首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunoreactive nerve cell bodies and fibres in the intestine have been examined using three antibody preparations raised against 5-hydroxytryptamine. Cross reactivity studies indicate that the substance localized was an hydroxylated indoleamine. In the guinea-pig small intestine, nerve cell bodies were located in the myenteric plexus and varicose fibres were found in the ganglia of the myenteric and submucous plexus. The nerve cell bodies had prominent short, broad processes and a single long process. Similar nerve cells and fibres were found in the guinea-pig stomach and large intestine and areas of intestine that were examined in mice, rabbits and rats. Properties of the neurons were examined in the small intestine of the guinea-pig. The immunoreactive material was depleted by treatment with reserpine, but not by guanethidine or 6-hydroxydopamine in dose sufficient to deplete noradrenaline stores in axons in the intestine. No depletion of 5-hydroxytryptamine by the neurotoxin 5, 7-dihydroxytryptamine was observed. After depletion by reserpine, immunoreactivity of the neurons could be restored by application in vitro of 5-hydroxytryptamine, 5,7-dihydroxytryptamine or 5-hydroxytryptophan. The restoration by 5-hydroxytryptophan was prevented by the inhibitor of L-aminoacid decarboxylase, benserazide. After reserpine treatment, immunoreactivity was not restored by tryptophan. Uptake of 5, 7-dihydroxytryptamine into the nerves was antagonized by fluoxetine. The distribution of neurons with 5-hydroxytryptamine-like immunoreactivity was compared with the distribution of enteric amine-handling neurons that take up and decarboxylate L-dopa. This comparison indicated that there are two classes of aromatic amine neuron in the guinea-pig small intestine, the enteric 5-HT neurons and enteric, non-5-HT, amine handling neurons.  相似文献   

2.
We have analyzed changes in the distributions of terminals with vasoactive intestinal polypeptide (VIP)-like immunoreactivity, and accumulations in severed processes, that occur after lesions of intrinsic and extrinsic nerve pathways of the guinea-pig small intestine. The observations indicate that enteric vasoactive intestinal polypeptide immunoreactive neurons have the following projections. Nerve cell bodies in the myenteric plexus provide varicose processes to the underlying circular muscle; the majority of these pathways, if they extend at all in the anal or oral directions, do so for distances of less than 1 mm. Nerve cell bodies of the myenteric plexus also project anally to provide terminals to other myenteric ganglia. The lengths of the majority of these projections are between 2 and 10 mm, with an average length of about 6 mm. Processes of myenteric neurons also run anally in the myenteric plexus and then penetrate the circular muscle to provide varicose processes in the submucous ganglia at distances of up to 15 mm, the average length being 9–12 mm. In addition, there is an intestinofugal projection of myenteric neurons whose processes end around nerve cell bodies of the coeliac ganglia. A similar projection from the colon supplies the inferior mesenteric ganglia. The nerve cell bodies in submucous ganglia give rise to a subepithelial network of fibres in the mucosa and also supply terminals to submucous arterioles.It is concluded that vasoactive intestinal polypeptide is contained in neurons of a number of intrinsic nerve pathways, influencing motility, blood flow and mucosal transport. The myenteric neurons that project to prevertebral sympathetic ganglia may be involved in intestino-intestinal reflexes.  相似文献   

3.
Whole mounts of guinea-pig small intestine were used to examine the distribution of neurons with enkephalin-like immunoreactivity and the effects of microsurgical lesions on these neurons. The enkephalin neurons are intrinsic to the intestine. Cell bodies are found in the myenteric ganglia; processes are in the myenteric plexus, circular muscle (including deep muscular plexus) and submucosa, but not in the mucosa. The cell bodies have one prominent process and several short processes, the latter occasionally are seen to give rise in turn to fine, faint processes. The prominent processes provide fibres to the circular muscle and deep muscular plexus beneath and just anal (up to about 2 mm) to the cell bodies. Fibres in the submucous ganglia come from the overlying myenteric plexus. Orally-directed processes (possibly dendrites) of myenteric cell bodies provide the varicose fibres in the myenteric ganglia. These processes are 3.5-4 mm long. The enkephalin neurons represent a population of enteric neurons, with a distinct distribution and projections, which does not correspond to any of the other populations of enteric neurons that have been studied.  相似文献   

