首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The parahippocampal region, which comprises the perirhinal, postrhinal, and entorhinal cortices, as well as the pre‐ and parasubiculum, receives inputs from several association cortices and provides the major cortical input to the hippocampus. This study examined the topographic organization of projections from the orbitofrontal cortex (OFC) to the parahippocampal region in rats by injecting anterograde tracers, biotinylated dextran amine (BDA) and Phaseolus vulgaris‐leucoagglutinin (PHA‐L), into four subdivisions of OFC. The rostral portion of the perirhinal cortex receives strong projections from the medial (MO), ventral (VO), and ventrolateral (VLO) orbitofrontal areas and the caudal portion of lateral orbitofrontal area (LO). These projections terminate in the dorsal bank and fundus of the rhinal sulcus. In contrast, the postrhinal cortex receives a strong projection specifically from VO. All four subdivisions of OFC give rise to projections to the dorsolateral parts of the lateral entorhinal cortex (LEC), preferentially distributing to more caudal levels of LEC. The medial entorhinal cortex (MEC) receives moderate input from VO and weak projections from MO, VLO, and LO. The presubiculum receives strong projections from caudal VO but only weak projections from other OFC regions. As for the laminar distribution of projections, axons originating from OFC terminate more densely in upper layers (layers I–III) than in deep layers in the parahippocampal region. These results thus show a striking topographic organization of OFC‐to‐parahippocampal connectivity. Whereas LO, VLO, VO, and MO interact with perirhinal–LEC circuits, the interactions with postrhinal cortex, presubiculum, and MEC are mediated predominantly through the projections of VO. J. Comp. Neurol. 522:772–793, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The present report is the last in a series of papers on the connectivity of the parahippocampal cortex in the cat, which in this species is considered to be composed of the entorhinal and perirhinal cortices. Injections of anterogradely transported tritiated amino acids and the retrograde tracers HRP, WGA-HRP, fast blue, or nuclear yellow were placed within the limits of the parahippocampal cortex. An analysis was made of the resulting pattern of anterograde labeling and of the distribution of retrogradely labeled neurons within the parahippocampal cortex. It appears that within the parahippocampal cortex of the cat a framework exists, which is composed of longitudinal and transverse connections, organized according to three principles: Medially directed projections originate mostly in superficial layers, whereas laterally directed fibers come from deep layers. The longitudinal connections span the entire rostrocaudal extent of the parahippocampal cortex, whereas the mediolateral extent of the transverse connections is in general more restricted. Based on the organization of these longitudinal and transverse connections four longitudinal zones are recognized. The lateral entorhinal cortex (LEA) projects both within the entorhinal cortex and to the perirhinal cortex, whereas the intrinsic projections of the medial entorhinal cortex (MEA) are confined to the entorhinal cortex. These results are discussed in conjunction with the main organizational features of the afferent and efferent connections of the parahippocampal cortex of the cat. The premise is made that the cytoarchitectonically defined subdivisions of the cortex can be grouped into four areas, each with its own set of fiber connections and subserving different functional roles. A lateral area, constituted by the perirhinal areas 35 and 36, and the caudally adjacent postsplenial cortex, serves as a peripheral area through which the rest of the parahippocampal cortex--i.e., LEA and MEA, and ultimately the hippocampal formation--reciprocally communicates with extensive neocortical, subcortical, and thalamic regions associated with higher-order behavior. The medial part of LEA, constituted by the ventrolateral (VLEA) and ventromedial (VMEA) divisions, has reciprocal connections with the hippocampal formation and with the cortex, partly via the perirhinal cortex, and is connected with a number of subcortical structures such as the amygdala and the striatum.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The organization of subcortical inputs to the parahippocampal cortex, which in the present study in the cat is considered to comprise the entorhinal and perirhinal cortices, was studied by using retrograde and anterograde tracing techniques. The results of the retrograde tracer horseradish peroxidase (HRP), HRP conjugated with wheat germ agglutinine (WGA-HRP), Fast Blue (FB) or Nuclear Yellow (NY] injections indicate that the entorhinal and perirhinal cortices receive inputs from the magnocellular basal forebrain and from distinct portions of the amygdaloid complex, the claustrum, and the thalamus. The two cortices are further projected upon by fibers from the supramamillary region of the hypothalamus, the ventral tegmental area of the mesencephalon, the dorsal raphe nucleus, the nucleus centralis superior, and the locus coeruleus. The entorhinal cortex, in addition, receives projections from the medial septum. As regards the projections from the amygdaloid complex, it was observed that the entorhinal cortex receives its heaviest input from the basolateral amygdaloid nucleus, whereas the perirhinal cortex receives a strong projection from the lateral nucleus and a weaker projection from the basomedial nucleus of the amygdala. Of the thalamic nuclei that project to the parahippocampal cortex, the nucleus reuniens is only connected with the entorhinal cortex, while fibers from the medial geniculate nucleus and the lateral posterior nucleus terminate in the perirhinal cortex. Injections of tritiated amino acid (3H-leucine) were placed in the medial septum, the dorsal and ventral claustrum, the basolateral and basomedial amygdaloid nuclei, and the nucleus reuniens of the thalamus. The results of these experiments demonstrate that, with the exception of the claustrum, these subcortical areas project mainly to the superficial layers I-III and the lamina dissecans of the parahippocampal cortex, and to a lesser degree to the deep layers V and VI.  相似文献   

