首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sharpe  JA; Summerhill  RJ; Vyas  P; Gourdon  G; Higgs  DR; Wood  WG 《Blood》1993,82(5):1666-1671
Erythroid-specific DNase 1 hypersensitive sites have been identified at the promoters of the human alpha-like genes and within the region from 4 to 40 kb upstream of the gene cluster. One of these sites, HS-40, has been shown previously to be the major regulator of tissue-specific alpha-globin gene expression. We have now examined the function of other hypersensitive sites by studying the expression in mouse erythroleukemia (MEL) cells of various fragments containing these sites attached to HS-40 and an alpha-globin gene. High level expression of the alpha gene was observed in all cases. When clones of MEL cells bearing a single copy of the alpha-globin gene fragments were examined, expression levels were similar to those of the endogenous mouse alpha genes and similar to MEL cells bearing beta gene constructs under the control of the beta-globin locus control region. However, there was no evidence that the additional hypersensitive sites increased the level of expression or conferred copy number dependence on the expression of a linked alpha gene in MEL cells.  相似文献   

2.
3.
After screening a bacterial artificial chromosome of human genomic DNA library with human HS-40, zeta-, alpha-, and theta-globin probes, a 110-kb clone bearing the whole human alpha-globin gene cluster was obtained and rare restriction endonuclease mapping was performed. The bacterial artificial chromosome DNA was isolated, and transgenic mice were generated. Three founders were detected from 35 newborn mice. The copy numbers were 1, 2, and 2, and the expression of human alpha-globin genes in various tissues at different developmental stages in the transgenic mice was assayed. The human alpha-globin mRNA can be detected in bone marrow, kidney, liver, brain, but not in muscle, testis, or thymus. The human zeta-globin genes were switched off, and the alpha-globin genes were switched at day 11.5 in mouse embryo, indicating that developmental stage-specific expression of the alpha-like globin genes was properly regulated. The human alpha-globin mRNA ranged between 17-68% of the endogenous mouse alpha-globin, suggesting that the expression of human alpha-globin genes is integration site-dependent in transgenic mice. The ratio of human alpha(2)- and alpha(1)-globin gene expression in adult transgenic mouse is about 2.5:1 similar to the expression in human.  相似文献   

4.
Analysis of the human alpha-globin gene cluster in transgenic mice.   总被引:11,自引:2,他引:11       下载免费PDF全文
A 350-bp segment of DNA associated with an erythroid-specific DNase I-hypersensitive site (HS-40), upstream of the alpha-globin gene cluster, has been identified as the major tissue-specific regulator of the alpha-globin genes. However, this element does not direct copy number-dependent or developmentally stable expression of the human genes in transgenic mice. To determine whether additional upstream hypersensitive sites could provide more complete regulation of alpha gene expression we have studied 17 lines of transgenic mice bearing various DNA fragments containing HSs -33, -10, -8, and -4, in addition to HS -40. Position-independent, high-level expression of the human zeta- and alpha-globin genes was consistently observed in embryonic erythroid cells. However, the additional HSs did not confer copy-number dependence, alter the level of expression, or prevent the variable down-regulation of expression in adults. These results suggest that the region upstream of the human alpha-globin genes is not equivalent to that upstream of the beta locus and that although the two clusters are coordinately expressed, there may be differences in their regulation.  相似文献   

5.
The alpha-globin gene cluster is located at the very tip of the short arm of chromosome 16. It produces the alpha-like globins, which is combined with the beta-like globins to form hemoglobin, and its mutants cause alpha-thalassemia, which is one of the most common genetic diseases. Its expression shows a tissue and developmental stage specificity that is balanced with that of the beta-globin gene cluster. In this article, we summarize the research on the control of expression of the alpha-globin gene cluster, mainly with respect to the alpha-major regulatory element (alpha-MRE): HS-40, the tissue-specific and developmental control of its expression, and its chromosomal environment. In summary, the alpha-globin gene cluster is expressed in an open chromosomal environment; HS-40, the 5'-flanking sequence, the transcribed region, and the 3'-flanking sequence interact to fully regulate its expression.  相似文献   

6.
We have identified and characterized a Scottish individual with alpha thalassaemia, resulting from a de novo 48 kilobase (kb) deletion from the telomeric flanking region of the alpha globin cluster which occurred as a result of recombination between two misaligned repetitive elements that normally lie approximately 83 kb and 131 kb from the 16p telomere. The deletion removes two previously described putative regulatory elements (HS-40 and HS-33) but leaves two other elements (HS-10 and HS-8) intact. Analysis of this deletion, together with eight other published deletions of the telomeric region, showed that they all severely downregulated alpha globin expression. Together they defined a 20.4-kb region of the human alpha cluster, which contains all of the positive cis-acting elements required to regulate alpha globin expression. Comparative analysis of this region with the corresponding segment of the mouse alpha globin cluster demonstrated conserved non-coding sequences corresponding to the putative regulatory elements HS-40 and HS-33. Although the role of HS-40 as an enhancer of alpha globin expression is fully established, these observations suggest that the role of HS-33 and other sequences in this region should be more fully investigated in the context of the natural human and mouse alpha globin loci.  相似文献   

