostriatal fibers mirror the distribution of the descending striatonigral fibers.No convincing evidence for the existence of a nigroentopeduncular and nigropallidal projection was found.  相似文献   

5.
The immunohistochemical localization of neuronal cell bodies and axons reactive for substance P (SP) and methionine-enkephalin (ME) was investigated in the corpus striatum of the adult cat brain and compared with that of glutamate decarboxylase (GAD), synthetic enzyme for gamma-aminobutyric acid. Striatal cell bodies reactive for ME could be identified only in colchicine treated cats, are medium size, ovoid striatal cells, and are found in large numbers in a more or less even distribution throughout the caudate nucleus, putamen, and nucleus accumbens. The striatal region most densely occupied by ME-immunoreactive cells is the ventral and central part of the caudate head. Modest numbers of larger ME-reactive neurons are dispersed throughout the entopeduncular nucleus and the pars reticulata of the substantia nigra. Striatal cells of medium size reactive for SP could be identified, with or without colchicine, in largest numbers in the medial half of the caudal three-fourths of the putamen and in clusters of irregular size and shape in the head of the caudate nucleus. Cells reactive for SP are also common in layer II and the islands of Calleja of the olfactory tubercle. We could not reliably visualize GAD-positive cell bodies in the striatum, even with colchicine treatment; however, they could be seen readily in all pallidal structures such as the globus pallidus, ventral pallidum, entopeduncular nucleus, and substantia nigra. Axons reactive for ME are found mainly in the globus pallidus where they form a dense and even network throughout the nucleus. The globus pallidus is almost devoid of SP reactivity except near its extreme caudal pole. Conversely, SP-immunoreactive axons form dense meshworks in the entopeduncular nucleus and substantia nigra where ME immunoreactivity is minimal. Fewer, but still ample numbers, of SP-reactive axons are present also in the ventral tegmental and retrorubral areas of the midbrain tegmentum and in the ventral pallidum of the basal forebrain, but only sparse ME-reactive axons are present in these areas. This differential distribution of SP- and ME-containing axons in the pallidal and nigral structures stands in contrast to the relatively homogeneous and dense distribution of GAD-containing axons throughout the dorsal and ventral pallidum, entopeduncular nucleus, and substantia nigra.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The localization of DARPP-32, a dopamine and cAMP-regulated phosphoprotein, has been studied in monkey brain by immunocytochemistry. This study indicates that DARPP-32 is enriched in neurons in regions receiving a dense dopamine input from the substantia nigra and ventral tegmental area. Thus, the majority of somata in the anterior olfactory area, nucleus accumbens, caudate nucleus, and putamen are immunoreactive for DARPP-32. In the caudate nucleus, immunoreactive spines receive asymmetric contacts from unlabeled axon terminals. Immunoreactive somata have diameters of 10-15 microns. In regions known to receive projections from these nuclei, immunoreactivity is confined to small puncta that represent axons and axon terminals. Regions in which immunoreactivity is present in puncta include the ventral pallidum, globus pallidus, and substantia nigra pars reticulata. Dopaminergic neurons themselves are not immunoreactive. Neurons containing moderate to weak immunoreactivity for DARPP-32 are observed in portions of the cerebral cortex, particularly in the temporal cortex (layer VI). DARPP-32-positive neurons are also present in the cerebellum, in the medial habenula, and in portions of the bed nucleus of the stria terminalis and amygdaloid complex. DARPP-32 immunoreactivity is also present in astrocytes in the subcortical white matter and in tanycytes in the arcuate nucleus and median eminence. DARPP-32 may be an effective marker for dopaminoceptive neurons in which the actions of dopamine on the D-1 dopamine receptor are mediated through cAMP and its associated protein kinase.  相似文献   