5.
The present report deals with the projections from the entorhinal and perirhinal cortices to subcortical forebrain structures and the brainstem in the cat. By using anterograde and retrograde tracing techniques, it could be demonstrated that the entire mediolateral extent of the parahippocampal cortex issues prominent projections to the dorsal and ventral striatum, the amygdala, and the claustrum. In addition, the entorhinal cortex sends projections to the septum and the diagonal band of Broca. Only the perirhinal cortex gives rise to a weak projection to the dorsolateral periaquaductal gray and the ventral pontine region. The major proportion of the subcortical projections originates in the perirhinal cortex and the lateral entorhinal cortex, whereas the medial entorhinal cortex has a much sparser output and sends no fibers to the amygdala. The subcortical projections from both the entorhinal cortex and the perirhinal cortex arise mostly from their deep layers. It was further found that these projections are topographically organized along the mediolateral axis of the parahippocampal cortex. This mediolateral axis is related to a ventrolateral to dorsomedial axis in the septum, a mediolateral axis in the amygdala and the ventral striatum, and a ventrodorsal coordinate in the dorsal striatum and the claustrum. A further topography was observed in the projections from the perirhinal cortex to the lateral amygdaloid nucleus. A rostrocaudal axis in the perirhinal cortex corresponds to a mediolateral axis in the lateral amygdaloid nucleus. The present observations are compared with data concerning the connectivity of the parahippocampal cortex with the hippocampal formation and other cortical structures. It is suggested that the parahippocampal cortex in the cat may be conceptualized as an interface between the hippocampal formation and several subcortical structures in the realm of the limbic and motor systems.  相似文献   

6.
The nonhuman primate entorhinal cortex is the primary interface for information flow between the neocortex and the hippocampal formation. Based on previous retrograde tracer studies, neocortical afferents to the macaque monkey entorhinal cortex originate largely in polysensory cortical association areas. However, the topographical and laminar distributions of cortical inputs to the entorhinal cortex have not yet been comprehensively described. The present study examines the regional and laminar termination of projections within the entorhinal cortex arising from different cortical areas. The study is based on a library of 51 (3)H-amino acid injections that involve most of the afferent regions of the entorhinal cortex. The range of termination patterns was broad. Some areas, such as the medial portion of orbitofrontal area 13 and parahippocampal areas TF and TH, project widely within the entorhinal cortex. Other areas have a more focal and regionally selective termination. The lateral orbitofrontal, insular, anterior cingulate, and perirhinal cortices, for example, project only to rostral levels of the entorhinal cortex. The upper bank of the superior temporal sulcus projects mainly to intermediate levels of the entorhinal cortex, and the parietal and retrosplenial cortices project to caudal levels. The projections from some of these cortical regions preferentially terminate in the superficial layers (I-III) of the entorhinal cortex, whereas others project more heavily to the deep layers (V-VI). Thus, some of the cortical inputs may be more influential on the cortically directed outputs of the hippocampal formation or on gating neocortical information flow into the other fields of the hippocampal formation rather than contributing to the perforant path inputs to other hippocampal fields.  相似文献   

