首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tertiary lymphoid tissues are lymph node‐like cell aggregates that arise at sites of chronic inflammation. They have been observed in transplanted organs undergoing chronic rejection, but it is not known whether they contribute to the rejection process by supporting local activation of naïve lymphocytes. To answer this question, we established a murine transplantation model in which the donor skin contains tertiary lymphoid tissues due to transgenic expression of lymphotoxin‐α(RIP‐LTα), whereas the recipient lacks all secondary lymphoid organs and does not mount primary alloimmune responses. We demonstrate in this model that RIP‐LTα allografts that harbor tertiary lymphoid tissues are rejected, while wild‐type allografts that lack tertiary lymphoid tissues are accepted. Wild‐type allografts transplanted at the same time as RIP‐LTα skin or 60 days later were also rejected, suggesting that tertiary lymphoid tissues, similar to secondary lymphoid organs, generate both effector and memory immune responses. Consistent with this observation, naive T cells transferred to RIP‐LTα skin allograft but not syngeneic graft recipients proliferated and differentiated into effector and memory T cells. These findings provide direct evidence that tertiary lymphoid structures perpetuate the rejection process by supporting naïve T‐cell activation.  相似文献   

2.
The present study examined the role of CD4+ and CD8+ T cells in cardiac allograft rejection when either the direct or indirect pathway was eliminated for the CD4+ portion of the response. To study the pathways in vivo, we used genetically altered mouse strains that lack class II antigens as either the donors or recipients for cardiac transplantation. In contrast to earlier published studies, which used different strain combinations, we found that either CD4- or CD8-depletion prolonged cardiac allograft survival moderately, but not indefinitely, in an MHC-mismatched, minor-matched combination. When the CD4+ indirect pathway was eliminated, rapid graft rejection occurred when both T-cell subsets were present and when either CD4+ or CD8+ T cells were depleted. When the CD4+ direct pathway was eliminated, rapid graft rejection occurred when both T-cell subsets were present, there was slow rejection when CD4+ T cells were eliminated, and no rejection was seen for more than 100 days when CD8+ T cells were eliminated. However, the long-surviving allografts on the recipients with only CD4+ cells and an indirect pathway did show evidence of chronic vasculopathy. Thus, either CD4+ or CD8+ T cells can mediate acute cardiac allograft rejection in these experiments when both pathways are available. In addition, CD4+ T cells can provide help for acute rejection through either the direct or indirect pathway. Finally, recipients who have only CD4+ cells and an indirect pathway do not demonstrate acute rejection, but do show evidence of chronic rejection.  相似文献   

3.
4.
Donor-reactive memory T cells undermine the survival of transplanted organs through multiple pathways. We have previously reported that memory CD4 T cells resist treatment with anti-CD154 antibody and donor-specific transfusion (DST/MR1) and promote cardiac allograft rejection via generation of effector CD4 T cells and alloantibody. We hypothesized that the helper functions of memory CD4 T cells are independent of T-cell costimulation through CD154 but instead are regulated by alternative costimulatory pathways. This study investigated how blocking ICOS/B7RP-1 interactions affects functions of donor-reactive memory CD4 T cells. Treatment with blocking anti-ICOS mAb synergized with DST/MR1 and prolonged mouse cardiac allograft survival despite the presence of donor-reactive memory CD4 T cells. While blocking ICOS did not diminish the expansion of preexisting memory CD4 T cells or the induction of allospecific effector T cells, it did inhibit recruitment of the activated memory and effector T cells into the graft. In addition, anti-ICOS mAb treatment in combination with DST/MR1 prevented help provided by memory CD4 T cells for production of donor-specific IgG antibody. These results demonstrate the potential efficacy of ICOS blockade in sensitized transplant patients and provide the foundation for rational use of ICOS blockade in combination with other graft-prolonging strategies.  相似文献   

5.
Role of Natural Killer Cell Subsets in Cardiac Allograft Rejection   总被引:2,自引:0,他引:2  
To achieve donor-specific immune tolerance to allogeneic organ transplants, it is imperative to understand the cell types involved in acute allograft rejection. In wild-type mice, CD4(+) T cells are necessary and sufficient for acute rejection of cardiac allografts. However, when T-cell responses are suboptimal, such as in mice treated with costimulation-targeting agents or in CD28-deficient mice, and perhaps in transplanted patients taking immunosuppressive drugs, the participation of other lymphocytes such as CD8(+) T cells and NK1.1(+) cells becomes apparent. We found that host NK but not NKT cells were required for cardiac rejection. Ly49G2(+) NK cells suppressed rejection, whereas a subset of NK cells lacking inhibitory Ly49 receptors for donor MHC class I molecules was sufficient to promote rejection. Notably, rejection was independent of the activating receptors Ly49D and NKG2D. Finally, our experiments supported a mechanism by which NK cells promote expansion and effector function of alloreactive T cells. Thus, therapies aimed at specific subsets of NK cells may facilitate transplantation tolerance in settings of impaired T-cell function.  相似文献   