4.
The origins of substance P immunoreactive axons in the small intestine of the guinea-pig were investigated with an immunohistochemical technique in whole mount preparations. Nerve pathways were interrupted either in vitro or in vivo to detect the accumulation of substance P proximal to the lesion and the disappearance of immunoreactive fibres resulting from the degeneration of the severed axons. Various operations, namely, extrinsic denervation, interruption of the myenteric plexus (myotomy) or removal of the myenteric plexus with the longitudinal muscle (myectomy), were performed prior to examination of substance P-containing neurons.There are several projections of substance P-containing neurons which supply the intestine. Extrinsic neurons are the sources of two projections, one to submucosal blood vessels and one to the submucous ganglia. Intrinsic neurons located in the submucous ganglia supply the villi. Five projections arise from the myenteric plexus, a very short projection ending either within the same row of ganglia or within the adjacent rows of ganglia on both sides, a longer projection within the myenteric plexus, a very short projection to the circular muscle, a projection to the submucous ganglia where the axons surround most of submucous nerve cell bodies, and a projection to the villi.It is likely that the highly organised patterns of innervation by different substance P-containing neurons have specific roles in the intestine. Some of these neurons may act as sensory neurons, others as interneurons, and yet others as motor neurons in nerve pathways within the enteric nervous system.  相似文献   

5.
Intracellular microelectrodes have been used to examine the effects, on excitatory inputs to myenteric nerve cells, of lesions of intrinsic pathways in the myenteric plexus of the guinea-pig small intestine. The lesions consisted of circumferential cuts (myotomies) which severed the external musculature to the depth of the submucosa and thus interrupted pathways in the myenteric plexus. Sufficient time was allowed between creating the lesions and recording from the neurons for the endings of severed neurites to degenerate and this was confirmed histochemically by examining the distribution of varicose fibres with 5-hydroxytryptamine immunoreactivity in myenteric ganglia from which recordings were made. Two types of excitatory input, eliciting fast and slow excitatory post-synaptic potentials, respectively, were demonstrable in response to focal stimulation of nerves in the ganglia from which recordings were made. There were no differences in the proportions of neurons in which fast or slow excitatory synaptic potentials were evoked in unoperated preparations (controls), in islands 1.5-4 mm wide between myotomies, or within 1 mm on the oral or anal sides of myotomies. Possible differences in the amplitudes, durations at half amplitude, and threshold numbers of stimuli for initiation of slow excitatory synaptic potentials were analyzed. The only significant differences were found when data from control and oral areas were pooled and compared with combined data from island and anal areas (this assessed differences that could arise from severing nerve fibres running from oral to anal).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Mazzia C  Hicks GA  Clerc N 《Neuroscience》2003,116(4):1033-1041
The presence of 5-hydroxytryptamine(3) receptors on enteric neurons is known from pharmacological data that date back more than 40 years. However, an adequate account of which neurons bear these receptors has not been made because suitable antisera have not been available. We have found that the majority of antisera that have been raised against sequences from the 5-hydroxytryptamine(3) receptor also recognize pre-prosomatostatin. We report that this source of false labeling can be eliminated by pre-incubating the antisera with a peptide designed for this purpose. We have used the pre-absorbed antiserum to localize 5-hydroxytryptamine(3) receptors in the rat colon. Immunoreactive nerve cell bodies occurred in the myenteric and submucosal ganglia. The majority had smooth cell bodies and long, smooth processes, that is, Dogiel type II morphology. The initial segments of the long processes of the Dogiel type II neurons were strongly immunoreactive. About 12% of immunoreactive myenteric nerve cells were of the same or smaller size, and had multiple short filamentous processes. Some of the immunoreactive Dogiel type II neurons were also immunoreactive for calretinin in both plexuses, and the majority were immunoreactive for calbindin in submucosal ganglia. Specific immunoreactivity occurred in non-varicose, but not in varicose, fibers in the myenteric and submucosal ganglia, and in fiber bundles that traversed the longitudinal and circular muscle layers. Immunoreactive varicose fibers were observed only in the mucosa. It is concluded that 5-hydroxytryptamine(3) receptors occur on intrinsic sensory neurons in the rat colon, and on extrinsic sensory nerve fibers that innervate the colon.  相似文献   

