首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We studied the activity of single neurons in the monkey frontal eye fields during oculomotor tasks designed to assess the activity of these neurons when there was a dissonance between the spatial location of a target and its position on the retina. 2. Neurons with presaccadic activity were first studied to determine their receptive or movement fields and to classify them as visual, visuomovement, or movement cells with the use of the criteria described previously (Bruce and Goldberg 1985). The neurons were then studied by the use of double-step tasks that dissociated the retinal coordinates of visual targets from the dimensions of saccadic eye movements necessary to acquire those targets. These tasks required that the monkeys make two successive saccades to follow two sequentially flashed targets. Because the second target disappeared before the first saccade occurred, the dimensions of the second saccade could not be based solely on the retinal coordinates of the target but also depended on the dimensions of the first saccade. We used two versions of the double-step task. In one version neither target appeared in the cell's receptive or movement field, but the second eye movement was the optimum amplitude and direction for the cell (right-EM/wrong-RF task). In the other the second stimulus appeared in the cell's receptive field, but neither eye movement was appropriate for the cell (wrong-EM/right-RF task). 3. Most frontal-eye-field cells discharged in the right-EM/wrong-RF version of the double-step task. Their discharge began after the first saccade and continued until the second saccade was made. They usually discharged even on occasional trials in which the monkey failed to make the second saccade. They discharged much less, or not at all, in the wrong-EM/right-RF version of the double-step paradigm. Thus most presaccadic cells in the frontal eye fields were tuned to the dimensions of saccadic eye movements rather than to the coordinates of retinal stimulation. 4. Eleven movement cells (including 1 which also had independent postsaccadic activity for saccades opposite its presaccadic movement field) were studied, and all had significant activity in the right-EM/wrong-RF task. 5. Almost all (28/32) visuomovement cells, including 12 with independent postsaccadic activity, discharged in the right-EM/wrong-RF task. None of the four that failed had independent postsaccadic activity. 6. The majority (26/40) of visual cells were responsive in the right-EM/wrong-RF task.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
1. Single-neuron activity was recorded from the prefrontal cortex of monkeys performing saccadic eye movements in oculomotor delayed-response (ODR) and visually guided saccade (VGS) tasks. In the ODR task the monkey was required to maintain fixation of a central spot throughout the 0.5-s cue and 3.0-s delay before making a saccadic eye movement in the dark to one of four or eight locations where the visual cue had been presented. The same locations were used for targets in the VGS tasks; however, unlike the ODR task, saccades in the VGS tasks were visually guided. 2. Among 434 neurons recorded from prefrontal cortex within and surrounding the principal sulcus (PS), 147 changed their discharge rates in relation to saccadic eye movements in the ODR task. Their response latencies relative to saccade initiation were distributed between -192 and 460-ms, with 22% exhibiting presaccadic activity and 78% exhibiting only postsaccadic activity. Among PS neurons with presaccadic activity, 53% also had postsaccadic activity when the monkey made saccadic eye movements opposite to the directions for which the presaccadic activity was observed. 3. Almost all (97%) PS neurons with presaccadic activity were directionally selective. The best direction and tuning specificity of each neuron were estimated from parameters used to fit a Gaussian tuning curve function. The best direction for 62% of the neurons with presaccadic activity was toward the contralateral visual field, with the remaining neurons having best directions toward the ipsilateral field (23%) or along the vertical meridian (15%). 4. Most postsaccadic activity of PS neurons (92%) was also directionally selective. The best direction for 48% of these neurons was toward the contralateral visual field, with the remaining neurons having best directions toward the ipsilateral field (36%) or along the vertical meridian (16%). Eighteen percent of the neurons with postsaccadic activity showed a reciprocal response pattern: excitatory responses occurred for one set of saccade directions, whereas inhibitory responses occurred for roughly the opposite set of directions. 5. Sixty PS neurons with saccade-related activity in the ODR task were also examined in a VGS task. Forty of these neurons showed highly similar profiles of directional specificity and response magnitude in both tasks, 13 showed saccade-related activity only in the ODR task, and 7 changed their response characteristics between the ODR and VGS tasks.