6.
Type I interferons (IFN-I) link innate to adaptive immunity in microbial infection, autoimmune disease and tumor immunity. It is not known whether IFN-I have an equally central role in alloimmunity. Here we tested this possibility by studying skin allograft survival and donor-specific CD8+ T-cell responses in mice that lack the IFN-I receptor (IFN-IR−/−). We found that IFN-IR−/− mice reject fully allogeneic wild-type skin grafts at the same rate as wild-type recipients. Similarly, allograft rejection was not delayed if IFN-IR−/− male skin was transplanted to syngeneic IFN-IR−/− female mice. Quantitation of the male (H-Y)-specific CD8+ T-cell response in these mice revealed normal generation of donor-specific CD8+ effector T cells but fourfold reduction in CD8+ memory T cells. Memory CD8+ T cells generated in the absence of IFN-IR had normal phenotype and recall function, assessed by ex vivo cytokine production and the ability of IFN-IR−/− mice to mount second set rejection. Finally, these memory T cells were maintained at a constant number despite their inability to respond to IFN-1. Our findings indicate that IFN-I cytokines are not critical for acute allograft rejection or for the expansion and differentiation of donor-specific CD8+ T cells into long-lived, functional memory T cells.  相似文献   

7.
Obliterative bronchiolitis (OB) limits the long‐term success of lung transplantation, while T‐cell effector mechanisms in this process remain incompletely understood. Using the murine heterotopic tracheal transplant model of obliterative airway disease (OAD) to characterize airway allograft rejection, we previously reported an important role for CD8+ T cells in OAD. Herein, we studied the role of CD154/CD40 costimulation in the regulation of allospecific CD8+ T cells, as airway rejection has been reported to be CD154‐dependent. Airway allografts from CD154−/− recipients had significantly lower day 28 OAD scores compared to wild‐type (WT) recipients, and adoptive transfer of CD8+ T cells from WT recipients, but not CD154−/− recipients, were capable of airway rejection in fresh CD154−/− allograft recipients. Intragraft CD8+ T cells from CD154−/− mice showed similar expression of the surface markers CD69, CD62Llow CD44high and PD‐1, but markedly impaired IFN‐γ and TNF‐α secretion and granzyme B expression versus WT controls. Unexpectedly, intragraft and systemic CD8+ T cells from CD154−/− recipients demonstrated robust in vivo expansion similar to WT recipients, consistent with an uncoupling of proliferation from effector function. Together, these data suggest that a lack of CD154/CD40 costimulation results in ineffective allospecific priming of CD8+ T cells required for murine OAD.  相似文献   

8.
The T cell response to major histocompatibility complex (MHC) alloantigens occurs via two main pathways. The direct pathway involves the recognition of intact allogeneic MHC:peptide complexes on donor cells and provokes uniquely high frequencies of responsive T cells. The indirect response results from alloantigens being processed like any other protein antigen and presented as peptide by autologous antigen‐presenting cells. The frequencies of T cells with indirect allospecificity are orders of magnitude lower and comparable to other peptide‐specific responses. In this study, we explored the contributions of naïve and memory CD4+ T cells to these two pathways. Using an adoptive transfer and skin transplantation model we found that naive and memory CD4+ T cells, both naturally occurring and induced by sensitization with multiple third‐party alloantigens, contributed equally to graft rejection when only the direct pathway was operative. In contrast, the indirect response was predominantly mediated by the naïve subset. Elimination of regulatory CD4+CD25+ T cells enabled memory cells to reject grafts through the indirect pathway, but at a much slower tempo than for naïve cells. These findings have implications for better targeting of immunosuppression to inhibit immediate and later forms of alloimmunity.  相似文献   