7.
Connections of the perirhinal cortex in the.rat brain were studied using anterograde (3H-proline/leucine) and retrograde (horseradish peroxidase) tracers. The perirhinal cortex receives major projections from medial precen-tral, anterior cingulate, prelimbic, ventral lateral orbital, ventral and posterior agranular insular, temporal, superior and granular parietal, lateral occipital, agranular retrosplenial, and ectorhinal cortices, and from the pre-subiculum, subiculum, and diagonal band of Broca. Rostral neocortical areas project predominantly to rostral perirhinal regions while more caudal neocortical and subicular areas project predominantly to caudal perirhinal regions. Terminal fields are further segregated within perirhinal cortex to either the dorsal or ventral banks of the rhinal sulcus. All afferents from frontal areas terminate predominantly in the deep layers of its ventral bank; afferents from temporal, parietal, and lateral occipital areas terminate predominantly in the deep and superficial layers along its dorsal bank; and afferents from ectorhinal cortex terminate in a column within its dorsal bank. Cortical cells which project to perirhinal areas are found predominantly in layer II and the superficial part of layer III. However, ventrolateral orbital, parietal, and lateral occipital cortex projections originate predominantly from layer V. Perirhinal areas also receive afferents from the nucleus reuniens of the thalamus, lateral nucleus of the amygdala, claustrum, supramammillary nuclei, and the dorsal raphe nuclei.  相似文献   

8.
We have divided the cortical regions surrounding the rat hippocampus into three cytoarchitectonically discrete cortical regions, the perirhinal, the postrhinal, and the entorhinal cortices. These regions appear to be homologous to the monkey perirhinal, parahippocampal, and entorhinal cortices, respectively. The origin of cortical afferents to these regions is well-documented in the monkey but less is known about them in the rat. The present study investigated the origins of cortical input to the rat perirhinal (areas 35 and 36) and postrhinal cortices and the lateral and medial subdivisions of the entorhinal cortex (LEA and MEA) by placing injections of retrograde tracers at several locations within each region. For each experiment, the total numbers of retrogradely labeled cells (and cell densities) were estimated for 34 cortical regions. We found that the complement of cortical inputs differs for each of the five regions. Area 35 receives its heaviest input from entorhinal, piriform, and insular areas. Area 36 receives its heaviest projections from other temporal cortical regions such as ventral temporal association cortex. Area 36 also receives substantial input from insular and entorhinal areas. Whereas area 36 receives similar magnitudes of input from cortices subserving all sensory modalities, the heaviest projections to the postrhinal cortex originate in visual associational cortex and visuospatial areas such as the posterior parietal cortex. The cortical projections to the LEA are heavier than to the MEA and differ in origin. The LEA is primarily innervated by the perirhinal, insular, piriform, and postrhinal cortices. The MEA is primarily innervated by the piriform and postrhinal cortices, but also receives minor projections from retrosplenial, posterior parietal, and visual association areas. J. Comp. Neurol. 398:179–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
In this study, we analyzed in detail the topographic organization of the subiculoparahippocampal projection in the rat. The anterograde tracers Phaseolus vulgaris leucoagglutinin-L and biotinylated dextran amine were injected into the subiculum at different septotemporal and transverse levels. Deep layers of the ento-, peri-, and postrhinal cortices are the main recipients of subicular projections, but in all cases we noted that a small fraction of the projections also terminates in the superficial layers II and III. Analysis of the fiber patterns in the parahippocampal region revealed a topographic organization, depending on the location of the cells of origin along both the transverse and the septotemporal axes of the subiculum. Projections originating from subicular cells close to CA1, i.e., proximal part of subiculum, terminate exclusively in the lateral entorhinal cortex and in the perirhinal cortex. In contrast, projections from cells closer to the subiculum-presubiculum border, i.e., distal part of subiculum, terminate in the medial entorhinal cortex and in the postrhinal cortex. In addition, cells in septal portions of the subiculum project to a lateral band of entorhinal cortex parallel to the rhinal sulcus and to peri- or postrhinal cortices, whereas cells in more temporal portions project to more medial parts of the entorhinal cortex. These results indicate that subicular projections to the parahippocampal region precisely reciprocate the known inputs from this region to the hippocampal formation. We thus suggest that the reciprocal connectivity between the subiculum and the parahippocampal region is organized as parallel pathways that serve to segregate information flow and thus maintain the identity of processed information. Although this parallel organization is comparable to that of the CA1-parahippocampal projections, differences exist with respect to the degree of collateralization.  相似文献   

