首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The article presents the effect of anodizing parameters of the EN AW-5251 aluminum alloy on the thickness and roughness of Al2O3 layers as well as their wettability and tribological properties in a sliding combination with the T7W material. The input variables were the current density of 1, 2, 3 A/dm2 and the electrolyte temperature of 283, 293, 303 K. The tribological tests were performed on the T-17 tester in reciprocating motion, in conditions of technically dry friction. The tests were carried out on a 15 km road with a constant average slip speed of 0.2 m/s and a constant unit pressure of 1 MPa. The measurement of the wettability of the layers was performed using the sitting drop method, determining the contact angles on the basis of which the surface free energy was calculated. The profilographometric measurements were made. The analysis of the test results showed that the anodizing parameters significantly affect the thickness of the Al2O3 layers. The performed correlation analysis also showed a significant relationship between the roughness parameters and the wettability of the surface of the layers, which affects the ability to create and maintain a sliding film, which in turn translates into sliding resistance and wear of the T7W material. The analysis of friction and wear tests showed that the layer with hydrophobic properties produced at a current density of 1 A/dm2 in an electrolyte at a temperature of 283 K is the most favorable for sliding associations with T7W material.  相似文献   

2.
The aim of this study is to present a novel, lower sintering temperature preparation, processing, structural, mechanical, and tribological testing of the AlN-Al2O3 ceramics. The precursor powder of AlN was subjected to oxidation in ambient environment at 900 °C for 3, 10, and 20 h, respectively. These oxidized powders were characterized by SEM and XRD to reveal their morphology, phase, and crystal structure. The SEM results showed coarse powder particles and the presence of aluminum oxide (Al2O3) phase at the surface of aluminum nitride (AlN). The XRD analysis has shown increasing aluminum-oxy-nitride conversion of aluminum nitride as the holding time of oxidation increased. The highest percentage of conversion of AlN powder to AlN-Al2O3 was observed after 10 h. Simultaneously the powders were compacted and sintered using the hot isostatic pressing (HIP) under inert environment (N2 gas) at 1700 °C, 20 MPa for 5 h. This led to the compaction and increase in density of the final samples. Mechanical tests, such as bending test and tribology tests, were carried out on the samples. The mechanical properties of the samples were observed to improve in the oxidized samples compared to the precursor AlN. Moreover, applying longer oxidation time, the mechanical properties of the sintered samples enhanced significantly. Optimum qualitative (microstructure, oxide percentage) and quantitative (tribology, hardness, and bending tests) properties were observed in samples with 10-h oxidation time.  相似文献   

3.
The effect of TiO2 and the MgO/Al2O3 ratio on the viscosity, heat capacity, and enthalpy change of CaO–SiO2–Al2O3–MgO–TiO2 slag at constant heat input was studied. The variation of slag structure was analyzed by the calculation of activation energy and FTIR spectrum measurements. The results showed that the heat capacity and enthalpy change of the slag decreased with the increase of TiO2 content. Under constant heat supply, the fluctuations in slag temperature were relatively apparent, and the temperature of slag increased as the TiO2 content increased. The viscosity of slag decreased due to the increase in slag temperature. Increasing the MgO/Al2O3 ratio could decrease the temperature and viscosity of slag. The effect of increasing the MgO/Al2O3 ratio on the viscosity was more pronounced than the decreasing temperature caused by increasing the MgO/Al2O3 ratio. The apparent activation energy decreased with increasing TiO2 content and MgO/Al2O3 ratio. The Ti–O bonds formed with TiO2 addition, and the Ti–O bonds were weaker than Si–O bonds, which resulted in the decrease in heat capacity and viscosity of slag.  相似文献   

4.
Hematite (α-Fe2O3) and pseudobrookite (Fe2TiO5) suffer from poor charge transport and a high recombination effect under visible light irradiation. This study investigates the design and production of a 2D graphene-like r-GO/GO coupled α-Fe2O3/Fe2TiO5 heterojunction composite with better charge separation. It uses a simple sonochemical and hydrothermal approach followed by L-ascorbic acid chemical reduction pathway. The advantageous band offset of the α-Fe2O3/Fe2TiO5 (TF) nanocomposite between α-Fe2O3 and Fe2TiO5 forms a Type-II heterojunction at the Fe2O3/Fe2TiO5 interface, which efficiently promotes electron-hole separation. Importantly, very corrosive acid leachate resulting from the hydrochloric acid leaching of ilmenite sand, was successfully exploited to fabricate α-Fe2O3/Fe2TiO5 heterojunction. In this paper, a straightforward synthesis strategy was employed to create 2D graphene-like reduced graphene oxide (r-GO) from Ceylon graphite. The two-step process comprises oxidation of graphite to graphene oxide (GO) using the improved Hummer’s method, followed by controlled reduction of GO to r-GO using L-ascorbic acid. Before the reduction of GO to the r-GO, the surface of TF heterojunction was coupled with GO and was allowed for the controlled L-ascorbic acid reduction to yield r-GO/GO/α-Fe2O3/Fe2TiO5 nanocomposite. Under visible light illumination, the photocatalytic performance of the 30% GO/TF loaded composite material greatly improved (1240 Wcm−2). Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) examined the morphological characteristics of fabricated composites. X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), X-ray fluorescence (XRF), and diffuse reflectance spectroscopy (DRS) served to analyze the structural features of the produced composites.  相似文献   

