首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Intracellular pH (pH(i)), Cl(-) and Na(+) levels were recorded in snail neurones using ion-sensitive micro-electrodes, and the mechanism of the pH(i) recovery from internal acidification investigated.2. Reducing the external HCO(3) (-) concentration greatly inhibited the rate of pH(i) recovery from HCl injection.3. Reducing external Cl(-) did not inhibit pH(i) recovery, but reducing internal Cl(-), by exposing the cell to sulphate Ringer, inhibited pH(i) recovery from CO(2) application.4. During pH(i) recovery from CO(2) application the internal Cl(-) concentration decreased. The measured fall in internal Cl(-) concentration averaged about 25% of the calculated increase in internal HCO(3) (-).5. Removal of external Na inhibited the pH(i) recovery from either CO(2) application or HCl injection.6. During the pH(i) recovery from acidification there was an increase in the internal Na(+) concentration ([Na(+)](i)). The increase was larger than that occurring when the Na pump was inhibited by K-free Ringer.7. The increase in [Na(+)](i) that occurred during pH(i) recovery from an injection of HCl was about half of that produced by a similar injection of NaCl.8. The inhibitory effects of Na-free Ringer and of the anion exchange inhibitor SITS on pH(i) recovery after HCl injection were not additive.9. It is concluded that the pH(i) regulating system involves tightly linked Cl(-)-HCO(3) (-) and Na(+)-H(+) exchange, with Na entry down its concentration gradient probably providing the energy to drive the movement inwards of HCO(3) (-) and the movement outward of Cl(-) and H(+) ions.  相似文献   

2.
Rate limiting processes in the bohr shift in human red cells   总被引:3,自引:1,他引:2  
1. The rates of the Bohr shift of human red cells and some of its constituent reactions have been studied with a modified Hartridge-Roughton rapid reaction apparatus using an oxygen electrode to measure the progress of the reaction.2. The rate of the Bohr shift was compatible with the hypothesis that the transfer of H(+) across the membrane by means of CO(2) exchange and reaction with buffers is generally the rate-limiting step.(a) When the Bohr off-reaction was produced by a marked increase in P(CO2) around the cells, the half-time at 37 degrees C was 0.12 sec. In this case CO(2) was available initially to diffuse into the cells, the process being predominantly limited by the rate of intracellular CO(2) hydration.(b) When the Bohr off-shift was produced by an increase of [H(+)] outside the cell, P(CO2) being low and equal within and outside the cells, the half time became 0.31 sec. In this case, even at the start, the H(2)CO(3) formed by the almost instantaneous neutralization reaction of H(+) and HCO(3) (-) had to dehydrate to form CO(2) and this in turn had to diffuse into and react within the red cell before the [HbO(2)] could change. When a carbonic anhydrase inhibitor was added to slow the CO(2) reaction inside the cell, the half-time rose to 10 sec.(c) The Bohr off-shift in a haemolysed cell suspension produced by an increase in P(CO2) appeared to be limited by the rate at which the CO(2) could hydrate to form H(+).3. The Bohr off-shift has an average Q(10) of 2.5 between 42.5 and 28 degrees C with an activation energy of 8000 cal.4. The pronounced importance of the CO(2)-bicarbonate system for rapid intracellular pH changes is discussed in connexion with some physiological situations.  相似文献   

