首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A seminal plasma protein, semenogelin I (SgI), contributes to sperm clotting, upon binding to Zn2+, and can be proteolyzed by prostate-specific antigen (PSA), resulting in release of the trapped spermatozoa after ejaculation. In contrast, the role of SgI in the development and progression of any types of malignancies remains largely unknown. We previously demonstrated that SgI was overexpressed in prostate cancer tissues and its expression was enhanced by zinc treatment in LNCaP cells. In the current study, using cell lines stably expressing SgI, we investigated its biological functions, in conjunction with zinc, androgen, and androgen receptor (AR), in prostate cancer. Zinc, without SgI, inhibited cell growth of both AR-positive and AR-negative lines. Co-expression of SgI prevented zinc inhibiting dihydrotestosterone-mediated proliferation of AR-positive cells, whereas SgI and/or dihydrotestosterone showed marginal effects in AR-negative cells. Similar effects of SgI overexpression in LNCaP on dihydrotestosterone-induced cell invasion, such as its significant enhancement with zinc, were seen. Overexpression of SgI in LNCaP and CWR22Rv1 cells also augmented dihydrotestosterone-mediated PSA expression (mRNA, protein) in the presence of zinc. However, culture in the conditioned medium containing secreted forms of SgI failed to significantly increase cell viability with or without zinc. In luciferase reporter gene assays, SgI showed even slight inhibitory effects (8% and 15% decreases in PC3 and CWR22Rv1, respectively) at 0 μM zinc and significant stimulatory effects (2.1- and 3.2-fold) at 100 μM zinc on dihydrotestosterone-enhanced AR transactivation. Co-immunoprecipitation then demonstrated dihydrotestosterone-induced physical interactions between AR and SgI. These results suggest that intracellular SgI, together with zinc, functions as an AR coactivator and thereby promotes androgen-mediated prostate cancer progression.  相似文献   

2.
3.
4.
Bao BY  Hu YC  Ting HJ  Lee YF 《Oncogene》2004,23(19):3350-3360
Epidemiological data on prostate cancer incidence has suggested that vitamin D deficiency may be a risk factor for prostate cancer. The antiproliferative activity of 1alpha, 25-dihydroxyvitamin D3 (1,25-VD) and its analogues has been demonstrated in many prostate cancer models, yet the detailed mechanisms underlying this protective effect of vitamin D remain to be determined. Here, we demonstrate that two androgen receptor (AR)-positive prostate cancer cell lines, LNCaP and CWR22R, are more sensitive to the growth inhibitory effects of 1,25-VD compared to the AR-negative prostate cancer cell lines, PC-3 and DU 145. 1,25-VD treatment inhibited cyclin-dependent kinase 2 (cdk2) activity and induced G0/G1 arrest. Interestingly, we also found that 1,25-VD treatment induced the expression of AR, and that the onset of the G0/G1 arrest in LNCaP and CWR22R cells is correlated with the onset of increasing expression of AR. This implies that the antiproliferative actions of 1,25-VD in AR-positive prostate cancer might be mediated through AR. Furthermore, a reduction in 1,25-VD-mediated growth inhibition was observed when AR signaling was blocked by antiandrogens, AR RNA interference, or targeted disruption of AR. Taken together, our data suggest that the androgen/AR signaling plays an important role in the antiproliferative effects of 1,25-VD and restoration of androgen responsiveness by 1,25-VD might be beneficial for the treatment of hormone-refractory prostate cancer patients.  相似文献   

5.
Niu Y  Yeh S  Miyamoto H  Li G  Altuwaijri S  Yuan J  Han R  Ma T  Kuo HC  Chang C 《Cancer research》2008,68(17):7110-7119
Despite being well recognized as the best biomarker for prostate cancer, pathophysiologic roles of prostate-specific antigen (PSA) remain unclear. We report here that tissue PSA may be involved in the hormone-refractory prostate cancer progression. Histologic analyses show that the increased tissue PSA levels are correlated with lower cell apoptosis index and higher cell proliferation rate in hormone-refractory tumor specimens. By stably transfecting PSA cDNA into various prostate cancer cell lines, we found that PSA could promote the growth of androgen receptor (AR)-positive CWR22rv1 and high-passage LNCaP (hormone-refractory prostate cancer cells) but not that of AR-negative PC-3 and DU145 cells. Surprisingly, the protease activity of PSA is not crucial for PSA to stimulate growth and promote AR transactivation. We further showed that increased PSA could enhance ARA70-induced AR transactivation via modulating the p53 pathway that results in the decreased apoptosis and increased cell proliferation in prostate cancer cells. Knockdown of PSA in LNCaP and CWR22rv1 cells causes cell apoptosis and cell growth arrest at the G(1) phase. In vitro colony formation assay and in vivo xenografted tumor results showed the suppression of prostate cancer growth via targeting PSA expression. Collectively, our findings suggest that, in addition to being a biomarker, PSA may also become a new potential therapeutic target for prostate cancer. PSA small interfering RNA or smaller molecules that can degrade PSA protein may be developed as alternative approaches to treat the prostate cancer.  相似文献   

