首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Endometriosis is a debilitating disease estimated to affect 10% of reproductive-age women and characterized by the growth of endometrial tissue outside of the uterus. The present study characterizes a human endometrial explant culture model for studying the direct effects of TCDD exposure by assessing the expression of CYP1A1 and CYP1B1 mRNA (Northern blotting), protein (Western blotting), and activity (7-ethoxyresorufin-O-deethylase; EROD) in explants cultured with and without TCDD. Explants were obtained at laparoscopy or laparotomy from women undergoing surgery for tubal ligation, endometriosis, or pelvic pain unrelated to endometriosis. The explants were cultured with 10 nM estradiol (E(2)) or 1 nM E(2) plus 500 nM progesterone (P(4)) with or without TCDD (first 24 h). The expression of CYP1A1 and CYP1B1 mRNA was greatest with 10 nM TCDD and increased up to 72 h after initial exposure. EROD activity increased up to 120 h. Explants from a secretory phase biopsy became reorganized in culture and formed a new epithelial membrane, while maintaining basic endometrial morphology and viability for up to 120 h. At 24 h, TCDD significantly increased CYP1A1 and CYP1B1 mRNA, and at 72 h, TCDD significantly increased EROD activity and CYP1B1 protein compared to explants cultured without TCDD for similar times. CYP1B1 protein also exhibited substantial constitutive expression that was similar in uncultured biopsies, where CYP1B1 protein was immunolocalized in the cytoplasm of epithelial glands, with only occasional patches of protein in the surface epithelial membrane. In explants cultured with and without TCDD exposure, CYP1B1 protein was localized in the cytoplasm of the new surface epithelial membrane and glands closest to the surface. CYP1A1 protein was not detected in uncultured biopsies or explants. Both younger age (age 30 and under) and proliferative phase were associated with higher TCDD-induced EROD activity in specimens treated with E(2):P(4). No significant endometriosis-related differences were observed for any of the biomarkers, but the detection of disease-specific change was limited by small sample size and variability in tissue-cycle phase. The human endometrial explant culture model will be useful for future studies of the effects of dioxin-like compounds on human endometrium in relationship to cycle phase and hormonal exposure.  相似文献   

2.
Cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1) are phase I enzymes, the expression of which can be affected by many environmental compounds, including dioxins and dioxin-like compounds. Because CYP1A1 and CYP1B1 expression can easily be determined in peripheral blood lymphocytes, it is often suggested as biomarker of exposure to these compounds. In this study we investigated the interindividual differences in constitutive and induced CYP1A1-catalyzed ethoxyresorufin-O-deethylase (EROD) activity and CYP1A1 and CYP1B1 gene expression in human blood lymphocytes in a group of ten non-smoking females. Freshly isolated lymphocytes were cultured in medium containing the mitogen PHA and were exposed to the most potent dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or the less potent dioxin-like polychlorinated biphenyl 126 (PCB126). In addition, we determined the occurrence of the CYP1A1 MspI and CYP1B1 Leu432Val polymorphisms. All individuals showed a concentration-dependent increase of EROD activity by TCDD, which was significantly correlated with an increase in CYP1A1, but not CYP1B1 expression. The maximum induced EROD activity by TCDD was very different among the individuals, but the EC50 values were about the same. PCB126 also caused a concentration-dependent increase of EROD activity, but was a factor 100-1000 less potent than TCDD among the individuals. The allele frequencies for CYP1A1 MspI and CYP1B1 Leu432Val reflected a normal Caucasian population and in this study the polymorphisms had no apparent effect on the expression and activity of these enzymes. Our study shows a large interindividual variability in constitutive and induced EROD activity, and CYP1A1 and CYP1B1 expression in human lymphocytes. In addition, dioxin concentrations at which effects were observed in our in vitro study are about 10-fold higher than the human blood levels found in vivo, indicating that EROD activity and CYP1A1 and CYP1B1 expression in human lymphocytes might not be applicable as biomarkers of exposure to dioxin and dioxin-like compounds.  相似文献   