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We studied single neurons in the frontal eye fields of awake macaque monkeys and compared their activity with the saccadic eye movements elicited by microstimulation at the sites of these neurons. Saccades could be elicited from electrical stimulation in the cortical gray matter of the frontal eye fields with currents as small as 10 microA. Low thresholds for eliciting saccades were found at the sites of cells with presaccadic activity. Presaccadic neurons classified as visuomovement or movement were most associated with low (less than 50 microA) thresholds. High thresholds (greater than 100 microA) or no elicited saccades were associated with other classes of frontal eye field neurons, including neurons responding only after saccades and presaccadic neurons, classified as purely visual. Throughout the frontal eye fields, the optimal saccade for eliciting presaccadic neural activity at a given recording site predicted both the direction and amplitude of the saccades that were evoked by microstimulation at that site. In contrast, the movement fields of postsaccadic cells were usually different from the saccades evoked by stimulation at the sites of such cells. We defined the low-threshold frontal eye fields as cortex yielding saccades with stimulation currents less than or equal to 50 microA. It lies along the posterior portion of the arcuate sulcus and is largely contained in the anterior bank of that sulcus. It is smaller than Brodmann's area 8 but corresponds with the union of Walker's cytoarchitectonic areas 8A and 45. Saccade amplitude was topographically organized across the frontal eye fields. Amplitudes of elicited saccades ranged from less than 1 degree to greater than 30 degrees. Smaller saccades were evoked from the ventrolateral portion, and larger saccades were evoked from the dorsomedial portion. Within the arcuate sulcus, evoked saccades were usually larger near the lip and smaller near the fundus. Saccade direction had no global organization across the frontal eye fields; however, saccade direction changed in systematic progressions with small advances of the microelectrode, and all contralateral saccadic directions were often represented in a single electrode penetration down the bank of the arcuate sulcus. Furthermore, the direction of change in these progressions periodically reversed, allowing particular saccade directions to be multiply represented in nearby regions of cortex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Visually guided movements can be inaccurate, especially if unexpected events occur while the movement is programmed. Often errors of gaze are corrected before external feedback can be processed. Evidence is presented from macaque monkey frontal eye field (FEF), a cortical area that selects visual targets, allocates attention, and programs saccadic eye movements, for a neural mechanism that can correct saccade errors before visual afferent or performance monitoring signals can register the error. Macaques performed visual search for a color singleton that unpredictably changed position in a circular array as in classic double-step experiments. Consequently, some saccades were directed in error to the original target location. These were followed frequently by unrewarded, corrective saccades to the final target location. We previously showed that visually responsive neurons represent the new target location even if gaze shifted errantly to the original target location. Now we show that the latency of corrective saccades is predicted by the timing of movement-related activity in the FEF. Preceding rapid corrective saccades, the movement-related activity of all neurons began before explicit error signals arise in the medial frontal cortex. The movement-related activity of many neurons began before visual feedback of the error was registered and that of a few neurons began before the error saccade was completed. Thus movement-related activity leading to rapid corrective saccades can be guided by an internal representation of the environment updated with a forward model of the error.  相似文献   

5.
Monkeys and humans can easily make accurate saccades to stimuli that appear and disappear before an intervening saccade to a different location. We used the flashed-stimulus task to study the memory processes that enable this behavior, and we found two different kinds of memory responses under these conditions. In the short-term spatial memory response, the monkey fixated, a stimulus appeared for 50 ms outside the neuron's receptive field, and from 200 to 1,000 ms later the monkey made a saccade that brought the receptive field onto the spatial location of the vanished stimulus. Twenty-eight of 48 visuomovement cells and 21/32 visual cells responded significantly under these circumstances even though they did not discharge when the monkey made the same saccade without the stimulus present or when the stimulus appeared and the monkey did not make a saccade that brought its spatial location into the receptive field. Response latencies ranged from 48 ms before the beginning of the saccade (predictive responses) to 272 ms after the beginning of the saccade. After the monkey made a series of 16 saccades that brought a stimulus into the receptive field, 21 neurons demonstrated a longer term, intertrial memory response: they discharged even on trials in which no stimulus appeared at all. This intertrial memory response was usually much weaker than the within-trial memory response, and it often lasted for over 20 trials. We suggest that the frontal eye field maintains a spatially accurate representation of the visual world that is not dependent on constant or continuous visual stimulation, and can last for several minutes.  相似文献   

6.