7.
Immunoreactivity for vasoactive intestinal polypeptide has been localized in neurons in the guinea-pig ileum, colon and stomach. In the ileum, 2.5% of the nerve cell bodies of the myenteric plexus and 45% of those of the submucous plexus showed vasoactive intestinal polypeptide-like immunoreactivity. Varicose axons containing vasoactive intestinal polypeptide ramified amongst the nerve cell bodies of both plexuses and in some cases formed rings of varicosities around non-reactive nerve cells. Axons were traced from the myenteric plexus to the circular muscle and deep muscular plexus. There were numerous positive axons running in fine strands within the circular muscle, parallel to the muscle bundles. Axons containing vasoactive intestinal polypeptide were associated with mucosal blood vessels, but few supplied the vascular network of the submucosa; some immunoreactive axons also contributed to the periglandular plexus of the mucosa. There were no changes in the distribution of axons in the ileum after extrinsic denervation.The results are discussed in relation to the possible functional roles of neurons that contain vasoactive intestinal polypeptide in the intestine: the distribution of such nerve cells in the myenteric plexus and of axons in the circular muscle and sphincters is consistent with this polypeptide being a transmitter of enteric inhibitory neurons; it is also possible that vasoactive intestinal polypeptide is the enteric vasodilator transmitter.  相似文献   

8.
The distribution of nitric oxide synthase (NOS) immunoreactivity was investigated in the guinea-pig small intestine. There were many immunoreactive nerve cell bodies in the myenteric plexus but very few in submucous ganglia. NOS immunoreactivity was not found in non-neuronal cells except for rare mucosal endocrine cells. Abundant immunoreactive nerve fibres in both myenteric and submucous ganglia, and in the circular muscle, arose from myenteric nerve cells whose axons projected anally along the intestine. NOS immunoreactivity coexisted with VIP-immunoreactivity, but not with substance P immunoreactivity. We conclude that nitric oxide synthase is located in a sub-population of enteric neurons, amongst which are inhibitory motor neurons that supply the circular muscle layer.  相似文献   

9.
Experiments were performed to determine if the distribution of vasoactive intestinal peptide(VIP)-like immunoreactivity in nerve cell bodies and axons of the myenteric plexus and circular muscle of the small intestine is consistent with VIP being the transmitter of enteric inhibitory neurons. Immunoreactivity for VIP was found in nerve cell bodies of the myenteric plexus and in axons within the myenteric plexus and circular muscle. When the axons in the myenteric plexus were interrupted, there was accumulation of material showing reactivity for VIP on the oral side, indicating that the neurons project in an anal direction. The VIP-like immunoreactivity in axons which supply the circular muscle disappeared after a myectomy in which the overlying myenteric plexus was removed, but remained intact when extrinsic nerves were served. The projections of VIP neurons from the myenteric plexus to the circular muscle correspond to the expected projections of enteric inhibitory neurons determined by functional studies.  相似文献   

10.
gamma-Aminobutyric acid (GABA) antiserum was applied to sections of rat and guinea-pig intestine which were subsequently processed to reveal any immunoreactivity using either fluorescence or peroxidase techniques. Immunopositive fibres were demonstrated in stomach, duodenum, ileum and colon of rat and guinea-pig intestine. Myenteric ganglia and nerve bundles in the circular muscle contained immunopositive nerve fibres, while the longitudinal muscle, submucosa and mucosa were only rarely innervated. In favourable sections, immunopositive fibres could be seen running from the myenteric plexus into the circular muscle, thus suggesting that the GABA-immunopositive nerves in the circular muscle originate from neurons in the myenteric plexus. In both rat and guinea-pig, immunoreactive nerve cell bodies were most numerous in the myenteric plexus of the colon. In the rat, immunopositive fibres in the circular muscle were most abundant in the ileum, whereas in the guinea-pig it was the colon circular muscle that was most richly innervated. The results demonstrate that neurons which show GABA immunoreactivity are present along the length of the gastrointestinal tract. Their distribution in both myenteric ganglia and circular muscle is heterogeneous both within and between the two species studied. It is probable that this heterogeneity reflects the diversity and specificity of function of this class of enteric neurons.  相似文献   