6.
7.
Huang D  Liu X  Plymate SR  Idowu M  Grimes M  Best AM  McKinney JL  Ware JL 《Oncogene》2004,23(41):6881-6889
The epidermal growth factor receptor and androgen receptor (AR) both play major roles in the control of prostate growth. Our hypothesis is that shared downstream components of these two signaling pathways are significant participants in androgen-independent growth. Our first objective was to identify proteins whose activation and/or expression in AR-positive prostate epithelial cells are induced by both epidermal growth factor (EGF) and dihydrotestosterone (DHT). AR expression was induced in a tumorigenic, metastatic subline of the SV40 large T-antigen immortalized human prostate epithelial subline M12 by stable transfection with human wild-type AR cDNA. These M12AR (+) cells with functional AR were treated in parallel with EGF (10 ng/ml) or DHT (10(-8) M) for 24 h before 2D gel electrophoresis and Western immunoblotting with antiphosphotyrosine monoclonal antibody. Coomassie blue-stained spots on a 2D gel run in parallel were aligned with the phosphoproteins on the Western immunoblot, and identified by matrix-assisted laser desorption ionization/time-of-flight mass spectroscopy. The most interesting of the seven proteins that appeared to be phosphorylated by these criteria was 14-3-3 protein sigma. Protein extracted after either EGF or DHT treatment, immunoprecipitated with antiphosphotyrosine monoclonal antibody, and immunoblotted by anti-14-3-3 sigma confirmed phosphorylation of 14-3-3 sigma. Addition of either DHT or EGF to the M12AR(+) cells induced subcellular migration of 14-3-3 sigma and activated a 14-3-3 sigma reporter construct. Immunohistochemical analysis revealed nuclear localization of 14-3-3 sigma in higher Gleason grade prostate cancers relative to benign glands. These findings implicate 14-3-3 sigma in the development of human prostate cancer cells and could provide a new target for intervention in prostate cancer.  相似文献   

8.
9.
Prostate cancer cells are dependent on androgen for growth and survival; as such, inhibition of androgen receptor (AR) activity is the first line of intervention for disseminated disease. Recently, specific cytotoxic agents have been shown to extend survival times in patients with advanced disease. Given the established ability of androgen to modify cell survival in prostate cancer cells, it is imperative to determine the effect of the hormonal environment on cytotoxic response. Here, we show that the response of prostate cancer cells to taxane-induced cell death is significantly enhanced by androgen stimulation in AR-positive, androgen-dependent prostate cancer cells. Similar results were observed on androgen-independent AR activation. By contrast, AR-positive yet androgen-independent or AR-negative cells were refractory to androgen influence on taxane function. The ability of androgen to potentiate taxane activity was dependent on its mitogenic capacity and was separable from overall AR activity, as coadministration of AR antagonists, G(1) cyclin-dependent kinase inhibitors, or high-dose (growth inhibitory) androgen nullified the proapoptotic function of androgen. Observed induction of cell death was attributed to caspase-dependent apoptosis and correlated with p53 activation. Combined, these data indicate that the cytotoxic effects of taxanes are substantially influenced by the hormonal environment and/or status of AR activity in prostate cancer cells and provide the foundation for refinement and optimization of cytotoxic intervention in prostate cancer.  相似文献   