We recorded saccade-related neurons in the vicinity of the dentate nucleus of the cerebellum in two monkeys trained to perform visually guided saccades and memory-guided saccades. Among 76 saccade-related neurons, 38 showed presaccadic bursts in all directions. More than 80% of such burst neurons were located in the area ventral to, not inside, the dentate nucleus, which corresponded to the basal interstitial nucleus (BIN as previously described). We found that the activity of the BIN neurons was correlated with saccade duration but not with saccade amplitude or velocity. Thus, when tested with visually guided saccades, the burst started about 16 ms before saccade onset and ended about 33 ms before saccade offset, regardless of saccade amplitude. The characteristic timing of the BIN cell activity was maintained for different types of saccades (visually guided, memory-guided and spontaneous saccades), which had different dynamics. Although the number of spikes in a burst for each neuron was linearly correlated with saccade amplitude for a given type of saccade, the slope varied depending on the type of saccade. Peak burst frequency was uncorrelated with saccadic peak velocity. In contrast, burst duration was highly correlated with saccade duration regardless of the type of saccade. These results suggest that BIN neurons may carry information to determine the timing of saccades. Received: 14 August 1997 / Accepted: 17 February 1998  相似文献   

7.
1. We examined the activity of identified corticotectal neurons in the frontal eye field of awake behaving rhesus monkeys (Macaca mulatta). Corticotectal neurons were antidromically excited using biphasic current pulses passed through monopolar microelectrodes within the superior colliculus. The activity of single corticotectal neurons was studied while the monkey performed behavioral tasks designed to test the relation of the neuron's discharge to visual and oculomotor events. 2. Fifty-one frontal eye field corticotectal neurons were examined in two monkeys. Current thresholds for antidromic excitation ranged from 6 to 1,200 microA, with a mean of 330 microA. Antidromic latencies ranged from 1.2 to 6.0 ms, with a mean of 2.25 ms. 3. Fifty-three percent of the identified corticotectal neurons were classified as having movement-related activity. They had little or no response to visual stimuli, but very strong activity before both visually guided and memory-guided saccades. An additional 6% of corticotectal neurons had visuomovement activity, combining both a visual- and a saccade-related response. In each case, visuomovement neurons antidromically excited from the superior colliculus had movement-related activity, which was much stronger than the visual component of their response. 4. Twenty-two percent of the corticotectal neurons were primarily responsive to visual stimulation of the fovea. These included both neurons responding to the onset and neurons responding to the disappearance of a light flashed on the fovea. 5. The remaining 20% of the corticotectal neurons were a heterogeneous group whose activity could not be classified as movement, visuomovement or foveal. Their responses included postsaccadic, anticipatory, and reward-related activity, as well as activity modulated during certain directions of smooth-pursuit eye movements. One neuron was unresponsive during all of the behavioral tasks used. There were no corticotectal neurons that could be classified as primarily responsive to peripheral visual stimuli. 6. Histological reconstructions of electrode penetrations localized corticotectal neurons to layer V of the frontal eye field. For 22 corticotectal neurons tested, each had its minimum threshold for antidromic excitation within the superior colliculus, as judged by either histological confirmation, or surrounding neuronal responses recorded through the stimulation microelectrode. The majority of these neurons had minimum threshold sites within the intermediate layers, a few minimum threshold sites were located within the superficial or deep collicular layers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Neurons in the intermediate layers of the superior colliculus respond to visual targets and/or discharge immediately before and during saccades. These visual and motor responses have generally been considered independent, with the visual response dependent on the nature of the stimulus, and the saccade-related activity related to the attributes of the saccade, but not to how the saccade was elicited. In these experiments we asked whether saccade-related discharge in the superior colliculus depended on whether the saccade was directed to a visual target. We recorded extracellular activity of neurons in the intermediate layers of the superior colliculus of three rhesus monkeys during saccades in tasks in which we varied the presence or absence of a visual target and the temporal delays between the appearance and disappearance of a target and saccade initiation. Across our sample of neurons (n = 64), discharge was highest when a saccade was made to a still-present visual target, regardless of whether the target had recently appeared or had been present for several hundred milliseconds. Discharge was intermediate when the target had recently disappeared and lowest when the target had never appeared during that trial. These results are consistent with the hypothesis that saccade-related discharge decreases as the time between the target disappearance and saccade initiation increases. Saccade velocity was also higher for saccades to visual targets, and correlated on a trial-by-trial basis with perisaccadic discharge for many neurons. However, discharge of many neurons was dependent on task but independent of saccade velocity, and across our sample of neurons, saccade velocity was higher for saccades made immediately after target appearance than would be predicted by discharge level. A tighter relationship was found between saccade precision and perisaccadic discharge. These findings suggest that just as the purpose of the saccadic system in primates is to drive the fovea to a visual target, presaccadic motor activity in the superior colliculus is most intense when such a target is actually present. This enhanced activity may, itself, contribute to the enhanced performance of the saccade system when the saccade is made to a real visual target.  相似文献   

9.