11.
Summary Calretinin immunoreactivity is almost completely confined to two classes of neuron in the myenteric plexus of the guinea-pig small intestine, longitudinal muscle motor neurons and ascending interneurons. Nerve cell bodies of the two classes can be readily identified by their sizes and positions in ganglia. The motor neurons, which are small Dogiel type I neurons, are about 20% and the interneurons, which are medium-sized Dogiel type I neurons, are about 5% of myenteric neurons. In the present work, we have also discovered a minor population (0.1%) of small filamentous neurons. In unoperated regions of intestine, at the light microscopic level, numerous calretinin immunoreactive nerve fibres were found in the tertiary plexus that innervates the longitudinal muscle and a medium density of varicose fibres formed pericellular endings in the myenteric ganglia. After double myotomy operations, in areas of plexus 0.5 to 1.5 mm wide which were isolated from ascending and descending inputs, calretinin-immunoreactive fibres of the tertiary plexus were unchanged, but the periceliular endings in the ganglia disappeared. Both the ascending interneurons and the longitudinal muscle motor neurons received ultrastructurally identified synapses and close axonal contacts that were calretinin-immunoreactive. These were counted in semi-serial sections from normal intestine and from regions between myotomy operations. In unoperated intestine, the proportions of calretinin-immunoreactive synapses on small, calretinin-immunoreactive, Dogiel type I nerve cells and small filamentous nerve cells were 30% and 0.1% respectively and on medium-sized Dogiel type I cells the proportion was 28%. Electron microscopy revealed an almost complete loss of immunoreactive inputs to the small Dogiel type I cells between double myotomies, but the number of unreactive inputs was the same as in normal intestine. This work demonstrates that the ascending calretinin-immunoreactive interneurons connect with one another to form ascending chains in the myenteric plexus and that they also provide about 1/3 of the inputs received by calretinin-immunoreactive longitudinal muscle motor neurons. Many of the remaining inputs to these motor neurons are local; we have deduced that these are mainly from primary sensory neurons.  相似文献   

12.
Summary The adrenergic innervation of the pelvic viscera was examined by the fluorescence histochemical technique, applied to tissue from untreated guinea-pigs and from guinea-pigs in which nerve pathways had been interrupted at operation. It was found that adrenergic neurons in the inferior mesenteric ganglia give rise to axons which run in the colonic nerves and end in the myenteric and submucous plexuses and around the arteries of the distal colon. In the rectum, part of the innervation of the myenteric plexus and all of the innervation of the submucous plexus comes from the inferior mesenteric ganglia. The rest of the adrenergic innervation of the myenteric plexus comes from the posterior pelvic ganglia or the sacral sympathetic chains. The innervation of the blood vessels of the rectum is from the posterior pelvic ganglia. Adrenergic nerves run from the sacral sympathetic chains and pass via nerves accompanying the rectal arteries to the internal anal sphincter. Other adrenergic fibres to the internal anal sphincter either arise in, or pass through, the posterior pelvic plexuses. The anal accessory muscle is innervated by adrenergic axons arising in the posterior pelvic plexuses. Adrenergic nerves which run in the pudendal nerves, probably from the sacral sympathetic chains, innervate the erectile tissue of the penis.This work was supported by grants from the Australian Research Grants Committee and the National Health and Medical Research Council. We thank Professor G. Burnstock for his generous support.  相似文献   

