首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A hypertonic saline containing propylene glycol facilitates calcium (Ca2+) influx through voltage-dependent Ca2+ channels. The present study performed experiments to elucidate the mechanism by which Na+-K+-2Cl? cotransporters participate in the rise in the intracellular calcium concentration ([Ca2+]i) under the hypertonic condition. Both furosemide and ethacryonic acid significantly decreased the [Ca2+]i raised by hypertonicity. Similarly, Na+-, K+-, or Cl?-free saline also reduced it. Both norepinephrine and dopamine significantly enhanced the rise in [Ca2+]i. In conclusion, the findings obtained indicate that the Na+-K+-2Cl? cotransporters evoke cell depolarization and that this depolarization raises the [Ca2+]i by activating voltage-dependent Ca2+ channels.  相似文献   

2.
Summary Effects of cyclic AMP on membrane potentials were examined by measuring the changes of bis-oxonol fluorescence in bovine adrenal medullary chromaffin cells. 8-Bromo cyclic AMP (8Br-cAMP) or forskolin caused a gradual and long lasting increase of the fluorescence intensity. The effects of 8br-cAMP was blocked by cyclic AMP-dependent protein kinase inhibitor, adenosine-3, 5-cyclic monophosphothioate, Rp-diastereomer (Rp-cAMPS) and there was no further increase in the fluorescence by 8br-cAMP in the cells depolarized with 56 mM KCl or gramicidin D. Ouabain or the removal of extracellular K+ ([K+]0free) which block Na+, K+-ATPase also increased the fluorescence. The effect of 8br-cAMP on the fluorescence was counteracted by ouabain or [K+]0 free and was blocked in the absence of extracellular Na+ but not by tetrodotoxin or the removal of Ca2+ from the medium. These results may suggest that cyclic AMP causes the membrane depolarization by accumulating Na+ through the inhibition of Na+, K+-ATPase in adrenal chromaffin cells.  相似文献   

3.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

4.
To elucidate the mechanism of pHi changes induced by membrane depolarization, the variations in pHi and [Ca2+]i induced by a number of depolarizing agents, including high K+, veratridine, N-methyl-

-aspartate (NMDA) and ouabain, were investigated in rat hippocampal slices by the fluorophotometrical technique using BCECF or fura-2. All of these depolarizing agents elicited a decrease in pHi and an elevation of intracellular calcium ([Ca2+]i) in the CA1 pyramidal cell layer. The increases in [Ca2+]i caused by the depolarizing agents almost completely disappeared in the absence of Ca2+ (0 mM Ca2+ with 1 mM EGTA). In Ca2+ free media, pHi acid shifts produced by high K+, veratridine or NMDA were attenuated by 10–25%, and those produced by ouabain decreased by 50%. Glucose-substitution with equimolar amounts of pyruvate suppressed by two-thirds the pHi acid shifts induced by both high K+ and NMDA. Furthermore, lactate contents were significantly increased in hippocampal slices by exposure to high K+, veratridine or NMDA but not by ouabain. These results suggest that the intracellular acidification produced by these depolarizing agents, with the exception of ouabain, is mainly due to lactate accumulation which may occur as a result of accelerated glycolysis mediated by increased Na+–K+ ATPase activity. A Ca2+-dependent process may also contribute to the intracellular acidification induced by membrane depolarization. Since an increase in H+ concentration can attenuate neuronal activity, glycolytic acid production induced by membrane depolarization may contribute to the mechanism that prevents excessive neuronal excitation.  相似文献   

5.
We compared the effectiveness of Ca2+ entering by Na+/Ca2+ exchange with that of Ca2+ entering by channels produced by membrane depolarization with K+ in inducing catecholamine release from bovine adrenal chromaffin cells. The Ca2+ influx through the Na+/Ca2+ exchanger was promoted by reversing the normal inward gradient of Na+ by preincubating the cells with ouabain to increase the intracellular Na+ and then removing Na+ from the external medium. In this way we were able to increase the cytosolic free Ca2+ concentration ([Ca2+]c) by Na+/Ca2+ exchange to 325 ± 14 nM, which was similar to the rise in [Ca2+]c observed upon depolarization with 35 mM K+ of cells not treated with ouabain. After incubating the cells with ouabain, K+ depolarization raised the [Ca2+]c to 398 ± 31 nM, and the recovery of [Ca2+]c to resting levels was significantly slower. Reversal of the Na+ gradient caused an −6-fold increase in the release of noradrenaline or adrenaline, whereas K+ depolarization induced a 12-fold increase in noradrenaline release but only a 9-fold increase in adrenaline release. The ratio of noradrenaline to adrenaline release was 1.24 ± 0.23 upon reversal of the Na+/Ca2+ exchange, whereas it was 1.83 ± 0.19 for K+ depolarization. Reversal of the Na+/Ca2+ exchange appeared to be as efficient as membrane depolarization in inducing adrenaline release, in that the relation of [Ca2+]c to adrenaline release was the same in both cases. In contrast, we found that for the same average [Ca2+]c, the Ca2+ influx through voltage-gated channels was much more efficient than the Ca2+ entering through the Na+/Ca2+ exchanger in inducing noradrenaline release from chromaffin ceils. This greater effectiveness of membrane depolarization in stimulating noradrenaline release suggests that there is a pool of noradrenaline vesicles which is more accessible to Ca2+ entering through voltage-gated Ca2+ channels than to Ca2+ entering through the Na+/Ca2+ exchanger, whereas the adrenaline vesicles do not distinguish between the source of Ca2+.  相似文献   