3.
1. A small electrical potential difference (541 +/- 48 muV, aqueous side negative) across rabbit corneal endothelium has been recently found. Its dependence on ambient [Na(+)], [K(+)], [H(+)] and metabolic and specific inhibitors was examined.2. Changes in concentration of the ions above either were known or were presently shown to affect the rate of fluid transport across this preparation (normal value: 5.2 +/- 0.4 mul./hr.cm(2)). Ionic concentration changes were also found here to influence potential difference in the same way as fluid transport. In the cases tested, the effects on both fluid transport and potential difference were reversible.3. Fluid transport and potential difference were both decreased or abolished in absence of Na(+), K(+) and HCO(3) (-), and when [H(+)] was decreased. Fluid transport and potential difference were saturable functions of [HCO(3) (-)] and half-saturation occurred in both cases at about 13 mM-HCO(3) (-). The potential difference was also a saturable function of [Na(+)] (half-saturation around 15 mM). There was a pH optimum for potential difference in the range 7.4-7.6. Lower pH values decreases the potential difference and the fluid transport, and a small (-100 muV) reversed potential was observed in the range of 5.3-5.5.4. Total replacement of Cl(-) by HCO(3) (-) or SO(4) (2-) produced no impairment on either fluid transport or potential difference.5. Carbonic anhydrase inhibitors (ethoxyzolamide 10(-5) or 10(-4)M and benzolamide 10(-3)M) produced a 40-60% decrease in the rate of fluid pumping. In contrast, ethoxyzolamide 10(-4)M or acetazolamide 10(-3)M did not produce any change in the potential difference. NaCN and Na iodoacetate (both 2 mM) eliminated the potential difference in 1-1.5 hr while in controls it lasted for 5-6 hr.6. Ouabain (10(-5)M) abolished the potential difference in less than 10 sec when added to the aqueous side, which suggests the existence of an electrogenic pump. This extremely fast time transient can be accounted for by the accessibility and simple geometry of the present monocellular layer. Ouabain abolished also the reversed potential difference observed at low pH.7. The data are interpreted in terms of a scheme similar to that advanced for other epithelia and in which (a) H(+) would be pumped into the intercellular spaces, while Na(+) and CO(2) would enter into the cells, and (b) Na(+) would be subsequently pumped into the aqueous humour, producing as a result the fluid movement observed. The actual origin of the potential difference is further discussed in terms of two contrasting possibilities: (i) one or more electrogenic pumps, and (ii) a neutral pump which would create a diffusion potential across ;leaky' intercellular junctions.  相似文献   

4.
The effects of anoxia on intracellular pH (pH(i)) were examined in acutely isolated adult rat hippocampal CA1 neurons loaded with the H(+)-sensitive fluorophore, 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. During perfusion with HCO/CO(2)- or HEPES-buffered media (pH 7.35) at 37 degrees C, 5- or 10-min anoxic insults were typified by an intracellular acidification on the induction of anoxia, a subsequent rise in pH(i) in the continued absence of O(2), and a further internal alkalinization on the return to normoxia. The steady-state pH(i) changes were not consequent on changes in [Ca(2+)](i) and, examined in the presence of HCO, were not significantly affected by (DIDS). In the absence of HCO, the magnitude of the postanoxic alkalinization was attenuated when external Na(+) was reduced by substitution with N-methyl-D-glucamine (NMDG(+)), but not Li(+), suggesting that increased Na(+)/H(+) exchange activity contributes to this phase of the pH(i) response. In contrast, 100-500 microM Zn(2+), a known blocker of H(+)-conductive pathways, reduced the magnitudes of the internal alkalinizations that occurred both during and following anoxia. The effects of NMDG(+)-substituted medium and Zn(2+) to reduce the increase in pH(i) that occurred after anoxia were additive. Consistent with the steady-state pH(i) changes, rates of pH(i) recovery from internal acid loads imposed immediately after anoxia were increased, and the application of Zn(2+) and/or perfusion with NMDG(+)-substituted medium slowed pH(i) recovery. Reducing extracellular pH from 7.35 to 6.60, or reducing ambient temperature from 37 degrees C to room temperature, also attenuated the increases in steady-state pH(i) observed during and after anoxia and reduced rates of pH(i) recovery from acid loads imposed in the immediate postanoxic period. Finally, inhibition of the cAMP/protein kinase A second-messenger system reduced the magnitude of the rise in pH(i) after anoxia in a manner that was dependent on external Na(+); conversely, activation of the system with isoproterenol increased the postanoxic alkalinization, an effect that was attenuated by pretreatment with propranolol, Rp-cAMPS, or when NMDG(+) (but not Li(+)) was employed as an external Na(+) substitute. The results suggest that a Zn(2+)-sensitive acid efflux mechanism, possibly a H(+)-conductive pathway activated by membrane depolarization, contributes to the internal alkalinization observed during anoxia in adult rat CA1 neurons. The rise in pH(i) after anoxia reflects acid extrusion via the H(+)-conductive pathway and also Na(+)/H(+) exchange, activation of the latter being mediated, at least in part, through a cAMP-dependent signaling pathway.  相似文献   