13.
In vitro anterograde tracing of axons in mesenteric nerve trunks using biotinamide in combination with immunohistochemical labelling was used to characterize the extrinsic nerve projections in the myenteric plexus of the mouse jejunum. Anterogradely-labelled spinal sensory fibres innervating the enteric nervous system were identified by their immunoreactivity for calcitonin gene-related peptide (CGRP), while sympathetic noradrenergic fibres were detected with tyrosine hydroxylase (TH), using confocal microscopy. The presence of these markers has been previously described in the spinal sensory and sympathetic fibres. Labelled extrinsic nerve fibres in the myenteric plexus were identified apposing enteric neurons that were immunoreactive for either calretinin (CalR), calbindin (CalB) or nitric oxide synthase (NOS). Of the total anterogradely labelled axons in the myenteric plexus, 20% were CGRP-immunoreactive. Labelled CGRP-immunoreactive varicosities were closely apposed to CalR-immunoreactive myenteric cells, many of which were Dogiel type I (40%; interneurons) or type II (20%; intrinsic sensory) neurons. Labelled CGRP-immunoreactive varicosities were also observed in close appositions to CalB-immunoreactive myenteric cell bodies, of which a small subset had type II morphology (18%; intrinsic sensory neurons). A further 43% of all biotinamide-filled fibres were immunoreactive for TH and these fibres were apposed to CalR-immunoreactive cell bodies (small-sized; excitatory motor neurons) and NOS-immunoreactive cell bodies (either type I or small neurons; inhibitory motor neurons and interneurons) in the myenteric plexus. The results provide a neurochemical and neuroanatomical basis for connections between dorsal root afferent neurons and myenteric neurons and suggest an anatomical substrate for the well-known modulation of enteric circuits from sympathetic nerves. No anterogradely-labelled fibres were stained for NOS-immunoreactivity, despite more than 60% of dorsal root ganglion (DRG) neurons retrogradely labelled from the jejunum showing NOS-immunoreactivity. This was due to a substantial, time-dependent, and apparently selective, loss of NOS from extrinsic axons under in vitro conditions. Lastly, a small population of non-immunoreactive biotinamide-filled fibres (<1%) gave rise to dense terminal structures around individual myenteric cell bodies lacking CalR, CalB or NOS. These specialized endings may represent vagal fibres or a subset of spinal sensory neurons that do not contain CGRP.  相似文献   

14.
Summary The organs of the lower abdominal and pelvic regions of the guinea-pig receive nerves from the inferior mesenteric ganglia and pelvic plexuses. The inferior mesenteric ganglia connect with the sympathetic chains, the superior mesenteric ganglia, the pelvic plexuses via the hypogastric nerves, and with the gut. Each pelvic plexus consists of anterior and posterior parts which send filaments to the internal generative organs and to the rectum, internal anal sphincter and other pelvic organs. The pelvic nerves enter the posterior plexuses, which also receive rami from the sacral sympathetic chains. The adrenergic neurons of the pelvic plexuses are monopolar, do not have dendrites and are supplied by few varicose adrenergic axons. Nearly all the nerves contain adrenergic fibres. After exposure to formaldehyde vapour the chromaffin cells appear brightly fluorescent with one or two long, often varicose, processes. Most of the chromaffin cells are in Zuckerkandl's organ or in chromaffin bodies associated with the inferior mesenteric ganglia. Groups of chromaffin cells are found along the hypogastric nerves and in the pelvic plexuses; they become smaller and fewer as regions more posterior to Zuckerkandl's organ are approached.This work was supported by grants from the Australian Research Grants Committee and the National Health and Medical Research Council. We thank Professor G. Burnstock for his generous support.  相似文献   

15.
Laminar preparations of fixed segments of the guinea-pig intestine were examined for nitric oxide synthase activity using reduced nicotinamide adenine dinucleotide phosphate and nitroblue tetrazolium salt as substrates. Under conditions specific for detecting nitric oxide synthase-related diaphorase activity, a subpopulation of neural elements in the myenteric plexus, deep muscular plexus and submucosa were intensely stained. Intensely stained nerve fibres were distributed throughout the meshworks of the myenteric plexus and its innervation of the circular muscle, and in the submucosa within Henle's plexus. Intensely stained nerve cells and their processes were evident in most myenteric ganglia but were rare in ganglia of Henle's plexus. Stained ganglion cells comprised types I, II and VI of the morphologically defined enteric nerve cells. Stained neural elements were increasingly prevalent within successively more caudal segments of the intestine. In addition to neuronal staining, arterioles of the submucosal vascular network displayed distinct, punctate patches of staining distributed over their surface. Perivascular nerve fibre staining was absent. These results show nitric oxide synthase activity to be present within neurons and fibres of the major enteric nerve layers and within submucosal blood vessels throughout the guinea-pig small and large intestine.  相似文献   