10.
The cortical regions dorsally adjacent to the posterior rhinal sulcus in the rat can be divided into a rostral region, the perirhinal cortex, which shares features of the monkey perirhinal cortex, and a caudal region, the postrhinal cortex, which has connectional attributes similar to the monkey parahippocampal cortex. We examined the connectivity among the rat perirhinal (areas 35 and 36), postrhinal, and entorhinal cortices by placing anterograde and retrograde tracers in all three regions. There is a dorsal-to-ventral cascade of connections in the perirhinal and entorhinal cortices. Dorsal area 36 projects strongly to ventral area 36, and ventral area 36 projects strongly to area 35. The return projections are substantially weaker. The cascade continues with the perirhinal to entorhinal connections. Area 35 is more strongly interconnected with the entorhinal cortex, ventral area 36 somewhat less strongly, and dorsal area 36 projects only weakly to the entorhinal cortex. The postrhinal-to-perirhinal connections also follow this general pattern. The postrhinal cortex is more heavily connected with dorsal area 36 than with ventral area 36 and is more heavily connected with area 36 than with area 35. The rostral portion of the postrhinal cortex has the strongest connections with the perirhinal cortex. Like in the monkey, the perirhinal and postrhinal cortices have different patterns of projections to the entorhinal cortex. The perirhinal cortex is preferentially connected with the rostrolateral portion of the entorhinal cortex. The postrhinal cortex projects to a part of this same region but is also connected to caudal and medial portions of the entorhinal cortex. The perirhinal and postrhinal projections to the entorhinal cortex originate in layers III and V and terminate preferentially in layers II and III. J. Comp. Neurol. 391:293–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Connections of the parahippocampal cortex. I. Cortical afferents   总被引:5,自引:0,他引:5  
In the present study in the cat the parahippocampal cortex denotes the caudoventral part of the limbic lobe and is composed of the entorhinal and perirhinal cortices. The cytoarchitecture of these areas and their borders with adjacent cortical areas are briefly discussed. The organization of the cortical afferents of the parahippocampal cortex was studied with the aid of retrograde and anterograde tracing techniques. In order to identify the source of cortical afferents, injections of retrograde tracers such as wheat germ agglutinin conjugated with horseradish peroxidase (WGA-HRP), or the fluorescent substances fast blue or nuclear yellow, were placed in different parts of the parahippocampal cortex. In an attempt to further disclose the topographical and laminar organization of the afferent pathways, injections of tritiated amino acids were placed in cortical areas that were found to project to the parahippocampal cortex. The results of these experiments indicate that fibers from olfactory-related areas, the hippocampus, and other parts of the limbic cortex project only to the entorhinal cortex. The afferents from olfactory structures terminate predominantly superficially, whereas hippocampal and limbic cortical afferents are directed mainly to layers deep to the lamina dissecans. Paralimbic areas, including the anterior cingulate and the prelimbic cortices on the medial aspect, and the orbitofrontal and granular and agranular insular cortices on the lateral aspect of the hemisphere, project to the entorhinal cortex and medial parts of area 35 of the perirhinal cortex. These mostly mesocortical afferents terminate in both the superficial and deep layers of the entorhinal and perirhinal cortices. Parasensory association areas, which form part of the neocortex, do not project farther medially in the parahippocampal cortex than the perirhinal areas 35 and 36. These afferents mainly stem from a rather wide rim of neocortex that lies directly adjacent to area 36 and extends from the posterior sylvian gyrus via the posterior ectosylvian gyrus into the posterior suprasylvian gyrus. There is a rostrocaudal topographical arrangement in these projections such that rostral cortical areas distribute more rostrally and caudal parts project to more caudal parts of the perirhinal cortex. The cortex of the posterior suprasylvian gyrus contains the paravisual areas 20 and 21. The posterior sylvian gyrus most probably represents a para-auditory association area, whereas the most ventral part of the posterior ectosylvian gyrus may constitute a convergence area for visual and auditory inputs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
This study of the rostral part of medial agranular cortex (AGm) was undertaken with two principal aims in mind. First, to delineate the efferent connections of AGm and compare these with the pattern of afferents defined by us in a previous study. Second, to provide a firmer basis for anatomical and functional comparisons with cortical regions in monkeys. Autoradiographic, horseradish peroxidase, and fiber degeneration techniques were used. Rostral AGm has a variety of corticocortical connections--with lateral agranular motor cortex (AGl); visual, auditory, and somatic sensory regions; and limbic/paralimbic areas including orbital, insular, perirhinal, entorhinal, retrosplenial and presubicular fields. The projections to orbital, perirhinal and entorhinal cortices are bilateral. Thalamic projections of rostral AGm are concentrated in the ventral lateral, central lateral, paracentral, mediodorsal and ventromedial nuclei. Moderate terminal fields are consistently seen in the reticular, anteromedial, central medial, gelatinosus, parafascicular, and posterior nuclei. More caudal projections reach the central gray, superior colliculus and pontine gray. The efferents of the adjacent AGl were also examined. Although many of these overlapped those of rostral AGm, there were no efferents to visual or auditory cortex and limbic/paralimbic projections were reduced. Thalamic projections were more focused in the ventral lateral and posterior nuclei and there were no terminal fields in the central gray or superior colliculus. Based on its afferent and efferent connections, role in contralateral neglect, and the results of microstimulation studies, rostral AGm can be viewed as a multimodal association area with strong ties to the motor system. On these structural and functional grounds, rostral AGm bears certain striking resemblances to the frontal eye field, supplementary motor, and arcuate premotor areas of monkey cortex.  相似文献   