3.
Polybrominated diphenylethers (PBDEs) are used as additive flame-retardants in consumer products to reduce the chances of ignition and burning. Levels of certain PBDE congeners have been increasing in fish, wildlife, and human tissues during the last decades. Some PBDEs are lipophilic and persistent, resulting in bioaccumulation in the environment. The structural similarity of PBDEs to other polyhalogenated aromatic hydrocarbons such as PCBs, has raised concerns that PBDEs might act as agonists for the aryl hydrocarbon receptor (AhR). To study the possible AhR-mediated effects of the environmentally relevant PBDEs (BDE47, 77, 99, 100, 153, 154, 183, 209), the induction of cytochrome P450-1A1 (CYP1A1) was studied in human breast carcinoma (MCF-7), human hepatocellular carcinoma (HepG2), and rat hepatoma (H4IIE) cells. 7-Ethoxyresorufin-O-deethylase (EROD) was used as a marker for CYP1A1 activity. Cells were exposed for 72 h to various PBDE concentrations (0.01-10 microM). Positive controls were 2,3,7,8-TCDD (0.001-2.5 nM) and PCB126 (0.01-10 nM). None of these PBDEs was capable of inducing EROD activity; this was confirmed by real time RT-PCR for CYP1A1 mRNA. However, in cells exposed to PBDEs in combination with TCDD, a concentration-dependent decrease in TCDD-induced EROD activity occurred. Co-exposure of BDE153 (10 muM) and a maximally inducing concentration of TCDD (1 nM) reduced EROD activity to 49% of the maximum induction by TCDD alone. All tested PBDEs showed similar effects in each cell line, though quantitative differences were observed. The observed decrease in CYP1A1 activity was not due to PBDE-dependent catalytic inhibition of EROD activity or cytotoxicity, nor were decreased CYP1A1 mRNA levels observed. However, inhibition of luciferase induction in mouse (Hepa) and rat (H4IIE) hepatoma cells containing a stably transfected AhR-responsive luciferase reporter gene, suggests that BDE77 is a weak AhR antagonist or partial agonist.  相似文献   

4.
Cultured hepatocytes of female carp (Cyprinus carpio) were coexposed for 4 days to 200 nM 17beta-estradiol (E2), and concentration ranges of nine known Ah receptor (AhR) agonists: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 3,3'4,4'5-pentachlorobiphenyl (PCB 126), 2,3'4,4'5-pentachlorobiphenyl (PCB 118), beta-naphthoflavone (BNF), benzo(a)pyrene (BaP), benzo(a)anthracene (BaA), diindolylmethane (DIM), 6-methyl-1,3,8-trichlorodibenzofuran (MCDF) and hexachlorobenzene (HCB). TCDD caused a greater than 100-fold induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylase (EROD), with an EC50 of 6 pM. Based on EC50 values, the order of potency as CYP1A inducers was TCDD > PCB 126 > BNF > BaP > BaA > PCB 118. DIM and MCDF caused a lower maximum CYP1A induction (< 9-fold), whereas HCB caused no EROD induction at concentrations up to 6 microM. TCDD, PCB 126, BNF, BaP, and DIM also caused a concentration-dependent suppression of the secretion of the yolk protein vitellogenin (Vtg), relative to E2-treated hepatocytes. Suppression of Vtg secretion was not directly correlated with EROD activity, and the antiestrogenic effects occurred at higher concentrations than the induction of CYP1A. This indicates that the anti-estrogenicity was not caused by increased metabolism of E2 due to induction of CYP1A. Nevertheless, the order of potency of the tested compounds for suppression of Vtg secretion was comparable to the order of potency for CYP1A induction. This concurrence suggests that the anti-estrogenicity of these compounds is AhR-mediated, but does not involve CYP1A. This could be relevant for feral fish populations, as they are frequently exposed to AhR agonists, to an extent that AhR-mediated effects are observed.  相似文献   