10.
M V Sadi  P C Walsh  E R Barrack 《Cancer》1991,67(12):3057-3064
A longstanding goal has been to determine whether androgen receptor (AR) levels could be used to predict the clinical response of metastatic prostate cancer to androgen withdrawal therapy. A major limitation of previous studies was the use of homogenized tissue, which yields an average AR content for all cells. By AR immunohistochemical study using an antibody specific for AR the authors assessed nuclear AR content specifically in the malignant epithelial cells of prostate needle biopsy specimens of 17 patients with Stage D prostate cancer. The authors found that prostate cancer contains AR-positive and AR-negative malignant cells before androgen withdrawal therapy, but the percentage of AR-positive cells did not predict the time to tumor progression after therapy. There was no significant correlation between the percentage of AR-positive malignant cells and the time to tumor progression. When patients were divided into two groups based on the median time to progression, the percentage of AR-positive nuclei was not significantly different in poor responders versus good responders. When patients were divided into two groups based on the median percentage of receptor-positive nuclei, Kaplan-Meier estimates of the progression-free interval revealed no significant difference between the group of patients with AR-poor tumors and patients with AR-rich tumors. Potential explanations for these results are discussed. The authors conclude that the percentage of AR-positive nuclei is not a sufficient criterion to predict tumor behavior.  相似文献   

11.
12.
Increased expression levels of constitutively active androgen receptor splice variants (AR-Vs) cause alterations in AR signaling, resulting in drug resistance and failed hormone therapy among patients with advanced prostate cancers. Several available compounds targeting the androgen axis and AR signaling have not demonstrated efficacy in preventing prostate cancer recurrence. Here, we investigated whether a new agent, 6-[6-ethoxy-5-ispropoxy-3,4-dihydroisoquinolin-2[1H)-yl]-N-[6-methylpyridin-2-yl]nicotinamide (EIQPN), has the potential for treating advanced prostate cancer. EIQPN interacted with the AR-activation fragment-1 (AF-1) domain and blocked its androgen-independent activity, robustly decreased the protein levels of AR and variants in prostate cancer cells by inducing AR protein degradation, and inhibited the androgen-independent proliferation of various AR-positive prostate cancer cells. In xenograft mouse models, EIQPN blocked the tumor growth of androgen-independent prostate cancer cells. Overall, these findings indicate that EIQPN could serve as a novel therapeutic agent for advanced recurrent prostate cancers.  相似文献   

13.
Progression from an androgen-dependent to an androgen-independent state often occurs in patients with prostate cancer (PCa) who undergo hormonal therapy. We have investigated whether inhibition of the epidermal growth factor receptor (EGFR) signaling pathway affects the antitumor effect of a nonsteroidal antiandrogen. Gefitinib (Iressa), an EGFR tyrosine kinase inhibitor, and bicalutamide (Casodex), a nonsteroidal antiandrogen [androgen receptor (AR) antagonist], were administered alone and in combination to AR-positive human PCa cell lines. FACS analysis showed lower EGFR expression levels on AR-positive cells (LNCaP, CWR22, CWR22R 2152 and AR-transfected DU145 cell lines) compared with AR-negative cells (DU145, PC3 and TSU-Pr1). Moreover, in AR-transfected DU145 cells, chronic treatment with bicalutamide increased EGFR expression to levels similar to androgen-independent DU145 cells. All AR-positive PCa cell lines were sensitive to gefitinib (IC50 = 0.1-0.6 microM), whereas higher concentrations of bicalutamide were needed to reduce AR-positive PCa cell line proliferation (IC50 = 0.8-2.0 microM). Low doses of gefitinib increased the antitumor effects of bicalutamide by strongly reducing the IC50 of bicalutamide (approximately 10-fold). Similarly, bicalutamide increased the antiproliferative effects of gefitinib by reducing the IC50 of gefitinib (approximately 5-fold). Taken together, our data suggest that in androgen-dependent cell lines, addition of gefitinib in combination with bicalutamide results in concurrent dual inhibition of AR and EGFR/HER2 pathways. This causes a significant delay in the onset of EGFR-driven androgen independence.  相似文献   

14.
The protein factor beta2-microglobulin (beta2M), purified from the conditioned medium of human prostate cancer cell lines, stimulated growth and enhanced osteocalcin (OC) and bone sialoprotein (BSP) gene expression in human prostate cancer cells by activating a cyclic AMP (cAMP)-dependent protein kinase A signaling pathway. When beta2M was overexpressed in prostate cancer cells, it induced explosive tumor growth in mouse bone through increased phosphorylated cAMP-responsive element binding protein (CREB) and activated CREB target gene expression, including OC, BSP, cyclin A, cyclin D1, and vascular endothelial growth factor. Interrupting the beta2M downstream signaling pathway by injection of the beta2M small interfering RNA liposome complex produced an effective regression of previously established prostate tumors in mouse bone through increased apoptosis as shown by immunohistochemistry and activation of caspase-9, caspase-3, and cleavage of poly(ADP-ribose) polymerase. These results suggest that beta2M signaling is an attractive new therapeutic target for the treatment of lethal prostate cancer bone metastasis.  相似文献   