5.
The effect of peritubular and luminal pH changes on hydraulic conductance, (Lp, 10(-7) cm X s-1 X atm-1) in the isolated perfused rabbit cortical collecting tubule (CCT) was tested at 37 degrees C before and after administration of 20 microU/ml vasopressin or 10(-4) M 8-[p-chlorophenylthio]-adenosine cyclic monophosphate (8-CPT-cAMP). In vasopressin experiments when bath pH was changed from 7.58 to 7.16 or from 7.58 to 6.70, mean Lp decreased from 249 +/- 32 to 199 +/- 23 (n = 5; P less than 0.01) and from 231 +/- 38 to 201 +/- 36 (n = 5; NS), respectively. In contrast, in 8-CPT-cAMP experiments when bath [HCO3] was kept constant while CO2 was elevated the hydroosmotic response was increased. Using 2.5 mM HCO3, Lp at 0.4% CO2 was 275 +/- 15 and at 6% CO2 it was 352 +/- 50 (n = 4; paired t test; P less than 0.05). At 8.5 and 21.5 mM HCO3 raising CO2 from 2 to 13% and from 4 to 32% increased Lp from 237 +/- 71 to 410 +/- 32 (n = 4; paired t test; P less than 0.05) and from 282 +/- 45 to 449 +/- 63 (n = 6; paired t test; P less than 0.001), respectively. Reducing luminal pH from 7.40 to 5.40 had no effect on either vasopressin- or cAMP-induced changes in Lp. Accordingly, lowering the bath pH by increasing the PCO2 at constant [HCO3] markedly stimulates the response to 8-CPT-cAMP, whereas lowering the bath pH by reducing [HCO3] inhibits the vasopressin response.  相似文献   

6.
1. Intracellular pH (pHi) was measured using pH-sensitive glass micro-electrodes. The effects on pHi of CO2 applied externally and HCO3-, H+ and NH4+ injected iontophoretically, were investigated. 2. The transport numbers for iontophoretic injection into aqueous micro-droples were found by potentiometric titration to be 0-3 for HCO3- and 0-94 for H+. 3. Exposure to Ringer, pH 7-5, equilibrated with 2-2% CO2 caused a rapid, but only transient, fall in pHi. Within 1 or 2 min pHi began to return exponentially to normal, with a time constant of about 5 min. 4. When external CO2 was removed, pHi rapidly increased, and then slowly returned to normal. The pHi changes with CO2 application or removal gave a calculated intracellular buffer value of about 30 m-equiv H+/pH unit per litre. 5. Injection of HCO3- caused a rise in pHi very similar to that seen on removal of external CO2. 6. The pHi responses to CO2 application, CO2 removal and HCO3- injection were slowed by the carbonic anhydrase inhibitor acetazolamide. 7. H+ injection caused a transient fall in pHi. In CO2 Ringer pHi fell less and recovered faster than in CO2-free Ringer. Calculation of the internal buffer value from the pHi responses to H+ and HCO3- injection gave very similar values. 8. The internal buffer value (measured by H+ injection) was greatly increased by exposure to CO2 Ringer. Acetazolamide reduced this effect of CO2, suggesting that the function of intracellular carbonic anhydrase may be to maximize the internal buffering power in CO2. 9. It was concluded that the internal HCO3- was determined primarily by the CO2 level and pHi, that internal HCO3- made a large contribution to the buffering power, and that after internal acidfication pHi was restored to normal by active transport of H+, OH- or HCO3- across the cell membrane. The active transport was much faster in CO2 than in CO2-free Ringer.  相似文献   

7.
We have used the pH-sensitive fluorescent dye 8-hydroxypyrene-1,3,6-trisulphonic acid (HPTS) to reexamine the mechanisms that extrude acid from voltage-clamped Helix aspersa neurones. Intracellular acid loads were imposed by three different methods: application of weak acid, depolarization and removal of extracellular sodium. In nominally CO2/HCO3-free Ringer the rate of recovery from acid loads was significantly slowed by the potent Na+/H+ exchange inhibitor 5-[N-ethyl-N-isopropyl]-amiloride (EIPA, 50 microM). Following depolarization-induced acidifications the rate of intracellular pH (pHi) recovery was significantly reduced from 0.41 +/- 0.13 pH units.h-1 in controls to 0.12 +/- 0.09 pH units.h-1 after treatment with EIPA at pHi approximately equal to 7.3 (n = 7). The amiloride analogue also reduced the rate of acid loading seen during extracellular sodium removal both in the presence and absence of the Na(+)-dependent Cl-/HCO3- exchange inhibitor 4-acetamido-4'-isothiocyanato-stilbene-2,2'-disulphonic acid (SITS, 50 microM). This is consistent with EIPA inhibiting reverse-mode Na+/H+ exchange. In 2.5% CO2/20 mM HCO3-buffered Ringer pHi recovery was significantly inhibited by SITS, but unaffected by EIPA. Our results indicate that there are two separate Na(+)-dependent mechanisms involved in the maintenance of pHi in Helix neurones: Na(+)-dependent Cl-/HCO3- exchange and Na+/H+ exchange. Acid extrusion from Helix neurones is predominantly dependent upon the activity of Na(+)-dependent Cl-/HCO3- exchange with a lesser role for Na+/H+ exchange. This adds further weight to the belief that the Na+/H+ exchanger is ubiquitous.  相似文献   