5.
The present study investigated the effects of the known xenoestrogen bisphenol A (BPA) relative to eight BPA-related diphenylalkanes on estrogen receptor (ER)-mediated vitellogenin (vtg) production in hepatocytes from male carp (Cyprinus carpio), and on aromatase (CYP19) activity in the human adrenocortical H295R carcinoma cell line. Of the eight diphenylalkanes, only 4,4'-(hexafluoropropylidene)diphenol (BHF) and 2,2'-bis(4-hydroxy-3-methylphenyl)propane (BPRO) induced vtg, i.e., to a maximum of 3% to 4% (at 100 microM) compared with 8% for BPA relative to the maximum induction by 17beta-estradiol (E2, 1 microM). Bisphenol A diglycidyl ether (BADGE) was a potent antagonist of vtg production with an IC50 of 5.5 microM, virtually 100% inhibition of vtg at 20 microM, and an inhibitive (IC50) potency about one-tenth that of the known ER antagonist tamoxifen (IC50, 0.6 microM). 2,2'-Diallyl bisphenol A, 4,4'-(1,4-phenylene-diisopropylidene)bisphenol, BPRO, and BHF were much less inhibitory with IC50 concentrations of 20-70 microM, and relative potencies of 0.03 and 0.009 with tamoxifen. Bisphenol ethoxylate showed no anti-estrogenicity (up to 100 microM), and 4,4'-isopropylidene-diphenol diacetate was only antagonistic at 100 microM. When comparing the (anti)estrogenic potencies of these bisphenol A analogues/diphenylalkanes, anti-estrogenicity occurred at lower concentrations than estrogenicity. 4,4'-Isopropylidenebis(2,6-dimethylphenol) (IC50, 2.0 microM) reduced E2-induced (EC50, 100 nM) vtg production due to concentration-dependent cytotoxicity as indicated by a parallel decrease in MTT activity and vtg, whereas the remaining diphenylalkanes did not cause any cytotoxicity relative to controls. None of the diphenylalkanes (up to 100 microM) induced EROD activity indicating that concentration-dependent, CYP1A enzyme-mediated metabolism of E2, or any Ah-receptor-mediated interaction with the ER, was not a likely explanation for the observed anti-estrogenic effects. At concentrations as great as 100 microM, none of the diphenylalkanes directly inhibited aromatase (CYP19) activity in H295R cells. Environmental exposure of fish to BPA and related diphenylalkanes, depending on the structure, may pose anti-estrogenic, and to a lesser extent estrogenic, risks to development and reproduction.  相似文献   

6.
There is increasing concern that certain chemicals in the environment can cause endocrine disruption in exposed humans and wildlife. Investigations of potential effects on endocrine function have been limited mainly to interactions with hormone receptors. A need exists for the development of alternate in vitro methods to evaluate chemicals for their potential to disturb various endocrine functions via other mechanisms. Our laboratory is using the human H295R adrenocortical carcinoma cell line to examine chemicals for their potential to interfere with the activity and/or expression of several key cytochrome P450 (CYP) enzymes involved in the biosynthesis of steroid hormones. In this report we demonstrated that the commonly used 2-chloro-s-triazine herbicides atrazine, simazine, and propazine dose-dependently (0-30 microM) induced aromatase (CYP19) activity to an apparent maximum of about 2.5-fold in H295R cells. Basal- and triazine-induced aromatase activity was completely inhibited by the irreversible aromatase inhibitor 4-hydroxyandrostenedione (100 microM). The triazines increased levels of CYP19 messenger ribonucleic acid (mRNA) between 1.5- and 2-fold. The time-response profile of the induction of aromatase activity and CYP19 mRNA by the triazines was similar to that by 8-bromo-cyclic adenosine monophosphate, a known stimulant of the protein kinase-A pathway that mediates the induction of aromatase in these cells. The observed induction of aromatase, the rate-limiting enzyme in the conversion of androgens to estrogens, may be an underlying explanation for some of the reported hormonal disrupting and tumor promoting properties of these herbicides in vivo.  相似文献   

7.
Human cytochrome P450 1B1 (CYP1B1) is found mainly in extrahepatic tissues and is overexpressed in a variety of human tumors. Metabolic activation of 17β-estradiol (E2) to 4-hydroxy E2 by CYP1B1 has been postulated to be an important factor in mammary carcinogenesis. The inhibition of recombinant human CYP1B1 by 2,2′,4,6′-tetramethoxystilbene (TMS) was investigated using either the Escherichia coli membranes of recombinant human CYP1B1 coexpressed with human NADPH-P450 reductase or using purified enzyme. 2,2′,4,6′-TMS showed potent and selective inhibition of ethoxyresorufin O-deethylation (EROD) activity of CYP1B1 with IC50 values of 2 nM. 2,2′,4,6′-TMS exhibited 175-fold selectivity for CYP1B1 over CYP1A1 (IC50, 350 nM) and 85-fold selectivity for CYP1B1 over CYP1A2 (IC50, 170 nM). However, inhibition of human NADPH-P450 reductase activity by 2,2′,4,6′-TMS was negligible. The modes of inhibition by 2,2′,4,6′-TMS were noncompetitive for CYP1A1 and CYP1B1. Moreover, 2,2′,4,6′-TMS significantly suppressed EROD activity and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced CYP1A1 or CYP1B1 gene expression in human tumor cells such as HepG2 and MCF-10A. Taken together, our results indicate that 2,2′,4,6′-TMS is a potently selective inhibitor of human CYP1B1 as well as a suppressor of CYP1B1 expression and may be a valuable tool for determining enzyme properties of human CYP1B1.  相似文献   