6.
In leech Retzius neurones the inhibition of the Na+–K+ pump by ouabain causes an increase in the cytosolic free calcium concentration ([Ca2+]i). To elucidate the mechanism of this increase we investigated the changes in [Ca2+]i (measured by Fura-2) and in membrane potential that were induced by inhibiting the Na+–K+ pump in bathing solutions of different ionic composition. The results show that Na+–K+ pump inhibition induced a [Ca2+]i increase only if the cells depolarized sufficiently in the presence of extracellular Ca2+. Specifically, the relationship between [Ca2+]i and the membrane potential upon Na+–K+ pump inhibition closely matched the corresponding relationship upon activation of the voltage-dependent Ca2+ channels by raising the extracellular K+ concentration. It is concluded that the [Ca2+]i increase caused by inhibiting the Na+–K+ pump in leech Retzius neurones is exclusively due to Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

7.
Hippocampal slices prepared from adult rats were loaded with fura-2 and the intracellular free Ca2+ concentration ([Ca2+]i) in the CA1 pyramidal cell layer was measured. Hypoxia (oxygen–glucose deprivation) elicited a gradual increase in [Ca2+]i in normal Krebs solution. At high extracellular sodium concentrations ([Na+]o), the hypoxia-induced response was attenuated. In contrast, hypoxia in low [Na+]o elicited a significantly enhanced response. This exaggerated response to hypoxia at a low [Na+]o was reversed by pre-incubation of the slice at a low [Na+]o prior to the hypoxic insult. The attenuation of the response to hypoxia by high [Na+]o was no longer observed in the presence of antagonist to glutamate transporter. However, antagonist to Na+–Ca2+ exchanger only slightly influenced the effects of high [Na+]o. These observations suggest that disturbance of the transmembrane gradient of Na+ concentrations is an important factor in hypoxia-induced neuronal damage and corroborates the participation of the glutamate transporter in hypoxia-induced neuronal injury. In addition, the excess release of glutamate during hypoxia is due to a reversal of Na+-dependent glutamate transporter rather than an exocytotic process.  相似文献   

8.
Equimolar replacement of Na+ in medium with choline chloride or sucrose and experimental manipulations known to increase [Na+]i, such as ouabain addition and K+ deprivation from medium, caused a marked increase in in vitro DOPA synthesis in the median eminence of rat hypothalamic slices in a Ca2+-dependent manner. These results suggest that a Na+−Ca2+ exchange mechanism is closely involved in the regulation of dopamine biosynthesis in tuberoinfundibular neurons.  相似文献   

9.
We investigated the effect of adenosine A1 receptors on the release of acetylcholine (ACh) and GABA, and on the intracellular calcium concentration ([Ca2+]i) response in cultured chick amacrine-like neurons, stimulated by KCl depolarization. The KCl-induced release of [3H]ACh, but not the release of [14C]GABA, was potentiated when adenosine A1 receptor activation was prevented by perfusing the cells with adenosine deaminase (ADA) or with 1,3-dipropyl-8-cycloentylxanthine (DPCPX). The changes in the [Ca2+]i induced by KCl depolarization, measured in neurite segments of single cultured cells, were also modulated by endogenous adenosine, acting on adenosine A1 receptors. Our results show that adenosine A1 receptors inhibit Ca2+ entry coupled to ACh release, but not to the release of GABA, suggesting that the synaptic vesicles containing each neurotransmitter are located in different zones of the neurites, containing different VSCC and/or different densities of adenosine A1 receptors.  相似文献   