8.
At least three kinds of Cl(-)/HCO(3)(-) exchangers, SLC26A3, SLC26A6 and AE2, have been demonstrated to be expressed in the intestinal epithelial cell. To examine the functional expression of these exchangers in the native enterocyte, we studied the Cl(-)/HCO(3)(-)- exchange activity in isolated villi from the mouse ileum by microfluorometric intracellular pH (pH(i)) measurement. The pH(i) value increased upon Cl(-) removal when the villus was superfused with an HCO(3)(-)/CO(2)-buffered solution, while the response was blunted when superfused with an HCO(3)(-)/CO(2)-free, Hepes-buffered solution. The recovery of pH(i) value induced by Cl(-) re-addition (after initial Cl(-) removal) was totally or partially mimicked by the addition of Br(-), I(-), F(-), NO(3)(-), or SO(4)(2-) (in the absence of Cl(-)). The increase in pH(i) value induced by Cl(-) removal was partially inhibited in the presence of DIDS (30 muM), tenidap (10 muM), niflumic acid (30 muM) or NPPB (30 muM). Increasing the K(+) concentration from 5 mM to 60 mM in the superfusion solution induced a reversible increase in pH(i) value under the HCO(3)(-)/CO(2)-buffered condition, while it had hardly any effect on pH(i) under the Hepesbuffered condition. The K(+)-induced pH(i) changes were partially suppressed by removing Cl(-) from the superfusion solution. These results, together with the reported findings of mouse slc26a3, slc26a6 and AE2 in heterologously expressed systems, suggest the possibility that these three exchangers may all be functionally expressed in mouse ileal villous cells.  相似文献   

9.
Hematocrit (Hct) regulation is a complex process involving potentially many factors. How such regulation develops in vertebrate embryos is still poorly understood. Thus, we investigated the role of blood pH in the regulation of Hct across developmental time in chicken embryos. We hypothesized that blood pH alterations in vitro (i.e., in a test tube) would affect Hct far more than in vivo because of in vivo compensatory regulatory processes for Hct. Large changes in Hct (through mean corpuscular volume (MCV)) and blood osmolality (Osm) occur when the blood was exposed to varying ambient temperatures (T(a)'s) and P(CO2) in vitro alongside an experimentally induced blood pH change from ~7.3 to 8.2. However, homeostatic regulatory mechanisms apparently limited these alterations in vivo. Changes in blood pH in vitro were accompanied by hydration or dehydration of red blood cells depending on embryonic age, resulting in changes in Hct that also were specific to developmental stage, due likely to initial blood gas and [HCO(3)(-)](v) values. Significant linear relationships between Hct and pH (Hct/ΔpH=-21.4%/(pH unit)), Hct and [HCO(3)(-)] (ΔHct/Δ[HCO(3)(-)]=1.6%/(mEq L(-1))) and the mean buffer value (Δ[HCO(3)(-)]/ΔpH=-13.4 (mEq L(-1))/(pH unit)) demonstrate that both pH and [HCO(3)(-)] likely play a role in the regulation of Hct through MCV at least in vitro. Low T(a) (24°C) resulted in relatively large changes in pH with small changes in Hct and Osm in vitro with increased T(a) (42°C) conversely resulting in larger changes in both Hct and Osm. In vivo exposure to altered T(a) caused age-dependent changes in Hct, demonstrating a trend towards increased Hct at higher T(a). Further, exposing embryos to a gas mixture where P(CO2) = 5.1 kPa for >4 h period at T(a) of 37 or 42°C also did not elicit a change in Hct or Osm. Presumably, homeostatic mechanisms ensured that in vivo Hct was stable during a 4-6 h temperature and/or hypercapnic stress. Thus, although blood pH decreases (induced by acute T(a) increase and exposure to CO(2)) increase MCV and, consequently, Hct in vitro, homeostatic mechanisms operating in vivo are adequate to ensure that such environmental perturbations have little effect in vivo.  相似文献   