The functional organization of the low-threshold supplementary eye field (SEF) was studied by analyzing presaccadic activity, electrically elicited saccades, and the relationship between them. Response-field optimal vectors, defined as the visual field coordinates or saccadic eye-movement dimensions evoking the highest neural discharge, were quantitatively estimated for 160 SEF neurons by systematically varying peripheral target location relative to a central fixation point and then fitting the responses to Gaussian functions. Saccades were electrically elicited at 109 SEF sites by microstimulation (70 ms, 10-100 microA) during central fixation. The distribution of response fields and elicited saccades indicated a complete representation of all contralateral saccades in SEF. Elicited saccade polar directions ranged between 97 and 262 degrees (data from left hemispheres were transformed to a right-hemisphere convention), and amplitudes ranged between 1.8 and 26.9 degrees. Response-field optimal vectors (right hemisphere transformed) were nearly all contralateral as well; the directions of 115/119 visual response fields and 80/84 movement response fields ranged between 90 and 279 degrees, and response-field eccentricities ranged between 5 and 50 degrees. Response-field directions for the visual and movement activity of visuomovement neurons were strongly correlated (r = 0.95). When neural activity and elicited saccades obtained at exactly the same sites were compared, response fields were highly predictive of elicited saccade dimensions. Response-field direction was highly correlated with the direction of saccades elicited at the recording site (r = 0.92, n = 77). Similarly, response-field eccentricity predicted the size of subsequent electrically elicited saccades (r = 0.49, n = 60). However, elicited saccades were generally smaller than response-field eccentricities and consistently more horizontal when response fields were nearly vertical. The polar direction of response fields and elicited saccades remained constant perpendicular to the cortical surface, indicating a columnar organization of saccade direction. Saccade direction progressively shifted across SEF; however, these orderly shifts were more indicative of a hypercolumnar organization rather than a single global topography. No systematic organization for saccade amplitude was evident. We conclude that saccades are represented in SEF by congruent visual receptive fields, presaccadic movement fields, and efferent mappings. Thus SEF specifies saccade vectors as bursts of activity by local groups of neurons with appropriate projections to downstream oculomotor structures. In this respect, SEF is organized like the superior colliculus and the frontal eye field even though SEF lacks an overall global saccade topography. We contend that all specialized oculomotor functions of SEF must operate within the context of this fundamental organization.  相似文献   

10.
The purpose of this study was to investigate the temporal relationship between presaccadic neuronal discharges in the frontal eye fields (FEF) and supplementary eye fields (SEF) and the initiation of saccadic eye movements in macaque. We utilized an analytical technique that could reliably identify periods of neuronal modulation in individual spike trains. By comparing the observed activity of neurons with the random Poisson distribution generated from the mean discharge rate during the trial period, the period during which neural activity was significantly elevated with a predetermined confidence level was identified in each spike train. In certain neurons, bursts of action potentials were identified by determining the period in each spike train in which the activation deviated most from the expected Poisson distribution. Using this method, we related these defined periods of modulation to saccade initiation in specific cell types recorded in FEF and SEF. Cells were recorded in SEF while monkeys made saccades to targets presented alone. Cells were recorded in FEF while monkeys made saccades to targets presented alone or with surrounding distractors. There were no significant differences in the time-course of activity of the population of FEF presaccadic movement cells prior to saccades generated to singly presented or distractor-embedded targets. The discharge of presaccadic movement cells in FEF and SEF could be subdivided quantitatively into an early prelude followed by a high-rate burst of activity that occurred at a consistent interval before saccade initiation. The time of burst onset relative to saccade onset in SEF presaccadic movement cells was earlier and more variable than in FEF presaccadic movement cells. The termination of activity of another population of SEF neurons, known as preparatory set cells, was time-locked to saccade initiation. In addition, the cessation of SEF preparatory set cell activity coincided precisely with the beginning of the burst of SEF presaccadic movement cells. This finding raises the possibility that SEF preparatory set cells may be involved in saccade initiation by regulating the activation of SEF presaccadic movement cells. These results demonstrate the utility of the Poisson spike train analysis to relate periods of neuronal modulation to behavior.  相似文献   

11.
