首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on the role of interleukin-12 in acute murine toxoplasmosis.   总被引:13,自引:0,他引:13       下载免费PDF全文
Interleukin-12 (IL-12) is important in the regulation of resistance to Toxoplasma gondii in mice with severe combined immunodeficiency (SCID). The protective ability of IL-12 in SCID mice appears to be through its activity on natural killer (NK) cells to induce production of interferon-gamma (IFN-gamma). In this study we assessed the role of IL-12 in the acute stage of toxoplasmosis in immunocompetent mice. Administration of IL-12 to BALB/c mice infected with the virulent C56 strain of T. gondii remarkably delayed time to death. The protective activity of IL-12 was abrogated by administration of monoclonal antibodies to IFN-gamma or tumour necrosis factor-alpha (TNF-alpha), and by depletion of NK cells using an antisera against asialoGM1. Whereas BALB/c mice infected with the ME49 strain of T. gondii survived infection, administration of anti-IL-12 to infected mice resulted in 100% mortality accompanied by decreased serum levels of IFN-gamma. Furthermore, this treatment significantly reversed the suppression of spleen cell proliferation to concanavalin A (Con A), which is associated with the acute stage of infection, and resulted in decreased ex vivo production of IFN-gamma, IL-2, IL-4 and IL-10 in response to Con A. Our results indicate an important role for IL-12 in mediating resistance to T. gondii during acute infection in immunocompetent mice, that NK cells are required for this protective activity, and that IL-12 is involved in the immunosuppression which accompanies this infection.  相似文献   

2.
Previous studies of mice have implicated natural killer (NK) cells as mediators of protective activity against Toxoplasma gondii through their production of gamma interferon (IFN-gamma). In the present study, we have compared NK-cell activity in infected and uninfected SCID mice. Our data reveal that infection results in increased levels of IFN-gamma in serum and elevated NK-cell activity but that these NK cells were not cytotoxic for T. gondii-infected P815 cells. Treatment with anti-IFN-gamma antibody abrogated the increase in NK-cell activity and resulted in earlier mortality of infected mice. In vivo treatment with anti-asialo GM1 antiserum reduced NK cell activity and levels of IFN-gamma in serum but did not alter time to death. Spleen cells from infected mice produced higher levels of IFN-gamma than those from uninfected mice when stimulated in vitro with live T. gondii or parasite antigen preparations. Further analysis revealed that interleukin 10 (IL-10) inhibited, whereas tumor necrosis factor alpha (TNF-alpha) and IL-12 enhanced, IFN-gamma production by spleen cells from infected or uninfected mice. The combination of IL-12 and TNF-alpha induced higher levels of IFN-gamma from whole spleen cells of infected mice than from those of uninfected mice. Depletion of the adherent cell population from the spleen cells of infected mice led to a significant reduction in the levels of IFN-gamma produced after stimulation with IL-12 plus TNF-alpha. Similar results did not occur with cells from uninfected mice. These data indicate that other cytokines produced by the adherent cell population from infected mice may be involved in maximal production of IFN-gamma by NK cells stimulated with IL-12 and TNF-alpha. To assess the importance of endogenous IL-12, a polyclonal anti-IL-12 was administered to infected SCID mice. This treatment led to earlier mortality, indicating that endogenous IL-12 mediates resistance to T. gondii.  相似文献   