15.
Xu D  Lin TH  Li S  Da J  Wen XQ  Ding J  Chang C  Yeh S 《Cancer letters》2012,316(1):11-22
Androgen receptor (AR) is the major therapeutic target for the treatment of prostate cancer (PCa). Anti-androgens to reduce or prevent androgens binding to AR are widely used to suppress AR-mediated PCa growth; however, the androgen depletion therapy is only effective for a short period of time. Here we found a natural product/Chinese herbal medicine cryptotanshinone (CTS), with a structure similar to dihydrotestosterone (DHT), can effectively inhibit the DHT-induced AR transactivation and prostate cancer cell growth. Our results indicated that 0.5 μM CTS effectively suppresses the growth of AR-positive PCa cells, but has little effect on AR negative PC-3 cells and non-malignant prostate epithelial cells. Furthermore, our data indicated that CTS could modulate AR transactivation and suppress the DHT-mediated AR target genes (PSA, TMPRSS2, and TMEPA1) expression in both androgen responsive PCa LNCaP cells and castration resistant CWR22rv1 cells. Importantly, CTS selectively inhibits AR without repressing the activities of other nuclear receptors, including ERα, GR, and PR. The mechanistic studies indicate that CTS functions as an AR inhibitor to suppress androgen/AR-mediated cell growth and PSA expression by blocking AR dimerization and the AR-coregulator complex formation. Furthermore, we showed that CTS effectively inhibits CWR22Rv1 cell growth and expressions of AR target genes in the xenograft animal model. The previously un-described mechanisms of CTS may explain how CTS inhibits the growth of PCa cells and help us to establish new therapeutic concepts for the treatment of PCa.  相似文献   

16.
17.
Khan N  Asim M  Afaq F  Abu Zaid M  Mukhtar H 《Cancer research》2008,68(20):8555-8563
Androgen receptor (AR)-mediated signaling plays an important role in the development and progression of prostate cancer (PCa). Hormonal therapies, mainly with combinations of antiandrogens and androgen deprivation, are the mainstay treatment for advanced disease. However, emergence of androgen resistance largely due to inefficient antihormone action limits their therapeutic usefulness. Here, we report that fisetin, a novel dietary flavonoid, acts as a novel AR ligand by competing with the high-affinity androgen to interact with the ligand binding domain of AR. We show that this physical interaction results in substantial decrease in AR stability and decrease in amino-terminal/carboxyl-terminal (N-C) interaction of AR. This results in blunting of AR-mediated transactivation of target genes including prostate-specific antigen (PSA). In addition, treatment of LNCaP cells with fisetin decreased AR protein levels, in part, by decreasing its promoter activity and by accelerating its degradation. Fisetin also synergized with Casodex in inducing apoptosis in LNCaP cells. Treatment with fisetin in athymic nude mice implanted with AR-positive CWR22Rupsilon1 human PCa cells resulted in inhibition of tumor growth and reduction in serum PSA levels. These data identify fisetin as an inhibitor of AR signaling axis and suggest that it could be a useful chemopreventive and chemotherapeutic agent to delay progression of PCa.  相似文献   

18.
OBJECTIVE To observe the effect of curcumin on proliferation and apop-tosis in the prostate cancer LNCaP cell line. METHODS The AXSYMTM system luciferase method was used to examine the effect of various concentratious of curcumin on the content of prostate specific antigen (PSA) in prostate cancer LNCaP cells. A pGL3-PSA luciferase expression vector, containing 640 bp DNA of the PSA gene 5' -promoter region was constructed and transfected into the LNCaP cells with lipofectin. By measuring luciferase activity, the effect of 10 μmol/L, 20 μmol/L, 30 and 40 μmol/L curcumin on the promoter was studied. Effects on cell growth and apoptosis were analyzed by microscopy, the MTT colorimetric assay and flow cytometry. Western-blotting was used to measure expression of the androgen receptor (AR) in the LNCaP cells treated with different concentrations of curcumin. RESULTS The results showed that the expression of PSA was inhibited as curcumin reduced the activity of luciferase. Curcumin also caused a sigificant concentration-dependent decrease in AR expession measured by Western -blotting. Cell growth was inhibited and apoptosis was induced. CONCLUSION By inhibiting AR expression, curcumin reduced the function of the PSA promoter and inhibited PSA protein expression. Curcumin decreased the cellular proliferation and induced apoptosis in LNCaP cells in a concention-dependent manner.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号