7.
8.
Y. Smith  J.P. Bolam 《Brain research》1989,493(1):160-167
The lectin Phaseolus vulgaris leucoagglutinin (PHA-L) was used as an anterograde tracer to study the topographical distribution and synaptic organization of pallidonigral fibres in the rat. Injections of PHA-L in the lateral part of the globus pallidus led to anterograde labelling of a rich plexus of varicose fibres that arborized profusely in the central core of the rostral three quarters of the substantia nigra pars reticulata (SNr). However, few fibres were detected in SNr after PHA-L injection restricted to the most medial part of the globus pallidus. A small number of fibres was seen in the substantia nigra pars compacta after each injection. The most characteristic feature of the pallidonigral terminals was the formation of baskets around the perikarya and primary dendrites of SNr cells. Electron microscopic analysis revealed that the pallidonigral terminals contain pleomorphic vesicles and a large number of mitochondria and that they form symmetrical synaptic contacts. Furthermore, postembedding immunocytochemistry for gamma-aminobutyric acid (GABA) showed that they display GABA immunoreactivity. These findings demonstrate that, in the rat, the pallidonigral projection is a major source of GABA-containing terminals innervating pars reticulata cells and that the pattern of innervation is such that they may exert a powerful inhibitory control over these cells.  相似文献   

9.
The serotonin (5-HT) innervation of the cerebral cortex in two species of lizards has been studied. Results show no differences between both species. Most of the cerebral cortex of these lizards is innervated by serotoninergic fibers, which are fine and varicose. Their density varies greatly from one cortical region to another: the areas with higher density of serotoninergic fibers and terminals are parts of the medial and dorsal cortices. There is a laminar pattern of distribution of serotoninergic fibers. In the medial cortex, 5-HT fibers are found preferentially in both plexiform layers just above and below the cellular layer. In the dorsomedial cortex, there is an immunoreactive plexus in the outermost third of the superficial plexiform layer and another in the depth of the layer, whereas 5-HT fibers are distributed evenly in the deep plexiform layer of this cortex. In the pars medialis of the dorsal cortex, serotoninergic fibers are abundant in all layers, whereas in the pars lateralis, fibers are found predominantly in the external third of the superficial plexiform layer. The lateral cortex is almost devoid of immunoreactive fibers. These results show a different organization of the cortical serotonin innervation between lizards and turtles.  相似文献   

10.
The distribution of GABA-immunoreactive neurons was visualized in the basal ganglia of the squirrel monkey (Saimiri sciureus), by using a highly specific antiserum raised against GABA-glutaraldehyde-lysyl-protein conjugate and revealed by the indirect peroxidase-antiperoxidase immunohistochemical method. In the dorsal striatum, GABA-immunoreactive nerve cell bodies were small to medium in size (sectional area ranging from 90 to 125 microns2), but some larger ones (500-600 microns2) were also found. These cells displayed no obvious clustering but were significantly more numerous in the caudate nucleus than in the putamen; their number was also markedly greater at caudal than at rostral striatal levels. A moderate number of evenly distributed positive axon terminals were visible in both the caudate nucleus and the putamen. In the ventral striatum, GABA-immunoreactive nerve cell bodies and axon terminals were seen in fair number within the nucleus accumbens and in the deep layers of the olfactory tubercle. Many positive terminals but no somata were found in the islands of Calleja. In the globus pallidus, virtually all nerve cell bodies were GABA-immunoreactive and the neuropil exhibited a multitude of positive terminals. In the substantia innominata, clusters of small, globular GABA-immunoreactive somata were scattered among aggregates of larger, nonimmunoreactive neurons belonging to the nucleus basalis, and the whole region showed a low to moderate number of evenly spread GABA-positive terminals. In the subthalamic nucleus, nerve cell bodies were generally surrounded by several GABA-positive terminals but were not themselves immunoreactive. The substantia nigra showed many GABA-immunoreactive somata, which predominated in the pars lateralis and diminished progressively in number along the lateromedial axis of the pars reticulata. These cells formed a rather pleomorphic group comprising round, fusiform, or polygonal elements of relatively large size (sectional area ranging from 200 to 800 microns2). In the pars compacta and ventral tegmental area, a few GABA-immunoreactive neurons of small size were dispersed among larger, unreactive neurons. In both pars lateralis and pars reticulata of the substantia nigra, the number of GABA-positive terminals was high and their distribution was rather uniform; a smaller number were visible in the pars compacta of the substantia nigra and in the ventral tegmental area. The present results demonstrate that GABA-containing neurons are widely and heterogeneously distributed in the various components of the squirrel monkey's basal ganglia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The distribution of enkephalin-immunoreactive neuronal profiles in the forebrain and upper brainstem of the squirrel monkey (Saimiri sciureus) was studied by means of the indirect immunofluorescence method. Numerous enkephalin-immunoreactive cell bodies and fibers were disclosed in various regions including cerebral cortex, hippocampus, caudate nucleus, putamen, nucleus accumbens, septal area, olfactory tubercle, substantia innominata, amygdala, various hypothalamic and thalamic nuclei, periaqueductal gray, midbrain reticular formation and interpeduncular nucleus. Some of the highest concentrations of enkephalin-positive fibers in the squirrel monkey brain were found in the external segment of the globus pallidus, the outer layer of the median eminence, and in the pars reticulata of the substantia nigra. Overall, the pattern of distribution of the enkephalin-immunoreactive cell bodies and fibers in the forebrain and upper brainstem of the squirrel monkey is similar to that found in the rat, except that the density of positive neuronal profiles in the entire forebrain appears much higher in monkey than in rat. Furthermore, the very dense network of enkephalin-immunoreactive fibers disclosed in the substantia nigra pars reticulata of monkey appears to be lacking in rat.  相似文献   