7.
DNA methylation in chicken alpha-globin gene expression.   总被引:8,自引:8,他引:8       下载免费PDF全文
We have investigated certain specific methylation sites of the chicken alpha-globin gene cluster in DNA from embryonic and adult erythroid cells as well as from brain and sperm cells. Eight contiguous DNA fragments of the alpha-globin gene cluster were subcloned from a recombinant lambda phage. The subclones were used as probes to map all the Msp I/Hpa II and Hha I sites in the unmethylated cloned DNA and specific sites of methylation in and around the alpha-globin gene cluster in chromosomal DNA. The data show that sperm DNA is totally methylated at these restriction sites in the globin gene region, as is brain DNA, with some exceptions. Interestingly, the methylation status of specific sites 5' to the coding sequences is correlated with expression of the embryonic or adult alpha-globin genes in different stages of erythroid development. Some sites showing partial methylation, however, do not conform to the model that transcribed genes are unmethylated or undermethylated. We also find a well-defined 3.5-kilobase region of DNA 5' to the alpha-globin gene cluster in which all C-C-G-G sites are resistant to Msp I digestion in all tissues. This "Msp block" is presumably caused by 5-MeCpC methylation.  相似文献   

8.
The locus control region of the human beta-globin cluster consists of four major DNase I hypersensitive sites (HS). When linked to globin genes, the locus control region confers a high level of erythroid-specific expression of these genes in transgenic mice or transfected erythroid cell lines. We have examined the effect of one of these sites, HS2, on human beta-globin gene expression in a murine erythroleukemia cell line (MEL) after retrovirus-mediated gene transfer. We incorporated a 732- or 412-base-pair (bp) segment of HS2 in the retroviral construct carrying the human beta-globin gene. These fragments rendered the viruses unstable as the human beta-globin gene was rearranged or deleted in all the packaging cell lines examined. On the other hand, when a 36-bp fragment containing the NFE-2/AP-1 binding consensus in this region was inserted into the retroviral construct, we recovered 6 stable packaging cell lines of 12 examined, similar in percentage to the construct with the beta-globin gene alone. The virus titers of the packaging cell lines from these two constructs were similar. We infected MEL cells with viruses produced from three packaging cell lines of each of the two constructs and measured the ratio of human beta-globin to mouse alpha-globin mRNA after hexamethylenebisacetamide induction. The overall level of expression increased 2-fold from 6.0% to 12.7% with the addition of this 36-bp enhancer.  相似文献   

9.
alpha-thalassemia resulting from a negative chromosomal position effect   总被引:3,自引:1,他引:3  
To date, all of the chromosomal deletions that cause alpha-thalassemia remove the structural alpha genes and/or their regulatory element (HS -40). A unique deletion occurs in a single family that juxtaposes a region that normally lies approximately 18-kilobase downstream of the human alpha cluster, next to a structurally normal alpha-globin gene, and silences its expression. During development, the CpG island associated with the alpha-globin promoter in the rearranged chromosome becomes densely methylated and insensitive to endonucleases, demonstrating that the normal chromatin structure around the alpha-globin gene is perturbed by this mutation and that the gene is inactivated by a negative chromosomal position effect. These findings highlight the importance of the chromosomal environment in regulating globin gene expression.  相似文献   

10.
Progress toward gene therapy of beta-chain hemoglobinopathies has been limited in part by poor expression of globin genes in virus vectors. To derive an optimal expression cassette, we systematically analyzed the sequence requirements and relative strengths of the Agamma- and beta-globin promoters, the activities of various erythroid-specific enhancers, and the importance of flanking and intronic sequences. Expression was analyzed by RNase protection after stable plasmid transfection of the murine erythroleukemia cell line, MEL585. Promoter truncation studies showed that the Agamma-globin promoter could be deleted to -159 without affecting expression, while deleting the beta-globin promoter to -127 actually increased expression compared with longer fragments. Expression from the optimal beta-globin gene promoter was consistently higher than that from the optimal Agamma-globin promoter, regardless of the enhancer used. Enhancers tested included a 2.5-kb composite of the beta-globin locus control region (termed a muLCR), a combination of the HS2 and HS3 core elements of the LCR, and the HS-40 core element of the alpha-globin locus. All three enhancers increased expression from the beta-globin gene to roughly the same extent, while the HS-40 element was notably less effective with the Agamma-globin gene. However, the HS-40 element was able to efficiently enhance expression of a Agamma-globin gene linked to the beta-globin promoter. Inclusion of extended 3' sequences from either the beta-globin or the Agamma-globin genes had no significant effect on expression. A 714-bp internal deletion of Agamma-globin intron 2 unexpectedly increased expression more than twofold. With the combination of a -127 beta-globin promoter, an Agamma-globin gene with the internal deletion of intron 2, and a single copy of the HS-40 enhancer, gamma-globin expression averaged 166% of murine alpha-globin mRNA per copy in six pools and 105% in nine clones. When placed in a retrovirus vector, this cassette was also expressed at high levels in MEL585 cells (averaging 75% of murine alpha-globin mRNA per copy) without reducing virus titers. However, recombined provirus or aberrant splicing was observed in 5 of 12 clones, indicating a significant degree of genetic instability. Taken together, these data demonstrate the development of an optimal expression cassette for gamma-globin capable of efficient expression in a retrovirus vector and form the basis for further refinement of vectors containing this cassette.  相似文献   