The primate caudate nucleus plays a crucial role in transforming cognitive/motivational information into eye movement signals. A subset of caudate projection neurons fire before a visual target's onset. This anticipatory activity is sensitive to position-reward contingencies and correlates with saccade latency, which is shorter toward a rewarded position. We recorded single-unit activity of caudate projection neurons to examine the dynamics of change in anticipatory activity immediately after switches of the position-reward contingency. Two monkeys performed a visually guided saccade task where only one position was associated with reward. The position-reward mapping remained constant within a block, but was reversed frequently between blocks without any indication to the monkey. Therefore the switch could be detected only by unexpected reward delivery or unexpected lack of reward. After the switch, both saccade latency and anticipatory activity showed reliable changes already in the second trial, whether or not the first trial was rewarded. However, anticipatory activity in the second trial was generally higher if the first trial was rewarded, and the measured saccade latencies could be better explained by the difference in anticipatory activity between the two caudate nuclei. We suggest that anticipatory activity of caudate neurons reflects the reversal set of reward-position contingency.  相似文献   

12.
1. In the rostral pole of the monkey superior colliculus (SC) a subset of neurons (fixation cells) discharge tonically when a monkey actively fixates a target spot and pause during the execution of saccadic eye movements. 2. To test whether these fixation cells are necessary for the control of visual fixation and saccade suppression, we artificially inhibited them with a local injection of muscimol, an agonist of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). After injection of muscimol into the rostral pole of one SC, the monkey was less able to suppress the initiation of saccades. Many unwanted visually guided saccades were initiated less than 100 ms after onset of a peripheral visual stimulus and therefore fell into the range of express saccades. 3. We propose that fixation cells in the rostral SC form part of a fixation system that facilitates active visual fixation and suppresses the initiation of unwanted saccadic eye movements. Express saccades can only occur when activity in this fixation system is reduced.  相似文献   

13.
1. The discharge of 255 neurons in the fastigial nuclei of three trained macaque monkeys was investigated during visually guided saccades. Responses of these neurons were examined also during horizontal head rotation and during microstimulation of the oculomotor vermis (lobules VIc and VII). 2. One hundred and two units were characterized by bursts of firing in response to visually guided saccades. Ninety-eight of these (96.1%) were located within the anatomic confines of the fastigial oculomotor region (FOR), on the basis of reconstruction of recording sites. During contralateral saccades, these neurons showed bursts that preceded the onset of saccades (presaccadic burst), whereas, during ipsilateral saccades, they showed bursts associated with the end of saccades (late saccadic burst). They were hence named saccadic burst neurons. Sixty-one saccadic burst neurons (62.2%) were inhibited during microstimulation of the oculomotor vermis with currents less than 10 microA. 3. All saccadic burst neurons were spontaneously active, and the resting firing rate varied considerably among units, ranging from 10 to 50 imp/s. The tonic levels of activity did not correlate significantly with eye position. 4. The presaccadic burst started 18.5 +/- 4.7 (SD) ms (n = 45) before the onset of saccades in the optimal direction (the direction associated with the maximum values of burst lead time, number of spikes per burst, and burst duration). Optimal directions covered the entire contralateral hemifield, although there was a slightly higher incidence in both horizontal and upper-oblique directions in the present sample. The duration of the presaccadic burst was highly correlated with the duration of saccade (0.85 less than or equal to r less than or equal to 0.97). 5. The late saccadic burst was most robust in the direction opposite to the optimal in each unit (the nonoptimal direction). Its onset preceded the completion of ipsilateral saccade by 30.4 +/- 5.9 ms. The lead time to the end of saccade was consistent among different units and was constant also for saccades of various sizes. Thus the late saccadic burst started even before the saccade onset when the saccade duration was less than 30 ms. Unlike the presaccadic burst, its duration was not related to the duration of saccade. 6. Discharge rates of saccadic burst neurons were correlated neither to eye positions during fixation nor to the initial eye positions before saccades. 7. Eye-position units and horizontal head-velocity units were located rostral to the FOR.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