9.
CD8+ memory T cells endanger allograft survival by causing acute and chronic rejection and prevent tolerance induction. We explored the role of CD27:CD70 T‐cell costimulatory pathway in alloreactive CD8+/CD4+ T‐cell activation. CD27‐deficient (CD27?/?) and wild‐type (WT) B6 mice rejected BALB/c cardiac allografts at similar tempo, with or without depletion of CD4+ or CD8+ T cells, suggesting that CD27 is not essential during primary T‐cell alloimmune responses. To dissect the role of CD27 in primed effector and memory alloreactive T cells, CD27?/? or WT mice were challenged with BALB/c hearts either 10 or 40 days after sensitization with donor‐type skin grafts. Compared to WT controls, allograft survival was prolonged in day 40‐ but not day 10‐sensitized CD27?/? recipients. Improved allograft survival was accompanied by diminished secondary responsiveness of memory CD8+ T cells, which resulted from deficiency in memory formation rather than their lack of secondary expansion. Chronic allograft vasculopathy and fibrosis were diminished in CD27?/? recipients of class I‐ but not class II‐mismatched hearts as compared to WT controls. These data establish a novel role for CD27 as an important costimulatory molecule for alloreactive CD8+ memory T cells in acute and chronic allograft rejection.  相似文献   

10.
目的探讨落新妇甙对大鼠肺移植后机体急性排斥反应的影响和机制,以明确落新妇甙对大鼠肺移植急性排斥反应的作用。方法建立大鼠原位肺移植模型,术后将60只受体大鼠随机分为两组,对照组:术后用生理盐水1ml/d灌胃,实验组:术后用落新妇甙1ml/kg·d灌胃。观察肺移植后大鼠的存活时间、大鼠脾细胞T淋巴细胞转化率、脾淋巴细胞白细胞介素2(IL-2)的活性以及外周血中活化T淋巴细胞凋亡情况。在电子显微镜下观察肺血管超微结构变化。结果实验组大鼠肺移植后存活时间较对照组明显延长(25.4±2.1d vs.13.4±1.2d;t=2.042,P〈0.05)。实验组脾细胞T淋巴细胞转化率较对照组明显降低(23465.8±8783.4 cpm vs.74567.3±12874.6cpm;t=2.284,P〈0.05);实验组移植大鼠脾淋巴细胞IL-2活性较对照组明显降低(4.25±2.65U/ml vs.23.46±1.82 U/ml;t=3.165,P〈0.01)。实验组能有效地诱导急性排斥反应中活化T淋巴细胞凋亡。实验组肺组织超微结构损伤较对照组减轻。结论落新妇甙通过下调IL-2产生,诱导活化T淋巴细胞凋亡,抑制T淋巴细胞增殖分化,广泛抑制了以T淋巴细胞为主的肺移植术后急性排斥反廊,从而延长肺移槽大鼠的存活时间.  相似文献   

11.
Costimulation blockade (CoB), specifically CD28/B7 inhibition with belatacept, is an emerging clinical replacement for calcineurin inhibitor‐based immunosuppression in allotransplantation. However, there is accumulating evidence that belatacept incompletely controls alloreactive T cells that lose CD28 expression during terminal differentiation. We have recently shown that the CD2‐specific fusion protein alefacept controls costimulation blockade‐resistant allograft rejection in nonhuman primates. Here, we have investigated the relationship between human alloreactive T cells, costimulation blockade sensitivity and CD2 expression to determine whether these findings warrant potential clinical translation. Using polychromatic flow cytometry, we found that CD8+ effector memory T cells are distinctly high CD2 and low CD28 expressors. Alloresponsive CD8+CD2hiCD28? T cells contained the highest proportion of cells with polyfunctional cytokine (IFNγ, TNF and IL‐2) and cytotoxic effector molecule (CD107a and granzyme B) expression capability. Treatment with belatacept in vitro incompletely attenuated allospecific proliferation, but alefacept inhibited belatacept‐resistant proliferation. These results suggest that highly alloreactive effector T cells exert their late stage functions without reliance on ongoing CD28/B7 costimulation. Their high CD2 expression increases their susceptibility to alefacept. These studies combined with in vivo nonhuman primate data provide a rationale for translation of an immunosuppression regimen pairing alefacept and belatacept to human renal transplantation.  相似文献   

12.
Multiple cell types infiltrate acutely rejecting renal allografts. Typically, monocytes and T cells predominate. Although T cells are known to be required for acute rejection, the degree to which monocytes influence this process remains incompletely defined. Specifically, it has not been established to what degree monocytes impact the clinical phenotype of rejection or how their influence compares to that of T cells. We therefore investigated the relative impact of T cells and monocytes by correlating their presence as measured by immunohistochemical staining with the magnitude of the acute change in renal function at the time of biopsy in 78 consecutive patients with histological acute rejection. We found that functional impairment was strongly associated with the degree of overall cellular infiltration as scored using Banff criteria. However, when cell types were considered, monocyte infiltration was quantitatively associated with renal dysfunction while T-cell infiltration was not. Similarly, renal tubular stress, as indicated by HLA-DR expression, increased with monocyte but not T-cell infiltration. These data suggest that acute allograft dysfunction is most closely related to monocyte infiltration and that isolated T-cell infiltration has less acute functional impact. This relationship may be useful in assigning acute clinical relevance to biopsy findings.  相似文献   