8.
Cultured mouse hepatoma Hepa-1c1c7 cells were treated with o,p'-DDT and/or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to assess the role of o,p'-DDT on CYP1A1 expression. o,p'-DDT alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, TCDD-inducible EROD activities were markedly reduced on concomitant treatment with TCDD and o,p'-DDT in a dose-dependent manner. Treatment with ICI 182.780, an estrogen-receptor antagonist, did not affect the suppressive effects of o,p'-DDT on TCDD-inducible EROD activity. TCDD-inducible CYP1A1 mRNA levels were markedly suppressed on treatment with TCDD and o,p'-DDT, and this was consistent with their effects on EROD activity. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and an electrophoretic mobility shift assay revealed that o,p'-DDT reduced the transformation of the aryl hydrocarbons (Ah) receptor to a form capable of specifically binding to the DRE sequence in the promoter region of the CYP1A1 gene. These results suggest that the downregulation of CYP1A1 gene expression by o,p'-DDT in Hepa-1c1c7 cells might be an antagonism of the DRE binding potential of the nuclear Ah receptor but is not mediated through the estradiol receptor.  相似文献   

9.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an extremely potentenvironmental contaminant that produces a wide range of adversebiological effects, including the induction of cytochrome P4501A1(CYP1A1) that may enhance the toxic effects of TCDD. Severalstudies indicated that concurrent supplementation of vitaminA could reduce the toxicity, and potentially inhibit CYP1A1activity (measured as ethoxyresorufin-O-deethylase [EROD] activity).In the present study, we investigated the in vivo effects ofvitamin A on EROD activities and the expression of CYP1A1 inthe liver of TCDD-treated mice. In Experiment I, the mice weregiven a single oral dose of 40 µg TCDD/kg body weightwith or without the continuous administration of 2500 IU vitaminA/kg body weight/day, and were killed on day 1, 3, 7, 14, or28. In Experiment II, the mice were given daily an oral doseof 0.1 µg TCDD/kg body weight with or without supplementof 2000 IU vitamin A/kg body weight, and were killed on day14, 28, or 42. In both experiments, TCDD caused liver damageand increase in relative liver weights, augmented the EROD activitiesand CYP1A1 expression, and increased the aryl hydrocarbon receptor(AhR) mRNA expression, but did not alter the AhR nuclear translocator(ARNT) mRNA expression. CYP1A1 mRNA expression and AhR mRNAexpression showed a similar time course. The liver damage inTCDD + vitamin A–treated mice was less severe than thatin TCDD-treated mice. EROD activities, CYP1A1 expression, andAhR mRNA expression in vitamin A + TCDD–treated mice werelower than those in TCDD-treated mice, indicating that supplementationof vitamin A might attenuate the liver damage caused by TCDD.  相似文献   

10.
Various pesticides known or suspected to interfere with steroid hormone function were screened in H295R cells for effects on catalytic activity and mRNA expression of aromatase. Dibutyl-, tributyl-, and triphenyltin chloride decreased aromatase and ethoxyresorufin O-deethylase activities concentration dependently (1-300 nM; 24-h exposure). However, these decreases occurred only at cytotoxic concentrations, indicated by decreases in mitochondrial MTT reduction and intracellular neutral red uptake. The organotins did not cause direct inhibition during the catalytic assay (1-1000 nM; 1.5-h exposure). The same was true for p,p'-DDT, and o,p-DDT, and o,p-DDE, which decreased aromatase activity only at cytotoxic concentrations (> or =10 microM; 24-h exposure). p,p'-DDE had no effect on aromatase activity or cell viability at 1 and 10 microM. Various imidazole-like fungicides were aromatase inhibitors. Imazalil and prochloraz were potent mixed inhibitors (K(i)/K(i)(') = 0.04/0.3 and 0.02/0.3 microM, respectively), whereas propiconazole, difenoconazole, and penconazole were less potent competitive inhibitors (K(i) = 1.9, 4.5, and 4.7 microM, respectively). Fenarimol, tebuconazole, and hexaconazole decreased aromatase activity close to cytotoxic concentrations. Vinclozolin, as was shown previously for atrazine, induced aromatase activity and CYP19 mRNA levels about 2.5- and 1.5-fold, respectively. To investigate the mechanism of aromatase induction in H295R cells, the ability of the pesticides to increase intracellular cAMP levels was examined. Vinclozolin (100 microM) and atrazine (30 microM) increased cAMP levels about 1.5-fold above control. Forskolin and isobutyl methylxanthine (IBMX) increased cAMP levels 3 and 1.8-fold, respectively. Time-response curves for cAMP induction and concentration-response curves for aromatase induction by vinclozolin, atrazine, and IBMX were similar, suggesting that the mechanism of aromatase induction by these pesticides is mediated through inhibition of phosphodiesterase activity.  相似文献   