1. We recorded from 257 neurons in the banks of the posterior third of the principal sulcus of two rhesus monkeys trained to look at a fixation point and make saccades to stimuli in the visual periphery. Sixty-six percent (220/257) discharged or were suppressed in association with one or more aspects of the tasks we used. 2. Fifty-eight percent (151/257) of the neurons responded to the appearance of a spot of light in some part of the contralateral visual field. Cells did not seem to have absolute requirements for stimulus shape, size, or direction of motion. 3. Thirty-six percent (29/79) of visually responsive neurons tested quantitatively gave an enhanced response to the stimulus in the receptive field when the monkey had to make a saccade to the stimulus when its appearance was synchronous with the disappearance of the fixation point (synchron task). Twenty-nine percent (19/57) of the neurons gave an enhanced response to the stimulus when the monkey had to make a saccade to the stimulus some time after it appeared (delayed-saccade task). In general, enhancement in the synchron task correlated well with enhancement in the delayed-saccade task. 4. Enhancement was spatially specific. It did not occur when the monkey made a saccade to a stimulus outside the receptive field even though there was a stimulus within the receptive field. 5. Twenty-three percent (27/117) of neurons studied in the delayed-saccade task gave two bursts, one at the appearance of the stimulus and a second one around the saccade. This second burst generally did not occur when the monkey made the same saccade to a remembered target, but instead required the presence of the visual stimulus, and so we describe it as a reactivation of the visual response. Reactivation was also spatially specific. 6. The latency from reactivation to the beginning of the saccade ranged from 160 ms before the saccade to the beginning of the saccade. Reactivation usually continued for several hundred milliseconds after the saccade, sometimes for the duration of the trial. 7. Reactivation and enhancement are not the same mechanism. Although some cells showed both phenomena there was no correlation between enhancement and reactivation. 8. Cells that showed reactivation in the saccade task also showed reactivation at a weaker level in a suppressed-saccade task. In this task the monkeys had to hold fixation despite the disappearance of the fixation point and the continued presence of the peripheral stimulus.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Visual and oculomotor functions of monkey subthalamic nucleus.   总被引:7,自引:0,他引:7  
1. Single-unit recordings were obtained from the subthalamic nuclei of three monkeys trained to perform a series of visuooculomotor tasks. The monkeys were trained to fixate on a spot of light on the screen (fixation task). When the spot was turned off and a target spot came on, they were required to fixate on the target quickly by making a saccade. Visually guided saccades were elicited when the target came on without a time gap (saccade task). Memory-guided saccades were elicited by delivering a brief cue stimulus while the monkey was fixating; after a delay, the fixation spot was turned off and the monkey made a saccade to the remembered target (delayed saccade task). 2. Of 265 neurons tested, 95 showed spike activity that was related to some aspects of the visuooculomotor tasks, whereas 66 neurons responded to active or passive limb or body movements. The task-related activities were classified into the following categories: eye fixation-related, saccade-related, visual stimulus-related, target- and reward-related, and lever release-related. 3. Activity related to eye fixation (n = 22) consisted of a sustained spike discharge that occurred while the animal was fixating on a target light during the tasks. The activity increased after the animal started fixating on the target and abruptly ceased when the target went off. The activity was unrelated to eye position. It was not elicited during eye fixation outside the tasks. The activity decreased when the target spot was removed. 4. Activity related to saccades (n = 22) consisted of a phasic increase in spike frequency that was time locked with a saccade made during the tasks. The greatest increases occurred predominantly after saccade onset. This activity usually was unrelated to spontaneous saccades made outside the task. The changes in activity typically were optimal in one direction, generally toward the contralateral side. 5. Visual responses (n = 14) consisted of a phasic excitation in response to a visual probe stimulus or target. Response latencies usually were 70-120 ms. The receptive fields generally were centered in the contralateral hemifield, sometimes extending into the ipsilateral field. The receptive fields included the foveal region in seven neurons; most of these neurons responded best to parafoveal stimulation. Peripheral stimuli sometimes suppressed the activity of visually responsive neurons. 6. Activity related to target and reward (n = 29) consisted of sustained spike discharge that occurred only when the monkey could expect a reward by detecting the dimming of the light spot that he was fixating.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