3.
Interleukin-10 (IL-10) is a cytokine which can inhibit T-cell and natural killer (NK) cell functions associated with cell-mediated immunity to intracellular infections. The production of IL-10 by mice infected with Toxoplasma gondii has been implicated in the suppression of lymphocyte proliferation observed during acute toxoplasmosis, as well as susceptibility to infection with this parasite. We have used C57BL/6 mice which lack a functional IL-10 gene (IL-10(-/-) mice) to investigate the role of IL-10 in acute toxoplasmosis. Intraperitoneal infection of IL-10(-/-) mice with T. gondii resulted in 100% mortality by day 13, whereas wild-type C57BL/6 (WT) mice survived acute infection. IL-10(-/-) mice infected with T. gondii had significantly higher serum levels of IL-12 and gamma interferon (IFN-gamma) than WT mice. Early mortality of infected IL-10(-/-) mice was prevented by treatment with IL-10 and significantly delayed by neutralizing antibodies to IL-12 and IFN-gamma. Further studies revealed that SCID/IL-10(-/-) mice infected with T. gondii had delayed time to death compared to IL-10(-/-) mice, indicating that lymphocytes contributed to death of IL-10(-/-) mice. In addition, infected SCID/IL-10(-/-) mice survived longer than infected SCID mice. These latter data indicate that in mice lacking lymphocytes, endogenous IL-10 is associated with increased susceptibility to T. gondii. However, the lack of IL-10 does not alter the infection-induced suppression of T cell and NK cell functions. Our experiments reveal that IL-10 is associated with protection or increased susceptibility to infection with T. gondii, depending on whether mice possess lymphocytes, and demonstrate the important roles of IL-12 and IFN-gamma in the early infection-induced mortality observed in the IL-10(-/-) mice.  相似文献   

4.
5.
Oral infection of C57BL/6 mice with Toxoplasma gondii results in small intestinal Th1-type immunopathology mediated by local production of IFN-gamma, TNF-alpha, and NO. To analyze whether the proinflammatory cytokines IL-12 and IL-18 play a role in the induction of immunopathology, IL-12p35/p40(-/-) and IL-18(-/-) mice were orally infected with T. gondii. Wild-type mice developed massive necrosis in their small intestines and died 7-10 days post infection. Even though IL-12p35/40(-/-) mice did not develop the necrosis they all died between day 9 and 11 after infection. In contrast, 50% of IL-18(-/-) mice died during the acute phase of infection. Compared to wild-type mice, IL-12p35/p40(-/-) but not IL-18(-/-) mice showed significantly higher parasite numbers in their small intestines and significantly higher numbers of parasite-associated inflammatory foci in their livers. IFN-gamma production was similar in infected wild-type and IL-18(-/-) mice but significantly decreased in IL-12p35/p40(-/-) mice. Treatment of mice with anti-IL-12- or anti-IL-18 antibodies after infection prevented the development of intestinal necrosis. These results reveal that both IL-12 and IL-18 play an important role in the development of intestinal immunopathology following oral infection with T. gondii. However, IL-12 is dominant over IL-18 in the host defense against parasite replication. Therefore, neutralization of IL-18 (rather than TNF-alpha, IL-12, and IFN-gamma) may be a safe strategy for the treatment of Th1-associated diseases.  相似文献   

6.
We reported recently that interleukin (IL)-12 and IL-18 synergistically increased the fungicidal activity of mouse peritoneal exudate cells against Cryptococcus neoformans by inducing the production of interferon (IFN)-gamma by natural killer (NK) cells. To confirm these findings in vivo, we examined the effect of combined treatment using these two cytokines on the course of experimentally induced pulmonary and disseminated cryptococcosis in mice. IL-12 and IL-18 were used at subtherapeutic doses (0.005 and 2 microg/mouse/day, respectively). A single administration of either cytokine was not effective in protecting mice against the infection, while combined treatment significantly prolonged survival time of infected mice and reduced the lung and brain loads of organisms. These protective effects were associated with elevated IFN-gamma and reduced IL-4 levels in bronchoalveolar lavage fluid. Finally, depletion of NK and gammadelta T cells, but not of CD4+ T cells, by administration of specific antibodies, significantly reduced the production of IFN-gamma in lungs by IL-12/IL-18 treatment during the 7 days of infection. Our results demonstrated that IL-12 and IL-18 protected mice against cryptococcal infection in a synergistic manner by enhancing the local production of IFN-gamma by NK and gammadelta T cells in the early phase of infection and by suppressing the production of IL-4 in lungs.  相似文献   