13.
Accumulating evidence suggests that the medial prefrontal cortex (mPFC) plays a critical role in the formation, retrieval and long-term storage of hippocampal-dependent memories. Consistent with this, there are direct hippocampal projections to the mPFC. Moreover, the mPFC sends robust projections to the perirhinal and entorhinal cortices, two interconnected cortical fields that funnel information into and out of the hippocampus. However, the significance of the latter projection remains unclear because no data are available regarding the rhinal targets of mPFC axons. This question was examined in the present study using a combination of anterograde tracing with Phaseolus vulgaris leucoagglutinin and pre-embedding gamma-aminobutyric acid (GABA) immunocytochemistry in guinea pigs. Following Phaseolus vulgaris leucoagglutinin injections in the mPFC, anterogradely labeled axons were seen in the perirhinal (mainly superficial layers) and lateral entorhinal (mainly deep layers) cortices. In the electron microscope, the synaptic articulation of anterogradely labeled mPFC axon terminals with perirhinal and entorhinal neurons was found to be nearly identical. In these two rhinal fields, mPFC axon terminals only formed asymmetric synapses, typically with GABA-immunonegative spines ( approximately 70%) but occasionally with dendritic profiles ( approximately 30%), half of which were GABA immunopositive. In the light of earlier observations, these findings indicate that mPFC inputs exert mainly excitatory effects in the rhinal cortices, prevalently on principal neurons. Thus, these results suggest that the mPFC may affect hippocampal-dependent memories by enhancing impulse traffic into and out of the hippocampus at the level of the rhinal cortices.  相似文献   

14.
We investigated the topographic and laminar organization of the intrinsic projections and interconnections of the macaque monkey perirhinal and parahippocampal cortices. Discrete anterograde tracer injections placed at various rostrocaudal and mediolateral levels in these cortices revealed extensive associational connections both within and between the perirhinal and parahippocampal cortices. Areas 35, 36rm, 36rl, 36cm, and 36cl are highly interconnected, whereas area 36d (encompassing the dorsal portion of the medial temporal pole) shares only modest connections with the rest of the perirhinal cortex. Areas TH, TFm, and TFl of the parahippocampal cortex also share an extensive network of associational connections that tend to be heaviest within a given subdivision. Area 36c of the perirhinal cortex is the main interface between the perirhinal and parahippocampal cortices. Its heaviest connections are with area 36r and the anterior aspect of area TF. The laminar organization of all these connections is typical of associational projections. Anterograde tracer experiments revealed that these projections are distributed through both deep and superficial layers, although heavier projections are directed toward the superficial layers. Results of retrograde tracer experiments suggested that the projections from caudal areas (36c or TF) to area 36r are of the feedforward type, whereas the projections from areas 36r and 36c to area TF are of the feedback type. These findings suggest that the perirhinal cortex is at a higher level than the parahippocampal cortex in the hierarchy of associational cortices. We discuss the functional implications of the organization of these extensive networks of intrinsic, associational projections.  相似文献   

