首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dorsal lingual surface of a bush dog (Speothos venaticus) was examined by scanning electron microscopy (SEM). The tongue was about 7 cm in length. Filiform, fungiform and vallate papillae were found. The filiform papillae were distributed over the entire dorsal surface of the tongue. Each filiform papillae on the apical surface of the tongue had several conical processes, in the midportion were larger than those on the apex in size. In the region of the vallate papillae, the filiform papillae had not the conical processes and more larger than those on the midportion of the tongue. The fungiform papillae were present rounded bodies and more densely distributed on the tip of the lingual apex. There were 5 vallate papillae on both sides. The vallate papillae were located on both sides of the posterior end of the lingual body. Each papilla was surrounded by a groove and a crescent pad. In the dorsal surfaces of the papillae, small conical papillae were observed.  相似文献   

2.
Morphology of the lingual papillae in the raccoon dog and fox   总被引:1,自引:0,他引:1  
The dorsal lingual surfaces of the raccoon dogs (Nyctereutes procyonoides) and fox (Vulpes vulpes japonica) were examined by scanning electron microscopical (SEM) observations. The distribution and type of the lingual papillae found in the raccoon dog were similar to those in the fox. Filiform, fungiform, foliate and vallate papillae were observed. The filiform papillae were distributed over the entire dosal surface of the tongue. Each filiform papilla on the apical surface of the tongue had several pointed processes. The filiform papillae of the lingual body consisted of a main papilla and some secondary papillae. The fungiform papillae were present rounded bodies, and more densely distributed on the lingual apex. The foliate papillae were seen on the dorsolateral aspect of the tongue. The vallate papillae were located on both sides of the posterior end of the lingual body. Each papilla was surrounded by groove and crescent pad. On the periphery of the papillae, large conical papillae were observed.  相似文献   

3.
The dorsal lingual surfaces of an adult tiger (Panthera tigris altaica) was examined by macroscopical and scanning electron microscopical observations. Filiform, fungiform and vallate papillae were observed. The filiform papillae were distributed over the entire dosal surface of the tongue. The fungiform papillae were present rounded bodies, and more densely distributed on the lingual apex. There were 4 vallate papillae in total on borderline between the lingual body and lingual radix. Each papilla was surrounded by a groove. No foliate papillae were seen on the dorsal surface. Openings of the glandular ducts on the regions of the vallate papillae were found.  相似文献   

4.
The dorsal lingual surfaces of a newborn panther (Panthera pardus) and two newborn asian black bears (Selenarctos thibetanus) were examined by scanning electron microscopy (SEM). The tongues of the panther and asian black bear were about 40 mm in length and about 20 mm in width. Filiform, fungiform and vallate papillae were found. The filiform papillae were distributed over the entire dorsal surface of the tongue. In the panther, the filiform papillae on margin of the lingual apex were divided into two shapes which were horny or club-shaped papillae. The filiform papillae on the midportion were larger than those on the lateral region in size. The fungiform papillae also were divided into two shapes which were hemispherical or club-shaped papillae. In the asian black bear, the filiform papillae on the margin of the lingual apex were larger than those on margin of the panther tongue. The vallate papillae in the animals of two species were located on both sides of the posterior end of the lingual body. Each papilla was surrounded by a groove and crescent pad.  相似文献   

5.
The dorsal lingual surface of a barbary sheep (Ammotragus lervia) was examined by scanning electron microscopy (SEM). The tongue was about 20 cm in length. There were about 30 vallate papillae on both sides. Filiform, conical, fungiform and vallate papillae were found. The filiform papillae were distributed over the entire dorsal surface of the tongue, excepted for the lingual torus where conical papillae were present. The fungiform papillae were present rounded bodies, and more densely distributed as compared to that of the lingual body on the tip and ventral surface of lingual apex. No foliate papillae were seen on the dorsal surface. The vallate papillae were located on both sides of the midline in the caudal part. Each papilla was surrounded by a groove. These findings indicate that the tongue of the barbary sheep is similar to that of the formosan serow, japanese serow and blackbuck.  相似文献   