7.
The potent innate cytokines IL-12 and IL-18 are considered to be important antigen-independent mediators of IFN-gamma production by NK cells and T lymphocytes. The present analysis addresses the physiological role of IL-12 and IL-18 in the generation of virus-specific CD8+ T cells. Both wt C57BL/6J (B6) mice and mice with disrupted IL-12p40 (IL-12p40(-/-)) or IL-18 (IL-18(-/-)) genes were infected with an influenza A virus and the characteristics of the resultant epitope-specific CD8+ T cell responses were compared. While IL-12 appeared to have no notable effect on either virus growth or on CD8+ T cell response profiles, the absence of IL-18 was associated with delayed virus clearance from the lung and, despite normal numbers, a significantly reduced production of IFN-gamma, TNF-alpha, and IL-2 by epitope-specific CD8+ T cells. While this cytokine phenotype was broadly maintained in IL-12p40/IL-18 double-knockout mice, no evidence was seen for any additive effect. Together, our results suggest that IL-18, but not IL-12, induces optimal, antigen-specific production of key cytokines by CD8+ T cells for the efficient clearance of influenza virus from the lungs of infected mice.  相似文献   

8.
The ability of exogenous interleukin-12 (IL-12) to elicit protective innate immune responses against the extracellular pathogen Streptococcus pneumoniae was tested by infecting BALB/c mice intranasally (i.n.) with S. pneumoniae after i.n. administration of IL-12. It was found that administration of IL-12 resulted in lower bacterial burdens in the infected mice and significantly improved survival rates. All IL-12-treated mice contained higher levels of pulmonary gamma interferon (IFN-gamma) after infection and significantly more neutrophils than infected mice not treated with IL-12. IFN-gamma was found to be essential for IL-12-induced resistance and for neutrophil influx into the lungs, and the observed changes correlated with increased levels of the IL-8 homologue keratinocyte-derived chemokine (KC). In addition, in vitro tumor necrosis factor alpha (TNF-alpha) production by alveolar macrophages stimulated with heat-killed pneumococci was enhanced by IFN-gamma, and TNF-alpha in turn could enhance production of KC by lung cells. Finally, IL-12-induced protection was dependent upon the presence of neutrophils and the KC receptor CXCR2. Taken together, the results indicate that exogenous IL-12 can improve innate defense in the lung against S. pneumoniae by inducing IFN-gamma production, which in turn enhances chemokine expression, and promotes pulmonary neutrophil recruitment into the infected lung. The findings show that IL-12 and IFN-gamma can mediate a protective effect against respiratory infection caused by extracellular bacterial pathogens.  相似文献   

9.
Immunity to mycobacterial infection is closely linked to the emergence of T cells that secrete cytokines, gamma interferon (IFN-gamma), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-alpha), resulting in macrophage activation and recruitment of circulating monocytes to initiate chronic granuloma formation. The cytokine that mediates macrophage activation is IFN-gamma, and, like IL-12, IL-18 was shown to activate Th1 cells and induce IFN-gamma production by these cells. In order to investigate the role of IL-18 in mycobacterial infection, IL-18-deficient mice were infected with Mycobacterium tuberculosis and Mycobacterium bovis BCG Pasteur, and their capacities to control bacterial growth, granuloma formation, cytokine secretion, and NO production were examined. These mice developed marked granulomatous, but not necrotic, lesions in their lungs and spleens. Compared with the levels in wild-type mice, the splenic IFN-gamma levels were low but the IL-12 levels were normal in IL-18-deficient mice. The reduced IFN-gamma production was not secondary to reduced induction of IL-12 production. The levels of NO production by peritoneal macrophages of IL-18-deficient and wild-type mice did not differ significantly. Granulomatous lesion development by IL-18-deficient mice was inhibited significantly by treatment with exogenous recombinant IL-18. Therefore, IL-18 is important for the generation of protective immunity to mycobacteria, and its main function is the induction of IFN-gamma expression.  相似文献   