10.
Electrical field depolarization releases γ-aminobutyric acid (GABA) in rat striatal slices in the absence of external Ca2+. ω-Conotoxin GVIA (ω-CgTx; 1–50 nM), a neuronal Ca2+ channel blocker, inhibits electrically evoked efflux of newly taken up [3H]GABA in a concentration-dependent manner in either normal or Ca2+-free medium. This suggests that ion influx occurs through Ca2+ channels in the absence of external Ca2+ and contributes to the efflux of GABA. Reducing external Na+ concentration to 27.25 mM (low [Na+]0 medium) by equimolarly substituting choline chloride for sodium chloride has differential effects on electrically evoked GABA efflux depending on the external Ca2+ concentrations. In normal Ca2+ medium, electrically evoked GABA efflux increases whereas, in Ca2+-free medium, it is greatly inhibited when [Na+]0 is reduced to 27.25 mM. In low [Na+]0 medium, GABA efflux is largely tetrodotoxin (TTX)-sensitive, however, spike firing evoked by antidromic stimulation of striatal cells is inhibited. In Na+-free medium, resting GABA efflux increases 17-fold whereas evoked GABA efflux diminishes. In Ca2+-free medium, 70 min of incubation with 1–2-bis-(2-aminophenoxy)ethane-N,N,N′,N′ tetraacetoxy methyl ester (BAPTA-AM, 1 μM), an intracellular calcium chelator, increases both resting GABA efflux and electrically evoked GABA overflow by 100%. These results suggest that: (1) in Ca2+-free conditions, Na+ permeability of cells increases via Ca2+ channels and this profoundly affects GABA efflux. (2) Electrical field depolarization is likely to release GABA by directly depolarizing axon terminals. (3) Ca2+-independent GABA efflux is not promoted by an increase in intracellular free Ca2+ concentration via Na+/Ca2+ exchange processes from internal pools.  相似文献   

11.
Astrocytes exhibit three transmembrane Ca2+ influx pathways: voltage-gated Ca2+ channels (VGCCs), the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) class of glutamate receptors, and Na+/Ca2+ exchangers. Each of these pathways is thought to be capable of mediating a significant increase in Ca2+ concentration ([Ca2+]i); however, the relative importance of each and their interdependence in the regulation astrocyte [Ca2+]i is not known. We demonstrate here that 100 μM AMPA in the presence of 100 μM cyclothiazide (CTZ) causes an increase in [Ca2+]i in cultured cerebral astrocytes that requires transmembrane Ca2+ influx. This increase of [Ca2+]i is blocked by 100 μM benzamil or 0.5 μM U-73122, which inhibit reverse-mode operation of the Na+/Ca2+ exchanger by independent mechanisms. This response does not require Ca2+ influx through VGCCs, nor does it depend upon a significant Ca2+ influx through AMPA receptors (AMPARs). Additionally, AMPA in the presence of CTZ causes a depletion of thapsigargin-sensitive intracellular Ca2+ stores, although depletion of these Ca2+ stores does not decrease the peak [Ca2+]i response to AMPA. We propose that activation of AMPARs in astrocytes can cause [Ca2+]i to increase through the reverse mode operation of the Na+/Ca2+ exchanger with an associated release of Ca2+ from intracellular stores. This proposed mechanism requires neither Ca2+-permeant AMPARs nor the activation of VGCCs to be effective.  相似文献   

12.
The effects of serotonin (5-HT) on extracellular potassium concentration ([K+]0) were measured with ion-selective microelectrodes in rat hippocampal slices. Electrical stimulation of an excitatory afferent system, the Schaffer collateral commissural pathway, caused a 2–4 mM rise in [K+]0 in the stratum pyramidale of area CA1. 5-HT caused a 0.6–1.1 mM rise in [K+]0. This rise was associated with hyperpolarization of neurons and cessation of their spontaneous spike discharge. Methysergide, a 5-HT antagonist, reduced the 5-HT effect. The change in [K+]0 was highest in stratum moleculare and lowest in stratum pyramidale, the opposite gradient to that found with excitatory electrical stimulation. The 5-HT-induced [K+]0 changes were maximal in CA1 stratum moleculare, intermediate in the dentate stratum granulare and almost non-existent in the CA3 stratum pyramidale.GABA, but not norepinephrine, produced a small (up to 0.5 mM) rise in [K+]0 in stratum pyramidale. Extracellular calcium concentration measured with a Ca2+-sensitive microelectrode was reduced by electrical stimulation but unchanged by 5-HT or norepinephrine. It is suggested that 5-HT hyperpolarizes hippocampal cells by activation of sodium- and calcium-independent potassium channels, which cause a rise in [K+]0.  相似文献   