16.
Immunofluorescence methods have been used to determine the detailed distribution of vasoactive intestinal polypeptide (VIP), substance-P and enkephalin nerve fibres in fixed cryostat sections from guinea-pig duodenum, jejunum, ileum, caecum at the site of the taenia coli, and proximal and distal colon. A novel method is used involving immunostaining of tissue culture preparations of both myenteric and submucous plexuses. These preparations allow each plexus to be studied in isolation from all axonal input for the first time, since they provide unequivocal extrinsic denervation together with severance of any intrinsic connections between the plexuses. In tissue sections the most prominent sites of VIP and substance-P immunoreactive fibres are the ganglia of the myenteric and submucous plexuses, the circular muscle layer and the longitudinal muscle of the taenia coli. In addition, VIP is prominent in the lamina propria of the submucosa except in the caecum. Enkephalin-immunopositive fibres are restricted to the ganglia of the myenteric plexus, the circular muscle layer and the longitudinal layer of the taenia coli. The culture preparations reveal that intrinsic ‘VIP neurons’ are common in the submucous plexus of the caecum and colon. They are also present, but in much lower numbers, in the myenteric plexus of the small intestine and colon but are not found in the myenteric plexus of the caecum. Intrinsic ‘substance-P neurons’ are present in the myenteric plexus from the small intestine, caecum and colon as well as in the submucous plexus of the colon; intrinsic ‘substance-P neurons’ are not found in the submucous plexus of the caecum. ‘Enkephalin neurons’ are numerous in the myenteric plexus of the small intestine, caecum and colon but are absent from the submucous plexus. Immunoreactivity is compared in the normal and denervated caecum by both the histochemical method and by radioimmunoassay of tissue extracts. In conjunction with the studies on tissue cultures, the results provide evidence for intrinsic reciprocal connections between the myenteric and submucous plexus of the caecum by neurons containing VIP and substance-P.An extensive comparison of these results with data from functional studies shows that the distribution of VIP, substance-P and enkephalin fibres in the gut is broadly in agreement with present knowledge of the action of these peptides on gut tissue, if it is assumed that they function as neurotransmitters or neuromodulators. In some instances, however, peptide-containing fibres and pathways are found which do not correlate with present knowledge obtained from functional studies. These observations provide new clues to the role of peptide neurons in gut function.  相似文献   

17.
目的 观察犬和大鼠回肠壁丛内 5 羟色胺能神经元。方法 应用 5 羟色胺 (5 HT)抗体的免疫组织化学改良法对正常小狗 (5只 )回肠切片标本、正常大鼠 (8只 )和 5 羟色胺酸前处理大鼠 (4只 )回肠外纵肌全层铺片标本内含 5 HT免疫反应性 (5 HT IR)神经元进行了观察研究。结果 正常大鼠回壁内神经节 (丛 )内可见少数 5 HT IR核周体 ,及肠肌丛周围和节间束中含有丰富的 5 HT IR纤维。 5 羟色胺酸 (5 HTP)处理后大鼠与正常鼠相比较 ,回肠壁丛内 5 HT IR胞体和带膨体纤维的可见数稍多 ,及免疫反应性增强。正常狗远端内 5 HT IR神经元胞体和纤维非常丰富 5 HT IR基础丛内有 1~ 4个 5 HT IR神经元胞体。结论 本研究对犬和大鼠肠内 5 HT能神经元的存在提供了直接的形态学证据 ,肠 5 HT能神经元与胃肠运动的调节功能及其可能的受体机制有关  相似文献   