10.
Interleukin-12 enhances murine survival against acute toxoplasmosis.   总被引:9,自引:10,他引:9       下载免费PDF全文
Protective immunity against Toxoplasma gondii is mediated by the host cellular immune response. Interleukin-12 (IL-12), a recently described cytokine that stimulates NK cells to produce gamma interferon (IFN-gamma), is able to enhance host protection against this parasite in SCID mice. Administration of IL-12 to A/J mice significantly increased survival over that of control mice when IL-12 was delivered early in the course of acute infection. If it was administered at day 3 or thereafter, there was no observed difference in mortality between treated and control mice. Antibody depletion of IL-12 increased susceptibility to infection, as measured by mortality, only when the IL-12 was administered before day 3 postinfection. Mice treated with IL-12 at day 0 postinfection exhibited a significant rise above the control in both IL-2 and IFN-gamma production. Once infection has been established in the host (3 days), administration of exogenous IL-12 is unable to alter parasite-induced downregulation of IFN-gamma production. Thus, IL-12 appears to play an important, but transitory, role in protection against acute infection with T. gondii in the normal murine host.  相似文献   

11.
Resistance to Toxoplasma gondii has been shown to be mediated by gamma interferon (IFN-gamma) produced by NK, CD4(+), and CD8(+) T cells. While studies of SCID mice have implicated NK cells as the source of the cytokine in acute infection, several lines of evidence suggest that IFN-gamma production by CD4(+) T lymphocytes also plays an important role in controlling early parasite growth. To evaluate whether this function is due to nonspecific as opposed to T-cell receptor (TCR)-dependent stimulation by the parasite, we have examined the resistance to T. gondii infection of pigeon cytochrome c transgenic (PCC-Tg) Rag-2(-/-) mice in which all CD4(+) T lymphocytes are unreactive with the protozoan. When inoculated with the ME49 strain, PCC-Tg animals exhibited only temporary control of acute infection and succumbed by day 17. Intracellular cytokine staining by flow cytometry revealed that, in contrast to infected nontransgenic controls, infected PCC-Tg animals failed to develop IFN-gamma-producing CD4(+) T cells. Moreover, the CD4(+) lymphocytes from these mice showed no evidence of activation as judged by lack of upregulated expression of CD44 or CD69. Nevertheless, when acutely infected transgenic mice were primed by PCC injection, the lymphokine responses measured after in vitro antigen restimulation displayed a strong Th1 bias which was shown to be dependent on endogenous interleukin 12 (IL-12). The above findings argue that, while T. gondii-induced IL-12 cannot trigger IFN-gamma production by CD4(+) T cells in the absence of TCR ligation, the pathogen is able to nonspecifically promote Th1 responses against nonparasite antigens, an effect that may explain the immunostimulatory properties of T. gondii infection.  相似文献   

12.
13.
Previous studies have shown that IL-10 inhibits the accessory cell functions required for production of IFN-gamma by T cells and NK cells. Our results show that although IL-10 did not induce the production of IFN-gamma by NK cells, it did enhance the ability of IL-18 to stimulate NK cell production of IFN-gamma. In addition, IL-10 augmented NK cell proliferation and cytotoxic activity when combined with IL-18. However, IL-10 did not affect the ability of IL-12 to stimulate NK cells to produce IFN-gamma or proliferate, but there was an additive effect with IL-12 to increase NK cell cytotoxic activity. Interestingly, the type I IFN, whose receptors (R) are related to the IL-10R, also enhanced the effects of IL-18 on NK cell production of IFN-gamma and NK cell cytotoxicity. The ability of IL-10 to elevate the production of IFN-gamma appeared to be specific for NK cells since IL-10 had no effect on the production of IFN-gamma by Th1 clones stimulated with IL-18 or IL-12 in the presence of a monoclonal antibody specific for CD3. These latter results correlated with lower mRNA levels for the alpha and beta chains of the IL-10R in Th1 cells than observed in NK cells. Thus, the ability of IL-10 and IL-18 to up-regulate NK cell function, but not Th1 cell activity, appears to be based on expression of the IL-10R.  相似文献   