12.
The serotonin (5-HT)1B receptor is expressed in the central nervous system (CNS) of rodents and its homologous 5-HT1D beta receptor is expressed in human. These receptors are distributed in both serotonergic and non-serotonergic neurons, where they act as auto- or heteroreceptors, respectively. Studies from ours and other laboratories have shown that 5-HT1B receptors are densely expressed in the ventral pallidum, globus pallidus, substantia nigra and dorsal subiculum and moderately expressed in the cerebral cortex, the molecular layer of the hippocampus, the entopeduncular nucleus, the superficial gray layer of the superior colliculus, the caudate putamen and the deep nuclei of the cerebellum. At the ultrastructural level, 5-HT1B receptors were found distributed in axons and axon terminals and these receptors are located on the plasma membrane of unmyelinated axon terminals and in the cytoplasm close to the plasmalemma. The terminal localization of the 5-HT1B receptors in CNS suggests that there is a signal responsible for the protein transport toward the nerve terminals. Studies from ours and other groups using lesion, radioligand binding sites, viral transfection and anterograde methods have shown that 5-HT1B receptors are located at the nerve terminals of different pathways. The 5-HT1B receptors act as terminal receptors and are involved in regulation of the release of various neurotransmitters, including 5-HT itself. The regulation of gamma-aminobutyric acid release by 5-HT1B receptors has been found in projections: from caudate putamen to the globus pallidus or substantia nigra, from nucleus accumbens to the ventral tegmentum area, and from purkinje neurons to the deep nuclei of the cerebellum. The control of glutamate release by 5-HT1B receptors has been found in projections from hippocampus to the dorsal subiculum and of N-acetyl-aspartyl-glutamate release from retinal ganglion cells to the superficial gray layer of the superior colliculus. The control of 5-HT release by 5-HT1B receptors was shown in projections arising from the raphe nuclei to fore- and midbrain regions. Multiple evidences suggest that 5-HT1B receptors are implicated in several physiological functions, behavior and psychiatric diseases including migraine, locomotor activity, drug abuse reinforcement, migraine, aggressive behavior, depression and anxiety states.  相似文献   

13.
The distribution of somatostatin-like immunoreactivity in the caudate, putamen, globus pallidus and ventral mesencephalon of the normal human brain has been studied with immunocytochemical techniques, and compared to that seen in Huntington's disease. Within the normal striatum, sparsely distributed varicose fibers and a population of medium-sized neurons were stained. In Huntington's disease, somatostatin immunoreactive striatal neurons appear to degenerate in proportion to the loss of striatal tissue, but there is an increase in the density of immunostained varicose fibers. In contrast, the pattern and amount of fiber staining in the substantia nigra appeared virtually unchanged from that seen in the normal brain. The morphology of striatal perikarya containing somatostatin-like immunoreactivity and the patterns of fiber staining in normal and Huntington's disease pallidum and substantia nigra suggest that striatal neurons containing somatostatin-like immunoreactivity are local circuit neurons.  相似文献   