13.
According to the membrane channel hypothesis of carotid body O2 chemoreception, hypoxia suppresses K+ currents leading to cell depolarization, [Ca2+]i rise, neurosecretion, increased neural discharge from the carotid body. We show here that tetraethylammonium (TEA) plus 4-aminopyridine (4-AP) which suppressed the Ca2+ sensitive and other K+ currents in rat carotid body type I cells, with and without low [Ca2+]o plus high [Mg2+]o, did not essentially influence low

effects on [Ca2+]i and chemosensory discharge. Thus, hypoxia may suppress the K+ currents in glomus cells but K+ current suppression of itself does not lead to chemosensory excitation. Therefore, the hypothesis that K+–O2 current is linked to events in chemoreception is not substantiated. K+–O2 current is an epiphemenon which is not directly linked with O2 chemoreception.  相似文献   

14.
In the present study we have investigated the effect of cations and ouabain on Ca2+-independent and Ca2+-dependent release of γ-[3H]aminobutyric acid ([3H]GABA) from sheep brain synaptosomes. The presence of Na+ in the external medium is essential for the Ca2+-independent release induced by K+ or ouabain. Thus, in the absence of Ca2+, ouabain of K+ causes the release of [3H]GABA provided that Na+ is present in the external medium. Under K+-depolarizing conditions, in a Na+ medium, either ouabain or Ca2+ further increases the [3H]GABA release induced by depolarization, but their effects are not additive. The presence of external Na+ is not required for the Ca2+-dependent release of [3H]GABA due to K+ depolarization, and this release, which occurs in a choline medium, is not modified by ouabain. Under these conditions (choline medium) K+-depolarization dependent release is absolutely dependent on external Ca2+, which suggests that this release of [3H]GABA occurs only by exocytosis, without the carrier-mediated efflux which normally co-exists with exocytosis due to K+-depolarization in a Na+ medium. It is likely that the release induced by ouabain or K+ involves the membrane carrier which responds to changes in membrane potential.  相似文献   

15.
Chromaffin cells were isolated from bovine adrenals and the effects of experimental manipulations which alter the level of internal Na+ on the release of catecholamines and45Ca uptake by these cells were investigated. In response to Na+ deprivation both parameters were increased or decreased when internal Na+ was raised or reduced, respectively. The results suggest the existence of Na+-dependent Ca2+ influx mechanism in these cells.  相似文献   

16.
Using optical recordings, we studied the effects of asphyxia on intracellular Cl and Ca2+ concentrations ([Cl]i; [Ca2+]i) in the superior colliculus of fetal rats, which were connected via the umbilical cord to the dam. Acute asphyxia was induced by umbilical cord occlusion. The number of fetal superior colliculus neurons showing GABA-mediated increases in [Cl]i (leading to hyperpolarization) following local synaptic electrical stimulation had decreased by 3 h post-asphyxiation, while the number showing GABA-mediated decreases in [Cl]i (leading to depolarization) increased. [Ca2+]i rise, which occurred after acute asphyxiation, was antagonized by both non-NMDA and NMDA receptor antagonists. The increase in [Ca2+]i following focal superior colliculus stimulation was markedly attenuated at 3 h post-asphyxiation.  相似文献   

17.
Both high K+ and veratridine, depolarizing agents with different mechanisms of action, lowered the ACh content of the cytoplasmic (S3) fraction of mouse forebrain minces incubated in a Ca2+-free Krebs solution, without stimulating ACh release or altering the level of ACh in the vesicle-bound (P3) fraction. Veratridine increased the level of choline in the P3 fraction by the same amount as it reduced the level of ACh in the S3 fraction, and these changes did not occur in the presence of tetrodotoxin (TTX). Pretreatment of minces in normal Krebs increased the ACh but not the choline content of the S3 fraction. Following this expansion of the S3 ACh content, veratridine caused an eve greater loss of S3 ACh, and increased the Ca2+-independent release of ACh slightly. Under these conditions, veratridine also stimulated the Ca2+ independent release of choline, and this increase exceeded that obtained for the Ca2+-independent release of ACh. Preincubation in normal Krebs with paraoxon did not alter the S3 ACh content after 5 min, but raised it by 78% after 30 min. Under the latter conditions of pretreatment, veratridine then stimulated tha Ca2+-independent release of ACh even more, but did not stimulate the release of choline. These results suggest that depolarization of brain tissue does not facilitate the Ca2+-independent release of ACh from the cytoplasm because a portion of ACh stored there is hydrolyzed. When the cytoplasmic level of ACh is sufficiently elevated prior to depolarization, then some ACh escapes hydrolysis and is released independently of Ca2+. It is suggested that the depolarization-induced hydrolysis of cytoplasmic ACh may be mediated by an intraterminal form of AChE and may, in addition to the hydrolysis of extracellular ACh, provide substrate for the formation and release of ACh by the vesicle-bound fraction.  相似文献   