13.
目的:探讨CD44分子与肾移植急性排斥反应的关系。方法:回顾分析2005年7月~2009年5月间肾移植术后穿刺病理活检证实为急性排斥反应患者28例的CD44在移植肾组织中的表达。结果:28例急性排斥反应肾组织中有25例CD44呈阳性表达,阳性率为89.29%;10例慢性排斥反应肾组织中有3例阳性表达,阳性率为30%;30例正常肾脏组织中5例CD44分子的阳性表达,阳性率为16.7%;两两比较,结果差异有统计学意义(P0.05)。结论:CD44与其与配体的相互作用在移植肾急性排斥反应中可能起到重要作用,CD44分子有可能成为一个特异性和敏感性都较好的早期诊断急性排斥的预测因子。  相似文献   

14.
Heterologous immunologic memory has been considered a potent barrier to tolerance induction in primates. Induction of such tolerance for a previously transplanted organ may be more difficult, because specific memory cells can be induced and activated by a transplanted organ. In the current study, we attempted to induce tolerance to a previously transplanted kidney allograft in nonhuman primates. The conditioning regimen consisted of low dose total body irradiation, thymic irradiation, antithymocyte globulin, and anti‐CD154 antibody followed by a brief course of a calcineurin inhibitor. This regimen had been shown to induce mixed chimerism and allograft tolerance when kidney transplantation (KTx) and donor bone marrow transplantation (DBMT) were simultaneously performed. However, the same regimen failed to induce mixed chimerism when delayed DBMT was performed after KTx. We found that significant levels of memory T cells remained after conditioning, despite effective depletion of naïve T cells. By adding humanized anti‐CD8 monoclonal antibody (cM‐T807), CD8 memory T cells were effectively depleted and these recipients successfully achieved mixed chimerism and tolerance. The current studies provide ‘proof of principle’ that the mixed chimerism approach can induce renal allograft tolerance, even late after organ transplantation if memory T‐cell function is adequately controlled.  相似文献   

15.
The Challenge of Inhibiting Alloreactive T-Cell Memory   总被引:1,自引:1,他引:1  
Memory T cells specific for donor antigens present a unique challenge in transplantation. In addition to expressing rapid and robust immune responses to a transplanted organ, memory T cells may be resistant to the effects of currently used graft-prolonging therapies. The increasing recognition that alloreactive memory T cells participate in transplant rejection is driving new lines of research focusing on understanding the immunobiology of alloreactive memory T cells and on designing novel therapies to specifically target memory T cells. The purpose of this review is to summarize the effects of existing immunosuppressive drugs and costimulatory blockade on functions of alloreactive memory T cells that undermine allograft survival.  相似文献   

16.
T-cell depletion reportedly leads to alterations in the T-cell compartment with predominant survival of memory phenotype CD4 T cells. Here, we asked whether the prevalence of memory T cells postdepletion results from their inherent resistance to depletion and/or to the homeostatic expansion of naive T cells and their phenotypic conversion to memory, which is known to occur in lymphopenic conditions. Using a 'mosaic memory' mouse model with trackable populations of alloreactive memory T cells, we found that treatment with murine antithymocyte globulin (mATG) or antilymphocyte serum (ALS) effectively depleted alloreactive memory CD4 T cells, followed by rapid homeostatic proliferation of endogenous CD4 T cells peaking at 4 days postdepletion, with no homeostatic advantage to the antigen-specific memory population. Interestingly, naive (CD44lo) CD4 T cells exhibited the greatest increase in homeostatic proliferation following mATG treatment, divided more extensively compared to memory (CD44hi) CD4 T cells and converted to a memory phenotype. Our results provide novel evidence that memory CD4 T cells are susceptible to lymphodepletion and that the postdepletional T-cell compartment is repopulated to a significant extent by homeostatically expanded naive T cells in a mouse model, with important important implications for immune alterations triggered by induction therapy.  相似文献   