When saccadic eye movements are made in a search task that requires selecting a target from distractors, the movements show greater curvature in their trajectories than similar saccades made to single stimuli. To test the hypothesis that this increase in curvature arises from competitive interactions between saccade goals occurring near the time of movement onset, we performed single-unit recording and microstimulation experiments in the superior colliculus (SC). We found that saccades that ended near the target but curved toward a distractor were accompanied by increased presaccadic activity of SC neurons coding the distractor site. This increased activity occurred approximately 30 ms before saccade onset and was abruptly quenched on saccade initiation. The magnitude of increased activity at the distractor site was correlated with the amount of curvature toward the distractor. In contrast, neurons coding the target location did not show any significant difference in discharge for curved versus straight saccades. To determine whether this pattern of SC discharge is causally related to saccade curvature, we performed a second series of experiments using electrical microstimulation. Monkeys made saccades to single visual stimuli presented without distractors, and we stimulated sites in the SC that would have corresponded to distractor sites in the search task. The stimulation was subthreshold for evoking saccades, but when its temporal structure mimicked the activity recorded for curved saccades in search, the subsequent saccades to the visual target showed curvature toward the location coded by the stimulation site. The effect was larger for higher stimulation frequencies and when the stimulation site was in the same colliculus as the representation of the visual target. These results support the hypothesis that the increased saccade curvature observed in search arises from rivalry between target and distractor goals and are consistent with the idea that the SC is involved in the competitive neural interactions underlying saccade target selection.  相似文献   

17.
Summary We studied three subdivisions of the pulvinar: a retinotopically organized inferior area (PI), a retinotopically mapped region of the lateral pulvinar (PL), and a separate, visually responsive component of the lateral pulvinar (Pdm). Single neurons were recorded in these regions from awake, trained rhesus monkeys, and we correlated the discharge patterns of the cells with eye movements. About 60% of the neurons discharged after saccadic eye movements in an illuminated environment and had either excitatory, inhibitory, or biphasic (inhibitory-excitatory) response patterns. These responses were most often transient in nature. Neurons with excitatory activity had a mean onset latency of 72 ms after the termination of the eye movement. Latencies for cells with inhibitory responses averaged 58 ms. In sharp contrast, the cells with biphasic response patterns became active before the termination of the eye movement. A unique set of these neurons termed saccade cells, were active with visually guided eye movements in the light, with the same eye movements made to a briefly pulsed target in the dark, and for similar eye movements made spontaneously in total darkness. The activity was present with the appropriate saccade, independent of the beginning eye position. Biphasic response patterns were typical of these saccade cells. Saccade cells were most common in Pdm and PI. About half of the saccade cells also had some visual response that was independent of eye movement. A second group of cells was active with saccadic eye movements in the light but not in the dark. Some of these cells had clear visual responses that could account for their activity following eye movements; others had no clear visual receptive field. Because of these and other physiological data, we propose that the saccade cells found in Pdm may function in a system dealing with visual spatial attention, while those found in PI may have a role in dealing with the visual consequences of eye movements.  相似文献   

18.