18.
The effects of valproate (VPA) on neuronal excitability and on changes in extracellular potassium ([K+]0) and calcium ([Ca2+]0) were investigated with ion selective-reference electrode pairs in area CA1 of rat hippocampal slices. Field potential responses to single ortho- and antidromic stimuli were unaltered by VPA (1–5 mM). The afferent volley evoked in the Schaffer-commissural fibers was also unaffected. In contrast, VPA (1 mM) depressed frequency potentiation and paired pulse facilitation markedly. Decreases in [Ca2+]0 induced either by repetitive stimulation or by application of the excitatory amino acids N-methyl-d-aspartate and quisqualate were reduced, and the latter results suggest that VPA interferes with postsynaptic Ca2+ entry. When synaptic transmission was blocked by lowering [Ca2+]0 (0.2 mM) and elevating [Mg2+]0 (7 mM), prolonged afterdischarges elicited by antidromic stimulation were blocked by VPA. VPA also suppressed the spontaneous epileptiform activity seen when [Ca2+]0 was lowered to 0.2 mM, without elevating [Mg2+]0. The amplitudes of the rises in [K+]0 induced by repetitive orthodromic stimulation were only slightly depressed and those elicited by antidromic stimulation were generally unaltered by VPA, as were laminar profiles of stimulus-evoked [K+]0 signals. These results indicate that VPA has membrane actions in addition to known effects on excitatory and inhibitory transmitter pools.  相似文献   

19.
These experiments examined effects of cholesterol oxidation on Ca2++Mg2+-ATPase activity, Na++K+-ATPase activity, and membrane structure of brain synaptic plasma membranes (SPM). Cholesterol oxidase [E.C.1.1.3.6 fromBrevibacterium sp.] was used to oxidize cholesterol. Two cholesterol pools were identified in synaptosomal membranes based on their accessibility to cholesterol oxidase. A rapidly oxidized cholesterol pool was observed with a1t12 of 1.19±0.09 min and a second pool with a2t12 of 38.30±4.16 min. Activity of Ca2++Mg2+-ATPase was inhibited by low levels of cholesterol oxidation. Ten percent cholesterol oxidation, for example, resulted in approximately 35% percent inhibition of Ca2++Mg2+-ATPase activity. After 13% cholesterol oxidation, further inhibition of Ca2++Mg2+-ATPase activity was not observed. Activity of Na++K+-ATPase was not affected by different levels of cholesterol oxidation (5%–40%). SPM interdigitation was significantly reduced and fluidity was significantly increased by cholesterol oxidation. The relatiobship observed between SPM interdigitation and Ca2++Mg2+-ATPase activity was consistent with studies using model membranes [7]. Brain SPM function and structure were altered by relatively low levels of cholesterol oxidation and is a new approach to understanding cholesterol dynamics and neuronal function. The sensitivity of brain SPM to cholesterol oxidation may be important with respect to the proposed association between oxygen free radicals and certain neurodegenerative diseases.  相似文献   

20.
The pathways of Li+ transport in neuroblastoma × glioma hybrid cells were studied at 2 mM external Li+. Five components of Li+ transport were identified. (1) A Na+-dependent Li+ countertransport system mediating Li+ transport in both directions across the plasma membrane. This transport pathway is insensitive to ouabain or external K+. It shows trans-stimulation (i.e. acceleration of Li+ extrusion by external Na+ and stimulation of Li+ uptake by internal Na+) and cis-inhibition (i.e. reduction of Li+ uptake by external Na+). (2) The Na+K+ pump mediates Li+ uptake but not Li+ release in cells with physiological Na+ and K+ content. Li+ uptake by the pump in choline media is inhibited by both external Na+ and K+. In Na+ media, external K+ exhibits a biphasic effect: in concentrations up to about 1 mM, K+ accelerates, and at higher concentrations, K+ inhibits, Li+ uptake by the pump. (3) Li+ can enter the voltage-dependent Na+ channel. Li+ uptake through this pathway is stimulated by veratridine and scorpion toxin, the stimulation being blocked by tetrodotoxin. Residual pathways comprise (4) a saturable component, which is comparable to basal Na+ uptake, and (5) a ouabain-resistant component promoting Li+ extrusion against an electrochemical gradient in choline media. The mechanisms for Li+ extrusion described here possibly explain how neuronal cells maintain the steady-state ratio of internal to external Li+ below 1 during chronic exposure to 1–2 mM external Li+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号