11.
12.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is highly toxic in experimental animals, and is known to induce cytochrome P450 (CYP) gene expression. We investigated the effect of CYP1A1 and CYP1B1 variant genotypes and haplotypes on CYP1A1 and CYP1B1 mRNA expression and ethoxyresorufin-O-deethylase (EROD) activity in lymphocytes from 121 subjects from the Seveso population, Italy, accidentally exposed to TCDD in 1976. The 3'UTR 3801T>C and I462V variants of CYP1A1 were present in 16% and 6% of the subjects, respectively. The frequency of CYP1B1 variants was 85.2% for L432V, 49.6% for R48G and A119S, and 28.7% for N453S. There was complete linkage disequilibrium (LD) among the CYP1B1 variant loci (D'=-1) and high LD among the CYP1A1 loci (D'=0.86). Gene expression measured by RT-PCR did not vary by CYP1B1 genotype in uncultured lymphocytes. However, when lymphocytes were treated in vitro with 10 nM TCDD, CYP1B1 and CYP1A1 mRNA expression was strongly induced and modified by CYP variant alleles. Specifically, the CYP1B1*3 haplotype (L432V) was associated with increased CYP1B1 mRNA expression (P=0.03), following an additive model; the CYP1A1 I462V polymorphism was positively, although not significantly, associated with CYP1A1 expression. The CYP1B1*3 variant may have affected CYP1B1 expression in subjects highly and acutely exposed to dioxin at the time of the accident. Although based on small number of subjects, a slight increase in eczema (P=0.05, n=8) and urticaria (P=0.02, n=2) was observed 20 years after the accident in subjects carrying the CYP1B1*3 allele. Genetic variation in cytochrome P450 induction may identify subjects with variable responsiveness to TCDD and potentially increased risk of disease.  相似文献   

13.
14.
In this study, the effects on catalytic activity and mRNA levels of aromatase in primary human mammary fibroblasts were evaluated after exposure to promoter-specific modulators of aromatase expression and methyl sulfonyl polychlorinated biphenyl metabolites (MeSO(2)-PCBs). A method for fibroblast isolation from primary breast tissue was developed and optimized, and aromatase activity and promoter-specific mRNA levels were assessed in these cells after exposure to test compounds. A 24-h exposure of fibroblasts to dexamethasone (DEX) (1-100 nM) increased aromatase activity to a maximum of 313-fold. DEX also elevated promoter I.4-specific RNA levels. A 24-h exposure of fibroblasts to 3-MeSO(2)-PCB-132, 4-MeSO(2)-PCB-132, 4-MeSO(2)-PCB-91, or 4-MeSO(2)-PCB-149 (0.1-10 microM) resulted in a concentration-dependent decrease of aromatase activity. Exposure of fibroblasts to MeSO(2)-PCBs just for the limited duration (6 h) of the catalytic assay caused a concentration-dependent inhibition of aromatase enzyme activity. mRNA levels were not altered by a 24-h MeSO(2)-PCB exposure nor was cytotoxicity observed. In aromatase-expressing human adrenocortical carcinoma H295R cells, a 24-h exposure to 3-MeSO(2)-PCB-132, 4-MeSO(2)-PCB-132, 4-MeSO(2)-PCB-91, or 4-MeSO(2)-PCB-149 (0.1-10 microM) also resulted in a concentration-dependent decrease of aromatase activity. Additionally, there were no changes in aromatase mRNA levels after 24-h exposure of H295R cells to MeSO(2)-PCBs. We conclude that in primary human mammary fibroblasts as well as in H295R cells, aromatase inhibition by MeSO(2)-PCBs is likely to be due to catalytic inhibition.  相似文献   