14.
Besides the established role of interleukin-12 (IL-12) and IL-18 on interferon-gamma (IFN-gamma) production by natural killer (NK), T, and B cells, the effects of these cytokines on macrophages are largely unknown. Here, we investigated the role of IL-12/IL-18 on nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) production by CD11b(+) adherent peritoneal cells, focusing on the involvement of endogenously produced IFN-gamma. C57BL/6 cells released substantial amounts of NO when stimulated with IFN-gamma or lipopolysaccharide (LPS), but failed to respond to IL-12 or IL-18 or both. However, IL-12/IL-18 pretreatment was able to program these cells to release 6-8-fold more NO and TNF-alpha in response to LPS or Trypanosoma cruzi stimulation, with NO levels directly correlating with macrophage resistance to intracellular parasite growth. Analysis of IL-12/IL-18-primed cells from mice deficient in IFN-gamma, IFNGR, and IFN regulatory factor-1 (IRF-1) revealed that these molecules were essential for LPS-induced NO release, but TNF-alpha production was IFN-gamma independent. Conversely, the myeloid differentiation factor 88 (MyD88)-dependent pathway was indispensable for IL-12/IL-18-programmed LPS-induced TNF-alpha production, but not for NO release. Contaminant T and NK cells largely modulated the IL-12/IL-18 programming of LPS-induced NO response through IFN-gamma secretion. Nevertheless, a small population of IFN-gamma(+) cells with a macrophage phenotype was also identified, particularly in the peritoneum of chronically T. cruzi-infected mice, reinforcing the notion that macrophages can be an alternative source of IFN-gamma. Taken together, our data contribute to elucidate the molecular basis of the IL-12/IL-18 autocrine pathway of macrophage activation, showing that endogenous IFN-gamma plays an important role in programming the NO response, whereas the TNF-alpha response occurs through an IFN-gamma-independent pathway.  相似文献   

15.
We examined the mechanism of resistance against reactivation of infection with Toxoplasma gondii in the brain. BALB/c-background gamma interferon (IFN-gamma)-knockout (IFN-gamma(-/-)) and control mice were infected and treated with sulfadiazine beginning 4 days after infection for 3 weeks. After discontinuation of treatment, IFN-gamma(-/-) mice succumbed to toxoplasmic encephalitis (TE) and died, whereas control animals did not develop TE and survived. Adoptive transfer of immune spleen cells from infected control mice did not prevent development of TE or mortality in the IFN-gamma(-/-) mice. To examine whether the failure of the cell transfer to protect against TE is unique to IFN-gamma(-/-) mice, athymic nude and SCID mice that lack T cells were infected and injected with the immune spleen or T cells in the same manner as IFN-gamma(-/-) mice. Whereas control nude and SCID mice that had not received the immune cells developed severe TE and died after discontinuation of sulfadiazine, those that had received the cells did not develop TE and survived. Before cell transfer, IFN-gamma mRNA was detected in brains of infected nude and SCID but not in brains of IFN-gamma(-/-) mice. IFN-gamma mRNA was also detected in brains of infected SCID mice depleted of NK cells by treatment with anti-asialo GM1 antibody, and such animals did not develop TE after receiving immune T cells. Thus, IFN-gamma production by non-T cells, in addition to T cells, is required for prevention of reactivation of T. gondii infection in the brain. The IFN-gamma-producing non-T cells do not appear to be NK cells.  相似文献   

16.
The early phase of acquired cellular immunity to Mycobacterium tuberculosis infection is mediated by the emergence of protective CD4 T lymphocytes that secrete cytokines including interferon-gamma (IFN-gamma), a molecule which is pivotal in the expression of resistance to tuberculosis. Recent evidence demonstrates that infection with M. tuberculosis induces peripheral blood mononuclear cells to release the cytokine interleukin-12 (IL-12), a molecule that promotes the emergence of T-helper type-1 (Th1), IFN-gamma-producing T cells. We demonstrate here that IL-12 mRNA expression was induced by M. tuberculosis infection both in vivo and in vitro and that exogenous administration of IL-12 to mice transiently resulted in increased resistance to the infection. IL-12 also increased the production of IFN-gamma by both splenocytes derived from infected animals treated in vivo and by antigen-stimulated CD4 cells from untreated infected animals, with maximal effects at times associated with the expansion of antigen-specific CD4 T cells in vivo. In the absence of a T-cell response, as seen in SCID mice or nude mice, IL-12 only slightly augmented the moderate bacteriostatic capacity of these immunocompromised mice. Neutralization of IL-12 by specific monoclonal antibodies resulted in a reduction in granuloma integrity and slowing of the capacity of the animal to control bacterial growth.  相似文献   