14.
The caudate-putamen, globus pallidus and substantia nigra pars reticulata of the guinea pig contain high densities of the 5-HT1D receptor subtype. The cellular localization of these sites in the striatonigral pathway was investigated using receptor autoradiography and selective neurotoxin lesions. In guinea pigs with unilateral 6-hydroxydopamine lesions of the nigral dopaminergic cells, no significant decrease was observed in any of the components of the striatonigral pathway. In contrast, when quinolinic acid was injected in the caudate-putamen, marked reductions in [3H]5-HT binding were seen in the caudate-putamen, the globus pallidus and the substantia nigra pars reticulata, on the side ipsilateral to the lesion. These data, which are comparable to previous results in human pathologies where similar cell populations are known to degenerate (Parkinson disease and Huntington's chorea), indicate a presynaptic localization of 5-HT1D receptors on the terminals of the striatal neurons projecting to the pars reticulata of the substantia nigra. In addition, these receptors could be located on the cell bodies or dendrites of these neurons in the striatum, postsynaptically to serotoninergic fibers.  相似文献   

15.
Little is known of the serotoninergic innervation of the thalamus in primates; therefore, we undertook a detailed study of the distribution of 5-hydroxytryptamine (5-HT)-immunoreactive neuronal profiles in the thalamus of the squirrel monkey (Saimiri sciureus) with a specific antibody directly raised against 5-HT. All thalamic nuclei in the squirrel monkey displayed 5-HT-immunoreactive fibers, but none contained immunopositive cell bodies. The 5-HT innervation of the thalamus derived from extrinsic fibers arising mostly from the midbrain raphe nuclei and forming the transtegmental system. Most of the fibers destined to the thalamus collected into a major bundle that swept dorsoventrally within the midbrain tegmentum and coursed beneath the thalamus along its entire caudorostral extent. Several fiber fascicles broke off from this main bundle at different levels and ascended dorsally to innervate the various thalamic nuclei. Overall, the 5-HT innervation of the thalamus in the squirrel monkey was more massive than would have been expected from earlier studies in nonprimate species. Marked differences in the regional density of innervation were noted both between the various nuclei and within single nuclei. The most densely innervated nuclei were those delineating the principal subdivisions of the thalamic mass, that is, the midline, rostral intralaminar, limitans, and reticular nuclei, where very dense fields of isolated axonal varicosities occurred. In contrast to the rostral intralaminar nuclei, which were rather uniformly innervated, the centre médian/parafascicular complex contained immunoreactive fibers and isolated varicosities distributed according to a mediolateral gradient. The habenula and the ventral anterior nucleus were among the most weakly innervated nuclei. In the latter nucleus, as well as in more densely innervated nuclei, thin varicose fibers formed numerous pericellular contacts on cell bodies and proximal dendrites of thalamic neurons. The 5-HT innervation of the lateral nuclear group as well as that of the medial and lateral geniculate nuclei ranged from very weak to dense. The mediodorsal nucleus displayed a highly heterogeneous 5-HT innervation that varied from weak in its central portion to moderate or dense in its medial and lateral borders. A moderate 5-HT innervation was observed in the anterior nuclear group. The surprisingly dense and heterogeneous 5-HT innervation of the thalamus noted in the present study suggests that serotonin may be involved in several specific functions of the thalamus in primates.  相似文献   