10.
Carbon dioxide (CO(2)) excretion and acid-base regulation in fish are linked, as in other animals, though the reversible reactions of CO(2) and the acid-base equivalents H(+) and HCO(3)(-): CO(2)+H(2)O<-->H(+)+HCO(3)(-). These relationships offer two potential routes through which acid-base disturbances may be regulated. Respiratory compensation involves manipulation of ventilation so as to retain CO(2) or enhance CO(2) loss, with the concomitant readjustment of the CO(2) reaction equilibrium and the resultant changes in H(+) levels. In metabolic compensation, rates of direct H(+) and HCO(3)(-) exchange with the environment are manipulated to achieve the required regulation of pH; in this case, hydration of CO(2) yields the necessary H(+) and HCO(3)(-) for exchange. Because ventilation in fish is keyed primarily to the demands of extracting O(2) from a medium of low O(2) content, the capacity to utilize respiratory compensation of acid-base disturbances is limited and metabolic compensation across the gill is the primary mechanism for re-establishing pH balance. The contribution of branchial acid-base exchanges to pH compensation is widely recognized, but the molecular mechanisms underlying these exchanges remain unclear. The relatively recent application of molecular approaches to this question is generating data, sometimes conflicting, from which models of branchial acid-base exchange are gradually emerging. The critical importance of the gill in acid-base compensation in fish, however, has made it easy to overlook other potential contributors. Recently, attention has been focused on the role of the kidney and particularly the molecular mechanisms responsible for HCO(3)(-) reabsorption. It is becoming apparent that, at least in freshwater fish, the responses of the kidney are both flexible and essential to complement the role of the gill in metabolic compensation. Finally, while respiratory compensation in fish is usually discounted, the few studies that have thoroughly characterized ventilatory responses during acid-base disturbances in fish suggest that breathing may, in fact, be adjusted in response to pH imbalances. How this is accomplished and the role it plays in re-establishing acid-base balance are questions that remain to be answered.  相似文献   

11.
In order to clarify the interaction between CO2 diffusion and HCO3- shift in the red blood cell (RBC), HCO3- shift was measured by using a stopped flow method combined with fluorometry. When HCO3- entered the RBC, the intracellular PCO2 increased, causing a secondary outflow of CO2. Conversely, when HCO3- ions flowed out of the RBC, the resulting decrease of PCO2 caused an inward CO2 diffusion. The PCO2 change caused by the inward HCO3- shift was about 3- to 4-fold that of the outward shift. During the respective in- and outward-shifts, the mean half-times of the extracellular pH changes were 0.15 and 0.13 sec. These were approximately twice as long as those of the primary CO2 diffusion. The permeability of HCO3- across the RBC membrane was obtained by comparing the experimental extracellular pH curve with a numerical solution for CO2 and HCO3- diffusions accompanied by the hydration and dehydration reactions. Thus the HCO3- permeability was determined to be 5 x 10-4 cm/sec, in the in- and outward-HCO3- shifts, respectively. The influence of Cl- concentration on HCO3- permeability was tested by reducing the initial Cl- gradient across the RBC membrane. In a physiological Cl- concentration range the HCO3- permeability was not affected by the Cl- gradient.  相似文献   

12.
1. The membrane current associated with the cotransport of Na+ and HCO3- was investigated in neuropil glial cells in isolated ganglia of the leech Hirudo medicinalis L. using the two-electrode voltage-clamp technique. 2. The addition of 5% CO2-24 mM HCO3- evoked an outward current, which slowly decayed, and which was dependent upon the presence of external Na+. Removal of CO2-HCO3- elicited a transient inward current. Re-addition of Na+ to Na(+)-free saline in the presence of CO2-HCO3- also produced an outward current. Under these conditions an intracellular alkalinization and a rise in intracellular [Na+] were recorded using triple-barrelled, ion-sensitive microelectrodes. Addition or removal of HCO3-, in the absence of external Na+, caused little or no change in membrane voltage, membrane current and intracellular pH, indicating that the glial membrane has a very low HCO3- conductance. 3. Voltage steps revealed nearly linear current-voltage relationships both in the absence and presence of CO2-HCO3-, with an intersection at the assumed reversal potential of the HCO(3-)-dependent current. These results suggest a cotransport stoichiometry of 2HCO3-: 1 Na+. The HCO(3-)-dependent current could be inhibited by diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS). 4. Simultaneous recording of current and intracellular pH showed a correlation of the maximal acid-base flux with the transient HCO(3-)-dependent current during voltage steps in the presence of CO2-HCO3-. The maximum rate of acid-base flux and the HCO(3-)-dependent peak current showed a similar dependence on membrane voltage. Lowering the external pH from 7.4 to 7.0 produced an inward current, which increased twofold in the presence of CO2-HCO3-. This current was largely inhibited by DIDS, indicating outward-going electrogenic Na(+)-HCO3- cotransport during external acidification. 5. When external Na+ was replaced by Li+, a similar outward current and intracellular alkalinization were observed in the presence of CO2-HCO3-. The Li(+)-induced intracellular alkalinization was not inhibited by amiloride, a blocker of Na+(Li+)-H+ exchange, but was sensitive to DIDS. These results suggest that Li+ could, at least partly, substitute for Na+ at the cotransporter site. 6. Our results indicate that the Na(+)-HCO3- cotransport produces a current across the glial cell membrane in both directions with a reversal potential near the membrane resting potential, rendering pHi a function of the glial membrane potential.  相似文献   

