首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
During T cell-dependent antibody responses, B cells within germinal centers (GC) alter the affinity of their antigen receptor by introducing somatic mutations into variable region of immunoglobulin (IgV) genes. During this process, GC B cells are destined to die unless positively selected by antigens and CD40-ligand. To understand survival/death control of germinal center B cell, the expression of four apoptosis-inducing genes, Fas, c-myc, Bax, and P53, together with the survival gene bcl-2, has been analyzed herein among purified tonsillar naive, GC, and memory B cells. IgD+CD38- naive B cells were separated into CD23- (mature B cell [Bm]1) subset and CD23+ (Bm2), IgD- CD38+ GC B cells were separated into subsets of CD77+ centroblasts (Bm3) and CD77- centrocytes (Bm4), whereas IgD-CD38- cells represented the Bm5 memory B cell subset. Sequence analysis of IgV region genes indicated that somatic hypermutation was triggered in the Bm3 centroblast subset. Here we show that bcl-2 is only detectable with naive (Bm1 and 2) and memory B cell (Bm5) subsets, whereas all four apoptosis-inducing genes were most significantly expressed within GC B cells. Fas was equally expressed in Bm3 centroblasts and Bm4 centrocytes, whereas Bax was most significantly expressed in Bm4 centrocytes. c-myc, a positive regulator of cell cycle, was most significantly expressed in proliferating Bm3 centroblasts, whereas P53, a negative regulator of cell cycle, was most signficantly expressed in nonproliferating Bm4 centrocytes. The present results indicate that the survival/death of GC B cells are regulated by the up- and downregulation of multiple genes, among which the expression of c-myc and P53 in the absence of bcl-2 may prime the proliferating Bm3 centroblasts and nonproliferating Bm4 centrocytes to apoptosis.  相似文献   

2.
3.
4.
T cell–dependent humoral immune responses are initiated by the activation of naive B cells in the T cell areas of the secondary lymphoid tissues. This primary B cell activation leads to migration of germinal center (GC) cell precursors into B cell follicles where they engage follicular dendritic cells (FDC) and T cells, and differentiate into memory B cells or plasma cells. Both B cell migration and interaction with FDC critically depend on integrin-mediated adhesion. To date, the physiological regulators of this adhesion were unkown. In the present report, we have identified the c-met–encoded receptor tyrosine kinase and its ligand, the growth and motility factor hepatocyte growth factor/scatter factor (HGF/SF), as a novel paracrine signaling pathway regulating B cell adhesion. We observed that c-Met is predominantly expressed on CD38+CD77+ tonsillar B cells localized in the dark zone of the GC (centroblasts). On tonsil B cells, ligation of CD40 by CD40-ligand, induces a transient strong upregulation of expression of the c-Met tyrosine kinase. Stimulation of c-Met with HGF/SF leads to receptor phosphorylation and, in addition, to enhanced integrin-mediated adhesion of B cells to both VCAM-1 and fibronectin. Importantly, the c-Met ligand HGF/SF is produced at high levels by tonsillar stromal cells thus providing signals for the regulation of adhesion and migration within the lymphoid microenvironment.  相似文献   

5.
The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell–intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell–specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.  相似文献   

6.
7.
8.
9.
Type I interferons (IFNalpha/beta) are central mediators for antiviral responses. Using a functional cloning strategy, we have identified a molecule designated IPS-1. IPS-1 overexpression caused antiviral responses by producing type I IFN and IFN-inducible genes through activation of IRF3, IRF7 and NF-kappaB. TBK1 and IKKi protein kinases were required for the IPS-1-mediated IFN induction. IPS-1 contains an N-terminal caspase recruiting domain (CARD)-like structure that mediates interaction with the CARD of RIG-I and Mda5, cytoplasmic RNA helicases sensing RNA viruses. Reduction of IPS-1 by siRNA blocked IFN induction by virus infection. Thus, IPS-1 is an adapter that mediates RIG-I- and Mda5-dependent antiviral responses.  相似文献   

10.
11.
12.
It has recently been demonstrated that memory B cells can reenter and reengage germinal center (GC) reactions, opening the possibility that multi-hit lymphomagenesis gradually occurs throughout life during successive immunological challenges. Here, we investigated this scenario in follicular lymphoma (FL), an indolent GC-derived malignancy. We developed a mouse model that recapitulates the FL hallmark t(14;18) translocation, which results in constitutive activation of antiapoptotic protein B cell lymphoma 2 (BCL2) in a subset of B cells, and applied a combination of molecular and immunofluorescence approaches to track normal and t(14;18)+ memory B cells in human and BCL2-overexpressing B cells in murine lymphoid tissues. BCL2-overexpressing B cells required multiple GC transits before acquiring FL-associated developmental arrest and presenting as GC B cells with constitutive activation–induced cytidine deaminase (AID) mutator activity. Moreover, multiple reentries into the GC were necessary for the progression to advanced precursor stages of FL. Together, our results demonstrate that protracted subversion of immune dynamics contributes to early dissemination and progression of t(14;18)+ precursors and shapes the systemic presentation of FL patients.  相似文献   