15.
Jones BF  Witter MP 《Hippocampus》2007,17(10):957-976
In the present study we aimed to determine the topographical and laminar characteristics of cingulate projections to the parahippocampal region and hippocampal formation in the rat, using the anterograde tracers Phaseolus vulgaris-leucoagglutinin and biotinylated dextranamine. The results show that all areas of the cingulate cortex project extensively to the parahippocampal region but not to the hippocampal formation. Rostral cingulate areas (infralimbic-, prelimbic cortices, rostral 1/3 of the dorsal anterior cingulate cortex) primarily project to the perirhinal and lateral entorhinal cortices. Projections from the remaining cingulate areas preferentially target the postrhinal and medial entorhinal cortices as well as the presubiculum and parasubiculum. At a more detailed level the projections show differences in topographical specificities according to their site of origin within the cingulate cortex suggesting the functional contribution of cingulate areas may differ at an individual level. This organization of the cingulate-parahippocampal projections relates to the overall organization of postulated parallel parahippocampal-hippocampal processing streams mediated through the lateral and medial entorhinal cortex respectively. The mid-rostrocaudal part of the dorsal anterior cingulate cortex appears to be connected to both networks as well as to rostral and caudal parts of the cingulate cortex. This region may therefore responsible for integrating information across these specific networks.  相似文献   

16.
The entorhinal cortices are known to give rise to powerful projections that terminate in the hippocampus and dentate gyrus. Collectively, these link the hippocampal formation to many parts of the cortex and to subcortical structures like the amygdala. Non-hippocampal projections from the entorhinal cortices are understood poorly. Such projections to neighboring temporal areas in the rat and rhesus monkey have been investigated using the autoradiographic and horseradish peroxidase (HRP) tracing procedures. In the rat, HRP-labeled neurons were observed in the intermediate and lateral fields of the entorhinal cortices after injections of temporal cortical areas 20, 35, 36 and 41. They were located predominantly in layers II, III and IV. In the monkey , HRP-labeled neurons were observed in the entorhinal cortices after injections of the rostral superior temporal gyrus (area TA or 22); the temporal polar cortex (area TG or 38); the inferior temporal cortex (area TE or 20); the perirhinal cortex (area 35) and the posterior parahippocampal cortices (areas TF and TH). Unlike the rat, labeled entorhinal neurons in the monkey were located in layer IV. Autoradiographic experiments in the monkey yielded complimentary results. In view of the fact that layer IV of the entorhinal cortex in both the rat and monkey receives a powerful projection from the subicular-CA1 fields of the hippocampal formation, the results imply that this layer mediates an indirect non-fornical connection between the hippocampal formation and the temporal cortex.  相似文献   

17.
We examined the distribution of calbindin D-28k-immunoreactive (CB-IR) neurons, fibers, and neuropil in the entorhinal (area 28), perirhinal (areas 35 and 36), and parahippocampal (areas TH and TF) cortices in the macaque monkey. Two main findings are reported. First, except for CB-IR neurogliaform cells that are only observed in the parahippocampal cortex, the morphology of CB-stained pyramidal and nonpyramidal cells were similar across the three cortical areas examined. Second, we find that the topography of CB staining differed between the three areas. The entorhinal cortex exhibits the most striking gradient of CB staining such that the most anterior and medial portions are most strongly labeled, whereas posterior and lateral areas exhibit only weak labeling. The labeling throughout the perirhinal and parahippocampal cortices is more homogeneous. Area 35 contains only lightly stained neuropil and few CB-IR cells. Area 36 and areas TH and TF of the parahippocampal cortex contain a moderate to high density of CB-IR cells and fibers throughout their full rostrocaudal extents, although each area exhibits unique laminar patterns of staining. In all areas examined, the highest density of CB-positive cells and fibers is observed in superficial layers with lower densities of CB-positive cells and fibers present in deep layers. These findings, taken together with our current understanding of the connections of these areas may have implications for understanding the circuit properties of the entorhinal, perirhinal, and parahippocampal cortices areas in both normal and disease states.  相似文献   