13.
We report here that intracellular pH (pH(i)) in cleavage-stage human embryos (2-8-cell) is regulated by at least two mechanisms: the HCO(3)(-)/Cl(-) exchanger (relieves alkalosis) and the Na(+)/H(+) antiporter (relieves acidosis). The mean pH(i) of cleavage-stage embryos was 7.12 +/- 0.008 (n = 199) with little variation between different stages. Embryos demonstrated robust recovery from alkalosis that was appropriately Cl(-)-dependent, indicating the presence of the HCO(3)(-)/Cl(-) exchanger. This was further confirmed by measuring the rate of intracellular alkalinization upon Cl(-) removal, which was markedly inhibited by the anion transport inhibitor, 4,4'-diisocyanatostilbene-2,2'-disulphonic acid, disodium salt. The set-point of the HCO(3)(-)/Cl(-) exchanger was between pH(i) 7.2 and 7.3. Embryos also exhibited Na(+)-dependent recovery from intracellular acidosis. Na(+)/H(+) antiporter activity appeared to regulate recovery up to about pH(i) 6.8; this recovery was HCO(3)(-)-independent and amiloride-sensitive, with a pH(i) set-point of approximately 6.8-6.9. A second system that was both Na(+)- and HCO(3)(-)-dependent appeared to mediate further recovery from acidosis up to about pH(i) 7.1. Thus, pH(i) of early human preimplantation embryos appears to be regulated by opposing mechanisms (HCO(3)(-)/Cl(-) exchanger, Na(+)/H(+) antiporter, and possibly a third acid-alleviating transporter that was both Na(+)- and HCO(3)(-)-dependent) resulting in the maintenance of pH(i) within a narrow range.  相似文献   

14.
Slack (Slo 2.2), a member of the Slo potassium channel family, is activated by both voltage and cytosolic factors, such as Na(+) ([Na(+)](i)) and Cl(-) ([Cl(-)](i)). Since the Slo family is known to play a role in hypoxia, and since hypoxia/ischemia is associated with an increase in H(+) and CO(2) intracellularly, we hypothesized that the Slack channel may be affected by changes in intracellular concentrations of CO(2) and H(+). To examine this, we expressed the Slack channel in Xenopus oocytes and the Slo 2.2 protein was allowed to be inserted into the plasma membrane. Inside-out patch recordings were performed to examine the response of Slack to different CO(2) concentrations (0.038%, 5%, 12%) and to different pH levels (6.3, 6.8, 7.3, 7.8, 8.3). In the presence of low [Na(+)](i) (5 mM), the Slack channel open probability decreased when exposed to decreased pH or increased CO(2) in a dose-dependent fashion (from 0.28+/-0.03, n=3, at pH 7.3 to 0.006+/-0.005, n=3, P=0.0004, at pH 6.8; and from 0.65+/-0.17, n=3, at 0.038% CO(2) to 0.22+/-0.07, n=3, P=0.04 at 12% CO(2)). In the presence of high [Na(+)](i) (45 mM), Slack open probability increased (from 0.03+/-0.01 at 5 mM [Na(+)](i), n=3, to 0.11+/-0.01, n=3, P=0.01) even in the presence of decreased pH (6.3). Since Slack activity increases significantly when exposed to increased [Na(+)](i), even in presence of increased H(+), we propose that Slack may play an important role in pathological conditions during which there is an increase in the intracellular concentrations of both acid and Na(+), such as in ischemia/hypoxia.  相似文献   