Summary The activity of 249 neurons in the dorsomedial frontal cortex was studied in two macaque monkeys. The animals were trained to release a bar when a visual stimulus changed color in order to receive reward. An acoustic cue signaled the start of a series of trials to the animal, which was then free to begin each trial at will. The monkeys tended to fixate the visual stimuli and to make saccades when the stimuli moved. The monkeys were neither rewarded for making proper eye movements nor punished for making extraneous ones. We found neurons whose discharge was related to various movements including those of the eye, neck, and arm. In this report, we describe the properties of neurons that showed activity related to visual fixation and saccadic eye movement. Fixation neurons discharged during active fixation with the eye in a given position in the orbit, but did not discharge when the eye occupied the same orbital positions during nonactive fixation. These neurons showed neither a classic nor a complex visual receptive field, nor a foveal receptive visual field. Electrical stimulation at the site of the fixation neurons often drove the eye to the orbital position associated with maximal activity of the cell. Several different kinds of neurons were found to discharge before saccades: 1) checking-saccade neurons, which discharged when the monkeys made self-generated saccades to extinguish LED's; 2) novelty-detection saccade neurons, which discharged before the first saccade made to a new visual target but whose activity waned with successive presentations of the same target. These results suggest that the dorsomedial frontal cortex is involved in attentive fixation. We hypothesize that the fixation neurons may be involved in codifying the saccade toward a target. We propose that their involvement in arm-eye-head motor-planning rests primarily in targeting the goal of the movement. The fact that saccaderelated neurons discharge when the saccades are self initiated, implies that this area of the cortex may share the control of voluntary saccades with the frontal eye fields and that the activation is involved in intentional motor processes.  相似文献   

19.
1. The purpose of this study was to describe the response properties of neurons in the supplementary motor area (SMA), including the supplementary eye fields (SEF) of three rhesus monkeys (Macaca mulatta) performing visually guided eye and forelimb movements. Seven hundred thirty single units were recorded in the dorsomedial agranular cortex while monkeys performed a go/no-go visual tracking task. The unit activity associated with rewarded, task-related movements was compared with that associated with unrewarded, spontaneous movements executed in the intertrial interval or when the task was not running. A number of neuronal response types were identified. 2. Sensory cells were characterized by their response to the visual and/or auditory target stimuli combined with no discharge associated with eye or forelimb movements. New information was provided about the receptive fields of the visual cells; they varied in size and, although many included the ipsilateral hemifield, they tended to emphasize the contralateral. A significant proportion of the visually responsive cells had receptive fields restricted to within 8 degrees of the fovea. The response latency was relatively long (greater than 90 ms) and variable. 3. Preparatory set cells were activated from the appearance of the target until the presentation of the go/no-go cue. This subpopulation ceased firing 50-100 ms before the movement was initiated. These cells tended to respond best in relation to contralateral movements. The response latency was similar to that of the sensory cells, although some of these units began to discharge in anticipation of predictable target presentations. These neurons were not active before unrewarded, spontaneous saccades. 4. Sensory-movement cells comprised the largest population of neurons identified in SMA. They were active from the appearance of the target until after the execution of the saccade. These neurons tended to respond preferentially in association with contraversive saccades. The latency of response to the target was significantly longer than that of the sensory cells. There was a large amount of variability in the time to reach the peak level of activation, and this population of units generally became inactivated shortly after the saccade was initiated. Although there were counterexamples, most sensory-movement cells responded equally in association with visually and auditory guided movements. In addition, these neurons were not active in relation to self-generated eye movements made during the intertrial intervals. 5. Pause-rebound cells were identified by their suppression at the appearance of the target and subsequent discharge associated with the saccade. These units tended to respond preferentially to contralateral targets.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The substantia nigra pars reticulata (SNr), a major output nucleus of the basal ganglia, has been implicated anatomically, pharmacologically and physiologically in the generation of saccadic eye movements. However, the unique contribution of the SNr to saccade generation remains elusive. We studied the activity of SNr neurons while rhesus monkeys made saccades from different initial orbital positions, to determine what effects, if any, eye position had on SNr neuronal activity. We found that there was no effect of eye position on SNr neuronal responses. We also examined the responses of SNr neurons during memory-guided saccades to determine whether SNr discharges were affected by whether the target of the upcoming saccade was visible. We found that there was no change in response properties during memory saccade trials as compared to otherwise identical visually guided trials. SNr neurons appear to carry no information about either eye position or whether a movement is guided by a visible or remembered target. These results suggest that nigral signals are encoded in the same coordinate frame as those in the SC and FEF, but that unlike neuronal responses in these areas, SNr activity is not influenced by whether the saccade target remains visible until the movement is executed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号