18.
The entorhinal and perirhinal cortices have long been accorded a special role in the communications between neocortical areas and the hippocampal formation. Less attention has been paid to the presubiculum, which, however, is also a component of the parahippocampal gyrus, receives dense inputs from several cortical areas, and itself is a major source of connections to the entorhinal cortex (EC). In part of a closer investigation of corticohippocampal systems, the authors applied single-axon analysis to the connections from the inferior parietal lobule (IPL) to the presubiculum. One major result from this approach was the finding that many of these axons (at least 10 of 14) branch beyond the presubiculum. For 4 axons, branches were followed to area TF and to the border between the perirhinal and entorhinal cortices, raising the suggestion that these areas, which sometimes are viewed as serial stages, are tightly interconnected. In addition, the current data identify several features of presubicular organization that may be relevant to its functional role in visuospatial or memory processes: 1) Terminations from the IPL, as previously reported for prefrontal connections (Goldman-Rakic et al. [1984] Neuroscience 12:719-743), form two to four patches in the superficial layers. These align in stripes, but only for short distances ( approximately 1.5 mm). This pattern suggests a strong compartmentalization in layers I and II that is also indicated by cytochrome oxidase and other markers. 2) Connections tend to be bistratified, terminating in layers I-II and deeper in layer III. 3) Single axons terminate in layer I alone or in different combinations of layers. This may imply some heterogeneity of subtypes. 4) Individual axons, both ipsilateral projecting (n = 14 axons) and contralateral projecting (n = 6 axons), tend to have large arbors (0.3-0.8 mm across). Finally, the authors observe that projections from the IPL, except for its anteriormost portion, converge at the perirhinal-entorhinal border around the posterior tip of the rhinal sulcus. These projections partially overlap with projections from ventromedial areas TE and TF, and this convergence may contribute to the severe deficits in visual recognition memory resulting from ablations of rhinal cortex.  相似文献   

19.
In this review, we aim to reappraise the organization of intrinsic and extrinsic networks of the entorhinal cortex with a focus on the concept of parallel cortical connectivity streams. The concept of two entorhinal areas, the lateral and medial entorhinal cortex, belonging to two parallel input–output streams mediating the encoding and storage of respectively what and where information hinges on the claim that a major component of their cortical connections is with the perirhinal cortex and postrhinal or parahippocampal cortex in, respectively, rodents or primates. In this scenario, the lateral entorhinal cortex and the perirhinal cortex are connectionally associated and likewise the postrhinal/parahippocampal cortex and the medial entorhinal cortex are partners. In contrast, here we argue that the connectivity matrix emphasizes the potential of substantial integration of cortical information through interactions between the two entorhinal subdivisions and between the perirhinal and postrhinal/parahippocampal cortices, but most importantly through a new observation that the postrhinal/parahippocampal cortex projects to both lateral and medial entorhinal cortex. We suggest that entorhinal inputs provide the hippocampus with high‐order complex representations of the external environment, its stability, as well as apparent changes either as an inherent feature of a biological environment or as the result of navigating the environment. This thus indicates that the current connectional model of the parahippocampal region as part of the medial temporal lobe memory system needs to be revised.  相似文献   

20.
Majak K  Pitkänen A 《Hippocampus》2003,13(8):922-942
The periamygdaloid cortex, an amygdaloid region that processes olfactory information, projects to the hippocampal formation and parahippocampal region. To elucidate the topographic details of these projections, pathways were anterogradely traced using Phaseolus vulgaris leukoagglutinin (PHA-L) in 14 rats. First, we investigated the intradivisional, interdivisional, and intra-amygdaloid connections of various subfields [periamygdaloid subfield (PAC), medial subfield (PACm), sulcal subfield (PACs)] of the periamygdaloid cortex. Thereafter, we focused on projections to the hippocampal formation (dentate gyrus, hippocampus proper, subiculum) and to the parahippocampal region (presubiculum, parasubiculum, entorhinal, and perirhinal and postrhinal cortices). The PACm had the heaviest intradivisional projections and it also originated light interdivisional projections to other periamygdaloid subfields. Projections from the other subfields converged in the PACs. All subfields provided substantial intra-amygdaloid projections to the medial and posterior cortical nuclei. In addition, the PAC subfield projected to the ventrolateral and medial divisions of the lateral nucleus. The heaviest periamygdalohippocampal projections originated in the PACm and PACs, which projected moderately to the temporal end of the stratum lacunosum moleculare of the CA1 subfield and to the molecular layer of the ventral subiculum. The PACm also projected moderately to the temporal CA3 subfield. The heaviest projections to the entorhinal cortex originated in the PACs and terminated in the amygdalo-entorhinal, ventral intermediate, and medial subfields. Area 35 of the perirhinal cortex was lightly innervated by the PAC subfield. Thus, these connections might allow for olfactory information entering the amygdala to become associated with signals from other sensory modalities that enter the amygdala via other nuclei. Further, the periamygdalohippocampal pathways might form one route by which the amygdala modulates memory formation and retrieval in the medial temporal lobe memory system. These pathways can also facilitate the spread of seizure activity from the amygdala to the hippocampal and parahippocampal regions in temporal lobe epilepsy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号