13.
14.
Tonsillar germinal center and immunoglobulin M+ (IgM+)IgD+ B cells as well as peripheral blood (PB) CD5+ and CD5- (conventional) B cells from a 4-yr-old child were isolated and nucleotide sequences of expressed Ig heavy chain variable regions encoded by VH4 gene family members were determined from amplified cDNA. Whereas both tonsillar IgM+IgD+ cells and the majority of IgM-expressing CD5+ and CD5- PB B cells showed no or little somatic mutation, tonsillar germinal center (GC) B cells and IgG-expressing PB B cells carried a high load of somatic mutations in their V region genes. This suggests that somatically mutated memory B cells which have switched isotype accumulate in the PB already at young age. Their frequency seems to increase with age. On the other hand, the antibody repertoire of tonsillar IgM+IgD+ B cells and the majority of IgM-expressing PB B cells is determined by germline-encoded specificities and by generation of variability in the complementary determining region III through VH-DH-JH recombination. A fraction of IgM-bearing PB B cells carries somatically mutated V region genes and probably represents GC-derived B cells which have left the GC at an early stage of the GC reaction without undergoing isotype switching. 10 VH4 germline genes were found to be expressed. Three gene segments were overrepresented in the sequence collection (35 of 50 clones): VH4.21 (30%), V71-4 (20%), and 3D279D (20%). It appears that most potentially functional VH4 germline genes are expressed in peripheral B cells. Some members of this VH gene family are clearly overrepresented over others.  相似文献   

15.
Dendritic cells (DC) produce interleukin-12 (IL-12) in response to Toll-like receptor (TLR) activation. Two major TLR signaling pathways participate in the response to pathogens: the nuclear factor-kappaB (NF-kappaB)-dependent pathway leading to inflammatory cytokine secretion including IL-12 and the interferon (IFN)-dependent pathway inducing type I IFN and IFN-regulated genes. Here we show that the two pathways cooperate and are likely both necessary for inducing an optimal response to pathogens. R-848/Resiquimod (TLR7 ligand in the mouse and TLR7/8 ligand in human) synergized with poly(I:C) (TLR3 ligand) or lipopolysaccharide (LPS; TLR4 ligand) in inducing high levels of bioactive IL-12p70 secretion and IFN-beta mRNA accumulation by mouse bone marrow-derived DC (BM-DC). Strikingly, IL-12p70 but not IL-12p40 secretion was strongly reduced in BM-DC from STAT1(-/-) and IFNAR(-/-) mice. STAT1 tyrosine-phosphorylation, IL-12p35, and IFN-beta mRNA accumulation were strongly inhibited in IFNAR(-/-) BM-DC activated with the TLR ligand combinations. Similar observation were obtained in human TLR8-expressing monocyte-derived DC (moDC) using neutralizing anti-IFNAR2 antibodies, although results also pointed to a possible involvement of IFN-lambda1 (also known as IL-29). This suggests that TLR engagement on DC induces endogenous IFNs that further synergize with the NF-kappaB pathway for optimal IL-12p70 secretion. Moreover, analysis of interferon regulatory factors (IRF) regulation in moDC suggests a role for IRF7/8 in mediating IRF3-independent type I IFN and possibly IL-12p35 synthesis in response to TLR7/8.  相似文献   

16.
17.
A hallmark of SLE is the production of high-titer, high-affinity, isotype-switched IgG autoantibodies directed against nucleic acid-associated antigens. Several studies have established a role for both type I IFN (IFN-I) and the activation of TLRs by nucleic acid-associated autoantigens in the pathogenesis of this disease. Here, we demonstrate that 2 IFN-I signaling molecules, IFN regulatory factor 9 (IRF9) and STAT1, were required for the production of IgG autoantibodies in the pristane-induced mouse model of SLE. In addition, levels of IgM autoantibodies were increased in pristane-treated Irf9 -/- mice, suggesting that IRF9 plays a role in isotype switching in response to self antigens. Upregulation of TLR7 by IFN-alpha was greatly reduced in Irf9 -/- and Stat1 -/- B cells. Irf9 -/- B cells were incapable of being activated through TLR7, and Stat1 -/- B cells were impaired in activation through both TLR7 and TLR9. These data may reveal a novel role for IFN-I signaling molecules in both TLR-specific B cell responses and production of IgG autoantibodies directed against nucleic acid-associated autoantigens. Our results suggest that IFN-I is upstream of TLR signaling in the activation of autoreactive B cells in SLE.  相似文献   

18.
Memory B cells are a dynamic subset of the mature B cell population that in some cases can reenter germinal centers (GCs) in response to iterative infections. Such a reactivation can lead to accumulation of genetic lesions in these cells, potentially from repetitive activation of the B cell mutator enzyme AID. Normal memory B cells do not survive repeated reentries into GCs. In this issue, Sungalee et al. demonstrate that memory B cells harboring the oncogenic BCL2:IGH translocation, which results in constitutive BCL2 expression, survive multiple GC entries upon repetitive immunization. Through these multiple GC reentries, the hallmark BCL2:IGH translocation enables AID-induced hypermutation and propagates clonal evolution toward malignant follicular lymphoma.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号