15.
mRNA for two Na(+)-H(+)-exchanger isoforms 1 and 3 (NHE-1 and NHE-3) was detected by RT-PCR in fungiform and circumvallate taste receptor cells (TRCs). Anti-NHE-1 antibody binding was localized to the basolateral membranes, and the anti-NHE-3 antibody was localized in the apical membranes of fungiform and circumvallate TRCs. In a subset of TRCs, NHE-3 immunoreactivity was also detected in the intracellular compartment. For functional studies, an isolated lingual epithelium containing a single fungiform papilla was mounted with apical and basolateral sides isolated and perfused with nominally CO(2)/HCO(3)(-)-free physiological media (pH 7.4). The TRCs were monitored for changes in intracellular pH (pH(i)) and Na(+) ([Na(+)](i)) using fluorescence ratio imaging. At constant external pH, 1) removal of basolateral Na(+) reversibly decreased pH(i) and [Na(+)](i); 2) HOE642, a specific blocker, and amiloride, a nonspecific blocker of basolateral NHE-1, attenuated the decrease in pH(i) and [Na(+)](i); 3) exposure of TRCs to basolateral NH(4)Cl or sodium acetate pulses induced transient decreases in pH(i) that recovered spontaneously to baseline; 4) pH(i) recovery was inhibited by basolateral amiloride, 5-(N-methyl-N-isobutyl)-amiloride (MIA), 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), HOE642, and by Na(+) removal; 5) HOE642, MIA, EIPA, and amiloride inhibited pH(i) recovery with K(i) values of 0.23, 0.46, 0.84, and 29 microM, respectively; and 6) a decrease in apical or basolateral pH acidified TRC pH(i) and inhibited spontaneous pH(i) recovery. The results indicate the presence of a functional NHE-1 in the basolateral membranes of TRCs. We hypothesize that NHE-1 is involved in sour taste transduction since its activity is modulated during acid stimulation.  相似文献   

16.
1. A-V differences and milk concentrations of respiratory gases, pH, HCO3 and H2CO3 have been measured in lactating goats and cows. 2. The pH and [HCO3 minus] of milk were significantly lower than those of plasma while milk PCO2 was virtually identical to that of mammary venous blood. [H2CO3+ dissolved CO2] was similar in milk and blood. 3. 14-C (from injected [14-C]HCO3 minus was found to cross the mammary epithelium in both directions. 14-C also passed across the duct epithelium and since this epithelium has previously been shown to be impermeable to ions it is argued that 14-C crossed in an unionized form, i.e. as CO2 and/or H2CO3. 4. Hourly milking with the aid of oxytocin raised milk pH, [HCO3 minus], [H2CO3], [Na] and E1Cl], and lowered [K], [lactose] and [phosphate]. These effects are discussed in relation to the hypothesis proposed previously for the action of oxytocin on milk composition. 5. A scheme for the distribution and movements of CO2, H2CO3 and HCO3 minus between extracellular fluid and milk is suggested, and discussed in relation to Cl minus transport.  相似文献   

17.
Yao H  Gu XQ  Haddad GG 《Neuroscience》2003,117(1):29-35
We have reported in our previous work that, in the absence of HCO(3)(-), Na(+)/H(+) exchanger is responsible for an anoxia-induced alkalinization in hippocampal CA1 neurons. HCO(3)(-)-dependent mechanisms have been reported to play a key role in pH(i) regulation in nerve cells, but how their function is affected by O(2) deprivation has not been well studied. In this work, pH(i) measurements (obtained from dissociated neurons loaded with carboxy-seminaphthorhodafluor-1 and using confocal microscopy) and whole-cell patch clamp recording techniques were used to investigate the role of HCO(3)(-)-dependent membrane exchangers on CA1 neurons during O(2) deprivation. Anoxia (5 min) induced a small acidification in neurons in the presence of HCO(3)(-) and this acidification was changed to a significant alkalinization when neurons were bathed with Hepes buffer or when 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid was applied in a HCO(3)(-) solution, indicating that HCO(3)(-)-dependent mechanisms were involved. A marked anoxia-induced acidification (0.33+/-0.11 pH unit) was seen when the Na(+)/H(+) exchange was blocked with 3-(methylsulfonyl-4-piperidino-benzoyl)-guanidine methanesulfonate in the presence of HCO(3)(-), but the same anoxia did not cause a significant pH(i) change in a Na(+) free, HCO(3)(-) solution, suggesting that the anoxia-induced acidification in the presence of 3-(methylsulfonyl-4-piperidino-benzoyl)-guanidine methanesulfonate is dependent on both Na(+) and HCO(3)(-). Furthermore, anoxia did not cause a significant pH(i) change when both 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and 3-(methylsulfonyl-4-piperidino-benzoyl)-guanidine methanesulfonate were present. Current clamp recordings showed a significant membrane depolarization following anoxia in HCO(3)(-) solution but not in Hepes buffer. Our data suggest that, in hippocampal neurons: a) pH(i) regulation during O(2) deprivation is affected not only by metabolism but also by membrane exchangers, and b) besides the activation of Na(+)/H(+) exchange, anoxia activates a 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive, Na(+)-dependent acid loader (possibly electrogenic).  相似文献   