18.
P A Steele  M Costa 《Neuroscience》1990,38(3):771-786
In this study we sought to establish the distribution, projections and neurochemical coding of opioid immunoreactive neurons in secretomotor pathways of the guinea-pig ileum. Non-cholinergic secretomotor neurons in the submucous ganglia have been shown to be immunoreactive for dynorphin A 1-8, dynorphin A 1-17, dynorphin B and alpha neo-endorphin while cholinergic neurons have been shown to be immunoreactive for dynorphin A 1-8 only. Thus all submucous neurons in the guinea-pig ileum are immunoreactive for prodynorphin-derived peptides. Two major populations of opioid immunoreactive fibres projecting to the submucous ganglia have been established. Firstly, neurons immunoreactive for prodynorphin-derived peptides and vasoactive intestinal peptide project anally from the myenteric plexus to the submucous ganglia. Secondly, a substantial proportion of sympathetic postganglionic fibres immunoreactive for tyrosine hydroxylase, and projecting from the coeliac ganglion to submucous ganglia, have been shown to be immunoreactive for prodynorphin-derived peptides. Other smaller populations of opioid-immunoreactive neurons include fibres immunoreactive for substance P, enkephalin and dynorphin A 1-8 which project from the myenteric plexus to the non-ganglionated plexus of the submucosa. These fibres are probably excitatory motor neurons to the muscularis mucosae. The present paper has described several distinct populations of opioid immunoreactive neurons in secretomotor pathways of the guinea-pig ileum. Furthermore we have shown that these enteric or postganglionic sympathetic neurons contain opioid peptides in combination with other neurotransmitter substances. These results should provide a firmer basis on which to plan functional experiments to elucidate the physiological role of opioid peptides in the enteric nervous system.  相似文献   

19.
Summary The distribution of calcitonin gene-related peptide-like immunoreactive (CGRP-LI) nerves was investigated immunohistochemically in the rectum of normal, capsaicin-treated and congenital aganglionosis rats. The rectum of the normal rat was densely supplied with both extrinsic and intrinsic nerves exhibiting CGRP-like immunoreactivity. Numerous CGRP-LI nerve fibres were seen in both the myenteric and submucous plexuses. Intrinsic CGRP-LI nerve cell bodies were sparsely found in both the ganglionated plexuses, while a large inflow of extrinsic CGRP-LI nerves was characteristically observed in the rat rectum. CGRP-like immunoreactive fibres were abundant in the intramural pelvic nerves which ascend proximally in the intermuscular zone and connect with the myenteric plexus of the rat distal bowel. As compared with CGRP-positive fibres, SP- or SK-positive fibres in the intramural pelvic nerves were far less frequent. The treatment with capsaicin in the neonatal period led to a marked depletion of CGRP-immunoreactivity in these extrinsic nerves as well as in the most terminal varicose fibres seen in the whole layers of the rectal wall. These findings suggest that the vast majority of CGRP-LI fibres in the intramural pelvic nerves are sensory in nature, and that the positive nerve fibres of extrinsic origin directly innervate each layer of the rat rectum. These CGRP-LI sensory fibres associated with the intramural pelvic nerves, may be of importance in the regulation of rectal and colonic function in normal rats. A dense innervation of CGRP-LI nerve fibres, some of which showed the varicose appearance, was also found in the rectum of congenital aganglionosis rats. Thus, it is suggested that there is a large inflow of extrinsic CGRP-LI fibres from the pelvic plexus in the affected rectum. The extrinsic CGRP-LI nerves in the aganglionic segment of the mutant rat might also be related to the regulation of rectal function, providing afferent pathways.  相似文献   

20.
Summary The anatomy and the adrenergic innervation of the rectum, internal anal sphincter and of accessory structures are described for the guinea-pig. The distribution of adrenergic nerves was examined using the fluorescence histochemical technique applied to both sections and whole mount preparations. The longitudinal and circular muscle of the rectum and the muscularis mucosae are all supplied by adrenergic nerve terminals. The density of the adrenergic innervation of the muscularis externa increases towards the anal sphincter. There is a very dense innervation of the internal anal sphincter, of the anal accessory muscles and of the corrugator ani. Non-fluorescent neurons in the ganglia of the myenteric plexus are supplied by adrenergic terminals. The ganglia become smaller and sparser towards the internal anal sphincter and non-ganglionated nerve strands containing adrenergic axons run from the plexus to the sphincter muscle. Adrenergic fibers innervate two interconnected ganglionated plexuses in the submucosa. Very few adrenergic nerve cells were found in the myenteric plexus and they were not found at all in the submucosa. The extrinsic arteries and veins of the pelvic region are heavily innervated by adrenergic nerves. Within the gut wall the arteries are densely innervated but there is little or no innervation of the veins.This work was supported by grants from the Australian Research Grants Committee and the National Health and Medical Research Council. We thank Professor G. Burnstock for his generous support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号