11.
Bernet  A; Sabatier  S; Picketts  DJ; Ouazana  R; Morle  F; Higgs  DR; Godet  J 《Blood》1995,86(3):1202-1211
We have examined the role of the major positive upstream regulatory element of the human alpha-globin gene locus (HS-40) in its natural chromosomal context. Using homologous recombination, HS-40 was replaced by a neo marker gene in a mouse erythroleukemia hybrid cell line containing a single copy of human chromosome 16. In clones from which HS-40 had been deleted, human alpha-globin gene expression was severely reduced, although basal levels of alpha 1 and alpha 2-globin mRNA expression representing less than 3% of the level in control cell lines were detected. Deletion of the neo marker gene, by using FLP recombinase/FLP recombinase target system, proved that the phenotype observed was not caused by the regulatory elements of this marker gene. In the targeted clones, deletion of HS-40 apparently does not affect long-range or local chromatin structure at the alpha promoters. Therefore, these results indicate that, in the experimental system used, HS-40 behaves as a strong inducible enhancer of human alpha- globin gene expression.  相似文献   

12.
13.
14.
Deisseroth  A; Bode  U; Lebo  R; Dozy  A; Kan  YW 《Blood》1980,55(6):992-996
We have succeeded in isolating hybrid mouse erythroleukemia cell clones from a patient with hemoglobin H disease, which exhibit either deletion or nondeletion mutations of the human alpha-globin genes. Analysis of one of these hybrid clones that had retained a human chromosome 16 from the patient's cells showed that both human alpha-globin had been deleted. Several clones of another hybrid cell had retained a human chromsome 16 from the patient's cells, which contained both human alpha- globin genes on an EcoRI fragment of 23 kilobases (kb). These latter hybrid clones showed the presence of human alpha-globin chains at detectable but low levels. These studies show that there are two different types of human chromosome 16 in this patient and that the nondeletion mutation of human alpha-globin genes leading to hemoglobin H diseases in this patient acts in cis to the two alpha-globin genes remaining in his cells. The close correlation between the pattern of human alpha-globin gene expression in the patient and in the hybrid cells suggests that this method of transfer of human globin genes to rodent cells will be a useful one for study of mutations affecting the expression of differentiated genes that lead to disease in man.  相似文献   

15.
16.
K562 erythroleukemia cells have been widely used as a model for the study of globin gene regulation. A number of agents have been shown to activate or suppress globin gene expression in these cells. However, the molecular effects of these agents on the epigenetic configuration of the alpha- and gamma-globin genes that encode HbF are not known. In this report, we investigated the relationship between globin expression and histone acetylation of the human alpha- and beta-globin clusters in the fetal erythroid environment of K562 cells. Our studies suggest that acetylation of histone H3 may be important in regulating developmental stage-specific expression of the different beta-like globin genes while acetylation of both histones H3 and H4 may be important for the regulation of tissue-specific expression of these genes. In contrast, acetylation of both histones H3 and H4 at the alpha-like globin promoters appears to be important for both developmental stage- and tissue-specific expression. Interestingly, butyrate-induced activation of alpha-globin gene expression in K562 cells is associated with significant increase in histone acetylation levels while TPA-induced inhibition is associated with decreased histone acetylation at its promoters. In contrast, changes in histone acetylation and DNA methylation do not appear to be important in the regulation of gamma-globin gene expression by the same agents. These data suggest that the butyrate-mediated induction of the fetal gamma-globin genes in K562 cells is not a direct result of its histone deacetylase inhibitor activity of butyrate on the chromatin of the gamma-globin promoters, while the induction of the alpha-globin genes could be a result of a direct effect of butyrate on chromatin at its promoters. This is another example of the important differences in the molecular mechanisms of regulation of the genes of the alpha- and beta-like globin clusters.  相似文献   

17.
18.
19.
Fleenor  DE; Kaufman  RE 《Blood》1993,81(10):2781-2790
The members of the human beta globin gene family are flanked by strong DNase I hypersensitive sites. The collection of sites 5' to the epsilon globin gene is able to confer high levels of expression of linked globin genes, but a function has not been assigned to the site 3' to the beta globin gene (3'HS1). Our analysis of this DNase I super hypersensitive site shows that the region is composed of multiple DNase I sites. By examination of the DNA sequence, we have determined that the region is very A/T-rich and contains topoisomerase II recognition sequences, as well as several consensus binding motifs for GATA-1 and AP-1/NF-E2. Gel mobility shift assays indicate that the region can interact in vitro with GATA-1 and AP-1/NF-E2, and functional studies show that the region serves as a scaffold attachment region in both erythroid and nonerythroid cell lines. Whereas many of the physical features of 3'HS1 are shared by 5'HS2 (a component of the 5' locus control region), transient expression studies show that 3' HS1 does not share the erythroid-specific enhancer activity exhibited by 5'HS2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号