18.
Intracellular pH was measured with single- or double-barreled liquid ion-exchanger microelectrodes in the bullfrog sartorius muscle perfused in vitro. A neutral carrier ligand was used for pH sensor of microelectrodes. Average slopes of the single-barreled microelectrodes were -56.4 +/- 1.34 mV/pH (n = 30) and the double-barreled -52.6 +/- 1.34 mV/pH (n = 65). While changing acid-base parameters of bathing media (pHe from 6.7 to 8.4, PCO2 from 3.7 to 37 mmHg, and HCO3- concentrations from 5 to 75 mM), paired muscle cell pH (pHi) and membrane potential (EM) values were determined at 23 degrees C. In control conditions (pHe = 7.6, HCO3- = 15 mM, PCO2 = 11 mmHg), pHi and EM (n = 20) averaged 6.99 +/- 0.04 (S.E.) and -69.2 +/- 2.2 mV, respectively. A negative correlation was observed between pHi and EM (correlation coefficient r = -0.564, p less than 0.002). The change in EM per unit pH change was approximately -30mV, indicating that the H+ distribution across the cell membrane only incompletely obeys the Donnan rule. The pHi varied more or less with pHe. Namely, changes in pHe and PCO2 at constant HCO3- produced relatively large changes in pHi, but elevation of pHe and HCO3- at constant PCO2 produced relatively minor rise in pHi. The stability of pHi or the size of buffer capacity were proportional to external HCO3- concentrations. These data suggested that a transmembrane distribution of buffer pairs depends largely on non-ionic diffusion of CO2-HCO3- buffer system and partly on ion fluxes of HCO3- or H+.  相似文献   

19.
[31P]- and [1H]nuclear magnetic resonances recorded in an interleaved fashion were used in order to quantify high-energy phosphates, intracellular pH and lactate in cortical brain slices of the guinea-pig superfused in a CO2/HCO3(-)-buffered medium during and after anoxic insults. The volume-averaged intracellular pH and energy status of the preparation following anoxia were determined. In the presence of external Na+, intracellular pH normalized in 3 min and was significantly more alkaline from 10 to 12 min of recovery, but lactate remained elevated for 12 min of reoxygenation following anoxia. The amount of lactate removed was only 40% of the quantity of acid extruded showing operation of H+ neutralizing transmembrane mechanisms other than transport of lactic acid. Amiloride (1 or 2 mM) did not prevent the recovery of intracellular pH, but it blocked the "overshoot" of the alkalinization at 10-12 min of recovery. In a medium containing 70 mM K+, 60 mM Na+ and 0.1 mM Ca2+, the recovery of pH, but not lactate washout, was significantly delayed. Removal of external Na+ caused severe energetic failure, decreases both in oxygen uptake and in N-acetyl aspartate concentration, indicating loss of viable tissue. In Na(+)-free superfusion, lactic acidosis caused a more severe drop in intracellular pH than in the presence of Na+. Complexing of extracellular Ca2+ in the Na(+)-free medium inhibited the acidification by 0.38 pH units during anoxia which is as much as the acidification caused by lactate accumulation in the absence of Na+. In Na(+)-free medium intracellular pH recovered, however, from an anoxic level to a normoxic value in 6 min. Metabolic damage of the slice preparation induced by anoxia in the absence of Na+ was as profound in the presence as in the absence of Ca2+ showing that accumulation of Ca2+ is not the only reason for the damage. It is concluded that recovery of intracellular pH from lactic-acidosis can occur independently of energetic recovery and involves acid extrusion mechanism(s) that is(are) dependent on external Na+ and sensitive to high K+.  相似文献   

20.
The traditional view has been that respiratory chemoreceptors responsive to changes in P(CO(2))/pH first evolved in air breathing vertebrates at both peripheral and central sites. Recent evidence, however, suggests that fish also possess chemoreceptors responsive to changes in P(CO(2)) per se. In many species these receptors reside in the gills and respond primarily to changes in aquatic rather than arterial P(CO(2)). There is also scattered evidence to suggest that central CO(2)/H(+)-sensitive chemoreceptors may be present in representatives of all fish groups but only the data for air breathing fish are strong and convincing. The phylogenetic trends that are emerging indicate that the use of CO(2) chemoreception for cardiorespiratory processes arose much earlier than previously believed, (arguably) that CO(2) chemoreception may first have arisen in the periphery sensitive to the external environment and that central CO(2)/H(+) chemoreception subsequently arose multiple times in association with several of the independent origins of air breathing, and that the mechanisms of CO(2)/H(+) chemotransduction may be as varied as the different receptor groups involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号