16.
Tritiated tracer was injected into the head of the caudate nucleus in cats. Following such injections, labeling is present within extensive regions of both the globus pallidus and entopeduncular nucleus, where it presents a mottled or meshlike appearance. These projections are topographically organized in that there is simple correspondence between the mediolateral, dorsoventral, and rostrocaudal origin of the caudate projection and its input to the globus pallidus and entopeduncular nucleus. Transported tracer is also present within the substantia nigra, where it is most abundant within the pars reticularis. However, distinct labeling also overlies cells of the pars compacta, and lesser amounts of labeling are present within the pars lateralis and within the retrorubral area. Following injections of horseradish peroxidase into the caudate nucleus, and subsequent tissue processing by the tetramethylbenzidine (TMB) method of Mesulam ('78), labeled anterograde fibers are present in abundance within the globus pallidus, entopeduncular nucleus, and all subdivisions of the substantia nigra, thus confirming the autoradiographic findings. Also, it is especially obvious in this HRP material that, contrary to previous degeneration studies, both the rostromedial and caudolateral parts of the pars lateralis of the substantia nigra contain numerous anterogradely labeled fibers. Retrogradely labeled neurons are also present within the substantia nigra of these same tissue sections, where they are most abundant within the pars compacta, but lesser numbers of labeled neurons are also present within the pars reticularis, pars lateralis, retrorubral area, and ventral tegmental area on the ipsilateral side, and all of these same subdivisions of the substantia nigra on the contralateral side. Also, within the subthalamic nucleus in these experiments, there are anterogradely labeled fibers, as well as retrogradely labeled neurons, which are interpreted to represent a reciprocal connection between the subthalamic nucleus and the striatum. In a separate series of experiments, horseradish peroxidase was injected into the motor cortex-specifically into the anterior sigmoidal gyrus. Following such injections, labeled neurons representing afferents to the motor cortex are found in all subcortical nuclei commonly known as the "basal ganglia," including the caudate nucleus, putamen, globus pallidus, entopeduncular nucleus, substantia innominata, nucleus of the diagonal band of Broca, medial septal nucleus, claustrum, and basolateral amygdaloid nucleus.  相似文献   

17.
The organization of the efferent connections of the subthalamic nucleus was studied in the squirrel monkey (Saimiri sciureus) by using the lectin Phaseolus vulgaris-leucoagglutinin (PHA-L) as an anterograde tracer. At the level of the basal forebrain, anterogradely labeled fibers and axon terminals were mostly found in the striatopallidal complex and the substantia innominata. In cases in which the PHA-L injection sites were placed in the central or the lateral third of the subthalamic nucleus, numerous anterogradely labeled fibers were seen to arise from the injection loci and innervate massively the globus pallidus. At pallidal levels the fibers formed bands lying parallel and adjacent to the medullary laminae. The number and the complexity of the topographical organization of these bands varied with the size and the location of the PHA-L injection site. When examined at a higher magnification, the bands of subthalamopallidal fibers appeared as rich plexuses of short axon collaterals with small bulbous enlargements that closely surrounded the cell bodies and primary dendrites of pallidal cells. In contrast, PHA-L injection involving the medial tip of the subthalamic nucleus did not produce bandlike fiber patterns in the globus pallidus. Instead, the labeled fibers formed a diffuse plexus occupying the ventral part of the rostral pole of the globus pallidus as well as the subcommissural pallidal region. The substantia innominata contained a moderate number of labeled fibers and axon terminals following injection of PHA-L in the medial tip of the subthalamic nucleus. A small to moderate number of anterogradely labeled fibers were seen in the putamen after all PHA-L injections. These subthalamostriatal fibers were long, linear, and branched infrequently. At midbrain level the substantia nigra contained a significant number of anterogradely labeled fibers and axon terminals following PHA-L injection in the subthalamic nucleus. The subthalamonigral fibers descended along the ventromedial part of the cerebral peduncle and swept laterally to reach their target. Most of these fibers formed small plexuses along the base of the pars reticulata, whereas a few others ascended along the cell columns of the pars compacta that impinged deeply within the pars reticulata. More caudally in the brainstem, a small number of fibers occurred in the area of the pedunculopontine nucleus and in the periaqueductal gray. These findings indicate that besides its well-known connection with the pallidum, the subthalamic nucleus gives rise to widespread projections to other components of the basal ganglia in primates.  相似文献   