5.
Owing to its excellent mechanical properties and aesthetic tooth-like appearance, lithium disilicate glass–ceramic is more attractive as a crown for dental restorations. In this study, lithium disilicate glass–ceramics were prepared from SiO2–Li2O–K2O–P2O5–CeO2 glass systems with various Al2O3 contents. The mixed glass was then heat-treated at 600 °C and 800 °C for 2 h to form glass–ceramic samples. Phase formation, microstructure, mechanical properties and bioactivity were investigated. The phase formation analysis confirmed the presence of Li2Si2O5 in all the samples. The glass–ceramic sample with an Al2O3 content of 1 wt% showed rod-like Li2Si2O5 crystals that could contribute to the delay in crack propagation and demonstrated the highest mechanical properties. Surface treatment with hydrofluoric acid followed by a silane-coupling agent provided the highest micro-shear bond strength for all ceramic conditions, with no significant difference between ceramic samples. The biocompatibility tests of the material showed that Al2O3-added lithium disilicate glass–ceramic sample was bioactive, thus activating protein production and stimulating the alkaline phosphatase (ALP) activity of osteoblast-like cells.  相似文献   

6.
The ability of boehmite to form printable inks has sparked interest in the manufacturing of 3D alumina (Al2O3) and composite structures by enabling direct ink writing methods while avoiding the use of printing additives. These materials may exhibit high porosity due to the printing and sintering procedures, depending on the intended application. The 3D-printed porous composite structures of γ-Al2O3 and α-Al2O3 containing 2 wt.% of carbon nanotubes or reduced graphene oxide ribbons were fabricated from boehmite gels, followed by different heat treatments. The reinforcing effect of these carbon nanostructures was evidenced by compression tests carried out on the different alumina structures. A maximum relative increase of 50% in compressive strength was achieved for the γ-Al2O3 composite structure reinforced with reduced graphene oxide ribbons, which was also accompanied by an increase in the specific surface area.  相似文献   

7.
In the present work, a simple soft chemistry method was employed to prepare cobalt mixed oxide (Co3O4) materials, which have shown remarkably high activity in the heterogeneously catalyzed total oxidation of low reactive VOCs such as the light alkanes propane, ethane, and methane. The optimal heat-treatment temperature of the catalysts was shown to depend on the reactivity of the alkane studied. The catalytic activity of the Co3O4 catalysts was found to be as high as that of the most effective catalysts based on noble metals. The physicochemical properties, from either the bulk (using XRD, TPR, TPD-O2, and TEM) or the surface (using XPS), of the catalysts were investigated to correlate the properties with the catalytic performance in the total oxidation of VOCs. The presence of S1 low-coordinated oxygen species at the near surface of the Co3O4-based catalysts appeared to be linked with the higher reducibility of the catalysts and, consequently, with the higher catalytic activity, not only per mass of catalyst but also per surface area (enhanced areal rate). The co-presence of propane and methane in the feed at low reaction temperatures did not negatively affect the propane reactivity. However, the co-presence of propane and methane in the feed at higher reaction temperatures negatively affected the methane reactivity.  相似文献   

8.
A series of Fe2O3@LSF (La0.8Sr0.2FeO3−δ perovskite) core-shell materials (CSM) was prepared by infiltration of LSF precursors gel containing various complexants and their mixtures to nanocrystalline aggregates of hematite followed by thermal treatment. The content of LSF phase and amount of carboxyl groups in complexant determine the percent coverage of iron oxide core with the LSF shell. The most conformal coating core-shell material was prepared with citric acid as the complexant, contained 60 wt% LSF with 98% core coverage. The morphology of the CSM was studied by HRTEM-EELS combined with SEM-FIB for particles cross-sections. The reactivity of surface oxygen species and their amounts were determined by H2-TPR, TGA-DTG, the oxidation state of surface oxygen ions by XPS. It was found that at complete core coverage with perovskite shell, the distribution of surface oxygen species according to redox reactivity in CSM resemble pure LSF, but its lattice oxygen storage capacity is 2–2.5 times higher. At partial coverage, the distribution of surface oxygen species according to redox reactivity resembles that in iron oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号