17.
Since the CD40/CD40 ligand (CD40L) interaction is involved in the regulation of macrophage production of interleukin 12 (IL-12) and T-cell production of gamma interferon (IFN-gamma), effector cell functions associated with resistance to Toxoplasma gondii, the role of CD40L in immunity to this parasite was assessed. Infection of C57BL/6 mice with T. gondii results in an upregulation of CD40 expression on accessory cell populations at local sites of infection as well as in lymphoid tissues. Splenocytes from C57BL/6 mice infected with T. gondii for 5 days produced high levels of IL-12 and IFN-gamma when stimulated with toxoplasma lysate antigen, and blocking CD40L did not significantly alter the production of IFN-gamma or IL-12 by these cells. Similar results were observed with splenocytes and mononuclear cells isolated from the brains of chronically infected mice. Interestingly, although CD40L(-/-) mice infected with T. gondii produced less IL-12 than wild-type mice, they produced comparable levels of IFN-gamma but succumbed to toxoplasmic encephalitis 4 to 5 weeks after infection. The inability of CD40L(-/-) mice to control parasite replication in the brain correlated with the ability of soluble CD40L, in combination with IFN-gamma, to activate macrophages in vitro to control replication of T. gondii. Together, these results identify an important role for the CD40/CD40L interaction in resistance to T. gondii. However, this interaction may be more important in the control of parasite replication in the brain rather than the generation of protective T-cell responses during toxoplasmosis.  相似文献   

18.
19.
Costimulation through the B7-CD28 interaction is an important second signal for T-cell activation, and previous studies have shown that CD28(-/-) mice infected with Toxoplasma gondii generate suboptimal CD4(+) T-cell responses, associated with a defect in production of the T-cell growth factor interleukin-2 (IL-2). To address the role of IL-2 in the expansion of T cells during toxoplasmosis, IL-2(-/-) mice were infected with T. gondii and their ability to generate a protective T-cell response was assessed. Although IL-2(-/-) mice produced normal levels of IL-12p40, they had reduced levels of gamma interferon (IFN-gamma) in serum, had an increased parasite burden, and succumbed to infection with T. gondii within 20 days. Fluorescence-activated cell sorter analysis revealed that, although uninfected IL-2(-/-) mice had an increased number of activated T cells compared with uninfected IL-2(+/+) mice, following infection they were unable to further upregulate this population. Examination of the ability of splenocytes from uninfected and infected mice to produce IFN-gamma revealed that IL-2(-/-) mice were hyporesponsive to stimulation with anti-CD3 or parasite antigen compared with wild-type mice, and the addition of IL-2 alone or in combination with IL-12 or stimulation with phorbol myristate acetate and ionomycin did not restore the production of IFN-gamma. Together, these studies reveal that IL-2(-/-) mice are unable to generate a protective IFN-gamma response following infection with T. gondii and suggest that IL-2(-/-) mice have an intrinsic defect in their ability to activate and expand IFN-gamma-producing T cells required for resistance to T. gondii.  相似文献   

20.
Studies have shown that after Pseudomonas aeruginosa (P. aeruginosa) corneal infection, BALB/c mice that are capable of resolving the disease, locally produce IFN-gamma. As T cells are not detected in the infected cornea of these mice, antibody depletion was used to test whether NK cells produce the cytokine. After depletion, decreased corneal IFN-gamma mRNA and increased disease severity, bacterial load, and PMN infiltrate resulted. Further work determined if substance P (SP), a pro-inflammatory neuropeptide, participated in regulation of this response. To this end, mice were treated with the SP antagonist, spantide I that blocks SP interaction with neurokinin-1, its major receptor. The treatment significantly decreased corneal IFN-gamma and IL-18 protein levels and corneal perforation resulted. In vitro experiments using isolated splenic NK cells confirmed their ability to respond to IL-18 and SP and to secrete IFN-gamma protein. We conclude: that for development of the BALB/c resistance response, NK cells are required to produce IFN-gamma; that the cells express the neurokinin-1 receptor; and that SP directly regulates IFN-gamma production through this receptor. The data suggest a unique link between the nervous system and development of innate immunity in the cornea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号