18.
Acute unilateral intranigral infusions of MPTP at doses (200 micrograms) which produce robust contralateral rotation in the rat induced significant neurochemical changes in the ipsilateral as well as contralateral nigrostriatal systems. There were pronounced increases in the levels of dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the ipsilateral substantia nigra and a significant decrease in the levels of DA in the ipsilateral caudate nucleus while opposite changes occurred in the contralateral substantia nigra and caudate nucleus. The DOPAC:DA and HVA:DA ratios were significantly higher in the ipsilateral caudate nucleus indicating increased activity of the ipsilateral nigrostriatal DA neurones. The levels of noradrenaline and 4-hydroxy-3-methoxyphenylethyline glycol (MHPG) increased and decreased significantly in the ipsilateral and contralateral substantia nigra, respectively, but there were no significant changes in the caudate nuclei. The levels of serotonin (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) increased significantly in the ipsilateral substantia nigra and caudate nucleus as well as in the contralateral caudate nucleus but did not increase significantly in the contralateral substantia nigra. The 5-HIAA:5-HT ratio was significantly decreased in the contralateral caudate nucleus indicating a reduced activity of the contralateral nigrostriatal 5-HT neurones. The data thus indicate that MPTP applied to one substantia nigra is capable of producing profound neurochemical changes not only locally but also in the ipsilateral striatum as well as in the contralateral nigrostriatal system. Previous neuropharmacological studies have suggested that the rotation induced by intranigral MPTP may be mediated via dopamine released from dendrites in the pars reticulata in response to MPTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The purpose of the present study was to analyze the distribution of cholecystokininlike-immunoreactive (CCK-I) neurons within the rat ventral mesencephalon which project to several forebrain areas. The peroxidase-antiperoxidase immunocytochemical technique was used to examine the anatomical localization of CCK-I within the ventral midbrain and in the following forebrain regions: caudate-putamen, nucleus accumbens, olfactory tubercle, bed nucleus of the stria terminalis, septum, amygdala, and prefrontal, anterior cingulate, and piriform cortices. CCK-I perikarya were distributed throughout the substantia nigra, ventral tegmental area, and several midline raphe nuclei to a greater extent than previously reported, particularly in the substantia nigra pars compacta. Terminallike immunoreactivity for CCK was observed in all of the above forebrain sites. In addition, infrequent CCK-I cell bodies were localized in the caudate-putamen, nucleus accumbens, olfactory tubercle, septum, and bed nucleus of the stria terminalis. To analyze forebrain projections of the ventral midbrain CCK-I neurons, indirect immunofluorescence was combined with fluorescence retrograde tracing. CCK-I neurons of the substantia nigra and/or ventral tegmental area were found to project, to varying extents, to all of the above CCK-I forebrain terminal fields. The nucleus accumbens, olfactory tubercle, and septal and prefrontal cortical projections arose primarily from CCK-I perikarya in the ventral tegmental area whereas the projections to the caudate-putamen and anterior cingulate cortex arose predominantly from immunoreactive neurons in the substantia nigra pars compacta. The amygdala received innervation mainly from CCK-I cell bodies located in the substantia nigra pars lateralis. CCK-I afferents to the bed nucleus of the stria terminalis and piriform cortex originated from perikarya distributed approximately equally across the ventral tegmental area and substantia nigra pars compacta. The general topography of CCK-I forebrain innervation observed in this study is similar to that previously reported for the ascending dopaminergic projections from ventral mesencephalic neurons. CCK-I neurons of the midline raphe nuclei were found to provide relatively minor afferents to the caudate-putamen, bed nucleus of the stria terminalis, septum, and prefrontal cortex and more substantial projections to the amygdala. The results of this study demonstrate that CCK-I neurons of the ventral midbrain supply a much broader innervation of forebrain regions than previously appreciated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
J Kiss  B Halász 《Brain research》1990,532(1-2):107-114
A combination of electron microscopic immunocytochemistry and autoradiography was employed to examine the synaptic organization of thyrotropin-releasing hormone (TRH) neurons in the periventricular subdivision of the paraventricular nucleus of the rat hypothalamus. TRH neurons were identified by immunocytochemistry. Selective uptake of tritiated serotonin (5-HT) was used to identify serotoninergic elements. TRH-immunoreactive axon terminals were found to be in synaptic contact with TRH-immunoreactive dendrites and with unlabeled dendritic branchlets. There were direct appositions between radiolabeled 5-HT terminals and TRH-immunoreactive dendrites, but differential synaptic contacts between 5-HT axonal elements and TRH neurons were not seen. TRH-immunopositive cell bodies and dendrites received a very intense innervation by unlabeled axon terminals or axonal varicosities showing morphologically defined synaptic junctions. These were mostly of the asymmetrical variety and different types could be distinguished. The findings substantiate the view that TRH neurons of the periventricular subvision of the paraventricular nucleus may be influenced by TRH axons, serotoninergic fibers and a large number of unidentified nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号