15.
Treatment of MCF-7 and T47D human breast cancer cells with 3', 4'-dimethoxyflavone (3',4'-DMF) alone did not induce CYP1A1-dependent ethoxyresorufin O:-deethylase (EROD) activity or reporter gene activity in cells transfected with an aryl hydrocarbon (Ah)-responsive construct (pRNH11c). In contrast, 1 nM 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) induced up to a 50- to 80-fold increase in EROD and reporter gene activity in MCF-7 and T47D cells. In cells cotreated with 1 nM TCDD plus 0.1-10 microM 3',4'-DMF, there was a concentration-dependent decrease in the TCDD-induced responses, with 100% inhibition observed at the 10 microM concentration. Gel mobility shift assays using rat liver cytosol and breast cancer cell nuclear extracts showed that 3',4'-DMF alone did not transform the AhR to its nuclear binding form, but inhibited TCDD-induced AhR transformation in rat liver cytosol and blocked TCDD-induced formation of the nuclear AhR complex in MCF-7 and T47D cells. TCDD also inhibited estrogen-induced transactivation in MCF-7 cells, and this response was also blocked by 3',4'-DMF, confirming the AhR antagonist activity of this compound in breast cancer cells.  相似文献   

16.
Methoxychlor (MXC) is a pesticide that was developed as a replacement for dichlorodiphenyltrichloroethane (DDT). The influence of MXC on CYP1A1 expression or the functions of mouse hepatoma Hepa-1clc7 remain unclear. Cultured Hepa-1c1c7 cells were treated with MXC with or without 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to assess the role of MXC on CYP1A1 expression. MXC alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and MXC in a concentration-dependent manner. Treatment with ICI 182.780, an estrogen-receptor antagonist, did not affect the suppressive effects of MXC on TCDD-inducible EROD activity. TCDD-inducible CYP1A1 mRNA levels were markedly suppressed upon treatment with TCDD and MXC, and this is consistent with their effects on EROD activity. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and an electrophoretic mobility shift assay revealed that MXC reduced the transformation of the aryl hydrocarbons (Ah) receptor to a form capable of specifically binding to the DRE sequence in the promoter region of the CYP1A1 gene. These results suggest that the downregulation of CYP1A1 gene expression by MXC in Hepa-1c1c7 cells might be an antagonism of the DRE binding potential of the nuclear Ah receptor but is not mediated through the estradiol receptor.  相似文献   

17.
18.
Naringenin, dietary flavonoid, is antioxidant constituents of many citrus fruits. In the present study, we investigated the effect of naringenin on 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible CYP1A1 gene expression in mouse hepatoma Hepa-1c1c7 cells. Naringenin alone did not affect CYP1A1-specific 7-ethoxyresorufin O-deethylase (EROD) activity. In contrast, the TCDD-inducible EROD activities were markedly reduced upon concomitant treatment with TCDD and naringenin in a dose dependent manner. TCDD-induced CYP1A1 mRNA level was also markedly suppressed by naringenin. A transient transfection assay using dioxin-response element (DRE)-linked luciferase and electrophoretic mobility shift assay revealed that naringenin reduced transformation of the aryl hydrocarbons receptor(AhR) to a form capable of specifically binding to the DRE sequence in the promoter of the CYP1A1 gene. These results suggest the down regulation of the CYP1A1 gene expression by either naringenin in Hepa-1c1c7 cells might be antagonism of the DRE binding potential of nuclear AhR.  相似文献   

19.
Exposure to polychlorinated biphenyls (PCBs) disturbs many estrogen-mediated biochemical processes. PCBs may cause these abnormalities by altering expression of the aromatase gene CYP19. This study demonstrated that high concentrations of PCB126 increased basal CYP19 mRNA abundance in mouse testicular Leydig I-10 cells and human adrenocortical H295R cells. Stimulating the cells with chorionic gonadotropin or 8-Br-cAMP concealed the estrogenic effect of PCB126. PCB126 is a powerful ligand for nuclear receptor AhR. Antagonizing the AhR activity of H295R by an inhibitor abolished PCB126-elicited CYP19 induction. However, PCB126 elevated basal CYP19 expression and aromatase activity in a slow progressive manner contrary to the sharp induction of the classic AhR target gene CYP1A1. Exposure of H295R to PCBs with different AhR activation abilities also varied CYP19 and CYP1A1 expression in dissimilar patterns, although the CYP19 mRNA levels were in line with the AhR activation abilities of the congeners. In contrast to PCB126, PCB39, which could not activate AhR and lacked effect on CYP1A1, significantly reduced CYP19 mRNA expression. AhR apparently played an important role in CYP19 gene regulation, but it might regulate CYP19 differently from CYP1A1 in the adrenocortical cells. Regardless of the action mechanism, PCB exposure increases risk for CYP19 dysregulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号