17.
Blockade of traditional costimulatory molecules fails to inhibit rejection in many models where CD8+ T cells are sufficient to mediate rejection. This observation demonstrates that in many settings CD8+ T cells are not dependent upon CD28 or CD154 signals to mediate rejection. 4-1BB (CD137) has been shown to be an important regulatory molecule for CD8+ T cells in a variety of nontransplant models. Here we show that blocking the 4-1BB pathway significantly inhibited rejection of intestinal allografts by CD8+ but not CD4+ T cells. This effect was associated with significantly decreased expression of the genes encoding TNFalpha and secondary lymphoid chemokine (SLC) within the spleens of recipient mice. Disruption of the 4-1BB pathway also impaired the priming of alloantigen-specific CD8+ T cells and the accumulation of recipient dendritic cells within the spleen. These data directly demonstrate an important role for 4-1BB in allograft rejection; particularly rejection mediated by CD8+ T cells. Our data suggest that in addition to providing a direct costimulatory signal to T cells, the 4-1BB pathway may regulate other important steps in the immune response such as the migration of T cells and dendritic cells.  相似文献   

18.
Recent data suggest that donor‐specific memory T cells (Tmem) are an independent risk factor for rejection and poor graft function in patients and a major challenge for immunosuppression minimizing strategies. Many tolerance induction protocols successfully proven in small animal models e.g. costimulatory blockade, T cell depletion failed in patients. Consequently, there is a need for more predictive transplant models to evaluate novel promising strategies, such as adoptive transfer of regulatory T cells (Treg). We established a clinically more relevant, life‐supporting rat kidney transplant model using a high responder (DA to LEW) recipients that received donor‐specific CD4+/ 8+ GFP+ Tmem before transplantation to achieve similar pre‐transplant frequencies of donor‐specific Tmem as seen in many patients. T cell depletion alone induced long‐term graft survival in naïve recipients but could not prevent acute rejection in Tmem+ rats, like in patients. Only if T cell depletion was combined with permanent CNI‐treatment, the intragraft inflammation, and acute/chronic allograft rejection could be controlled long‐term. Remarkably, combining 10 days CNI treatment and adoptive transfer of Tregs (day 3) but not Treg alone also induced long‐term graft survival and an intragraft tolerance profile (e.g. high TOAG‐1) in Tmem+ rats. Our model allows evaluation of novel therapies under clinically relevant conditions.  相似文献   

19.
Avoidance of long‐term immunosuppression is a desired goal in organ transplantation. Mixed chimerism offers a promising approach to tolerance induction, and we have aimed to develop low‐toxicity, nonimmunodepleting approaches to achieve this outcome. In a mouse model achieving fully MHC‐mismatched allogeneic bone marrow engraftment with minimal conditioning (3 Gy total body irradiation followed by anti‐CD154 and T cell–depleted allogeneic bone marrow cells), CD4 T cells in the recipient are required to promote tolerance of preexisting alloreactive recipient CD8 T cells and thereby permit chimerism induction. We now demonstrate that mice devoid of CD4 T cells and NK cells reject MHC Class I‐deficient and Class I/Class II‐deficient marrow in a CD8 T cell–dependent manner. This rejection is specific for donor alloantigens, since recipient hematopoiesis is not affected by donor marrow rejection and MHC Class I‐deficient bone marrow that is syngeneic to the recipient is not rejected. Recipient CD8 T cells are activated and develop cytotoxicity against MHC Class I‐deficient donor cells in association with rejection. These data implicate a novel CD8 T cell–dependent bone marrow rejection pathway, wherein recipient CD8 T cells indirectly activated by donor alloantigens promote direct killing, in a T cell receptor–independent manner, of Class I‐deficient donor cells.  相似文献   

20.
Alloreactive T-cell memory is present in every transplant recipient and endangers graft survival. Even in the absence of known sensitizing exposures, heterologous immunity and homeostatic T-cell proliferation generate 'endogenous' memory T cells with donor-reactivity. We have recently shown that endogenous donor-reactive CD8 memory T cells infiltrate murine cardiac allografts within hours of reperfusion and amplify early posttransplant inflammation by producing IFN-γ. Here, we have tested the role of ICOS co-stimulation in eliciting effector function from these memory T cells. ICOS is not expressed on the cell surface of circulating CD8 memory T cells but is rapidly upregulated during cell division within the allograft parenchyma. Donor-reactive CD8 memory T-cell infiltration, proliferation and ICOS expression are regulated by donor class I MHC molecule expression. ICOS blockade significantly reduced IFN-γ production and other proinflammatory functions of the activated CD8 memory T cells. Our data demonstrate that this induction of ICOS expression within peripheral tissues is an important feature of CD8 memory T-cell activation and identify ICOS as a specific target for neutralizing proinflammatory functions of endogenous CD8 memory T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号