首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Results from the first paper in this series indicated that the "primary" stilbenedisulfonate (PSD) site was not located on the DBDS (4, 4'-dibenzamido-2, 2'-stilbenedisulfonate) transport pathway into magnesium resealed ghosts (MRSG). Rather, transport correlated with DBDS binding to the "second" class of proton-activated binding sites located on the membrane domain of band 3 [Biochem. J. 388 (2005) 343]. Here we report the discovery that reversible binding of extracellular H2DIDS (4, 4'-diisothiocyanatodihydro-2, 2'-stilbenedisulfonate) to the PSD site causes a greater than 5-fold acceleration in the rate of DBDS efflux from pre-loaded MRSG at physiological pH. Pre-labeling all of the PSD sites with H2DIDS inhibited the acceleration effect completely, thus confirming mediation by band 3. Acceleration of DBDS efflux could be mimicked by establishing an externally directed proton gradient (acidic inside, pH 7.4 outside). Under these conditions, addition of extracellular H2DIDS neither accelerated DBDS efflux further nor was proton-induced acceleration inhibited. The results of this paper support the view that the PSD binding site on band 3 is an allosteric regulatory site which is not located on the SD transport pathway. We propose a model where H2DIDS binding to the PSD site modulates activity at the "second" class of sites by raising the pK for transport of DBDS into the physiological pH range.  相似文献   

2.
Evidence is emerging which indicates that the anion transport activity of band 3 may be regulated. I review the molecular basis for regulation of the anion transport function of band 3 in terms of evidence showing that divalent anion transport involves a slow “hysteretic” transition between two functional states, mediated by interactions between subunits within band 3 oligomers. In addition, I briefly describe recent work from my laboratory where we have discovered a novel manifestation of slow conformational changes in band 3. This involves 4,4′-dibenzamido-2,2′-stilbenedisulfonate (DBDS) binding to a second, proton-activated site distinct from the primary stilbenedisulfonate site. This site is exposed on the outer aspect of band 3 when the pH is lowered (pK 5.0). This is the same pK as the protonation site on band 3 involved in divalent anion–proton co-transport (APCT) [J. Gen. Physiol. 79 (1982) 87]. Significantly, we have found that DBDS binding to this proton-activated site has unusually slow kinetics, and increasing DBDS concentration causes a decrease in the apparent pseudo-first-order rate constant. These results suggest that a slow conformational pre-equilibrium is the rate limiting step in DBDS binding to the proton-activated site on band 3 observed at low pH. Our results support an allosteric two-state model for regulation of divalent anion transport by band 3 oligomers involving a slow conformational transition and interactions between subunits [Biochemistry 31 (1992) 7301].  相似文献   

3.
Evidence is emerging which indicates that the anion transport activity of band 3 may be regulated. I review the molecular basis for regulation of the anion transport function of band 3 in terms of evidence showing that divalent anion transport involves a slow "hysteretic" transition between two functional states, mediated by interactions between subunits within band 3 oligomers. In addition, I briefly describe recent work from my laboratory where we have discovered a novel manifestation of slow conformational changes in band 3. This involves 4,4'-dibenzamido-2,2'-stilbenedisulfonate (DBDS) binding to a second, proton-activated site distinct from the primary stilbenedisulfonate site. This site is exposed on the outer aspect of band 3 when the pH is lowered (pK approximately 5.0). This is the same pK as the protonation site on band 3 involved in divalent anion-proton co-transport (APCT) [J. Gen. Physiol. 79 (1982) 87]. Significantly, we have found that DBDS binding to this proton-activated site has unusually slow kinetics, and increasing DBDS concentration causes a decrease in the apparent pseudo-first-order rate constant. These results suggest that a slow conformational pre-equilibrium is the rate limiting step in DBDS binding to the proton-activated site on band 3 observed at low pH. Our results support an allosteric two-state model for regulation of divalent anion transport by band 3 oligomers involving a slow conformational transition and interactions between subunits [Biochemistry 31 (1992) 7301].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号