6.
We examined the epithelial surface and connective tissue cores (CTCs) of each lingual papilla on the Paenungulata, Cape hyrax (Procavia capensis), by scanning electron microscopy and light microscopy. The tongue consisted of a lingual apex, lingual body and lingual root. Filiform, fungiform and foliate papillae were observed on the dorsal surface of the tongue; however, fungiform papillae were quite diminished on the lingual prominence. Moreover, no clearly distinguishable vallate papillae were found on the tongue. Instead of vallate papillae, numerous dome-like large fungiform papillae were arranged in a row just in front of the rather large foliate papillae. Foliate papillae were situated in the one-third postero-lateral margin of the lingual body. The epithelium of filiform papillae was covered by a keratinized layer with kerato-hyaline granules, whereas weak keratinization was observed on the interpapillary epithelium. The external surface of the filiform papillae was conical in shape. CTCs of the filiform papillae were seen as a hood-like core with a semicircular concavity in the anterior portion of each core. Large filiform papillae were distributed on the lingual prominence. The CTCs of large filiform papillae after exfoliation of their epithelium consisted of a concave primary core and were associated with several small protrusions. The surface of fungiform papillae was smooth and dome-like. After removal of the epithelium, CTCs appeared as a flower bud-like primary core and were associated with several protrusions that were arranged on the rim of the primary core. Several taste buds were found on the top of the dorsal part of the epithelium of both fungiform and large fungiform papillae. Well-developed foliate papillae were seen and numerous taste buds could be observed in the lateral wall of the epithelium in a slit-like groove. The morphological characteristics of the tongue of the Cape hyrax had similarities with other Paenungulata such as Sirenia. However, three-dimensional characteristics, especially CTCs of lingual papillae, exhibited multiple similarities with rodents, insectivores and artiodactyls.  相似文献   

7.
The dorsal lingual surface of a blackbuck (Antilope cervicapra) was examined by scanning electron microscopy (SEM). The tongue was about 125 mm in length. There were about 30 vallate papillae on both sides. Filiform, conical, fungiform and vallate papillae were found. The filiform papillae were distributed over the entire dorsal surface of the tongue, excepted for the lingual torus where conical papillae were present. The fugiform papillae were present rounded bodies, and more densely distributed on the tip and ventral surface of ligual apex. No foliate papillae were seen on the dorsal surface. The vallate papillae were located on both sides of the midline in the caudal part. Each papilla was surrounded by a groove. These findings indicate that the tongue of the blackbuck is similar to that of the formosan and japanese serow.  相似文献   

8.
We observed the three-dimensional structures on the external surface and the connective tissue cores (CTCs) of the California sea lion (Zalophus californianus californianus), after exfoliation of the epithelium of the lingual papillae (filiform, fungiform, and vallate papillae), using scanning electron microscopy (SEM) and conventional light microscopy. Macroscopically, the tongue was V-shaped and its apex was rounded. At the posterior area of the tongue, five vallate papillae were arranged in a V shape. In the epithelium, numerous taste buds were distributed on the top of the vallate papillae. On the dorsal surface from the apex to the boundary between the anterior and posterior tongue, filiform papillae were densely distributed. The CTCs of the filiform papillae consisted of a main protrusion (primary core) and many small cores (secondary cores). From the apex to the anterior one-third of the tongue, dome-like fungiform papillae were densely distributed, whereas fewer were located at the posterior two-thirds of the tongue. Several taste buds were found in the epithelium on the fungiform papillae. The size of the filiform papillae gradually increased from the apex to the boundary between the anterior and posterior tongue. At the lingual radix, the conical papillae, which were bigger than any filiform papillae, were densely distributed. The morphological characteristics of the tongue of the California sea lion appear to have been transformed to adapt to an aquatic environment; however, they possess some structures similar to those of land mammals.  相似文献   

9.
The dorsal lingual surfaces of two adult Japanese marten (Martes melampus) were examined by scanning electron microscopy (SEM). Filiform, fungiform, vallate and foliate papillae were observed. A small filiform papilla on the apical surface of the tongue had several pointed processes. A small filiform papilla contained the connective tissue core consisting of several small processes. A large filiform papilla of the lingual body consisted of a main papilla and some secondary papillae. A large filiform papilla contained the connective tissue core consisting of processes of various size. The fungiform papillae are round in shape. The connective tissue core of the fungiform papilla had a top with several round depressions. The four vallate papillae were located on both sides of the posterior end of the lingual body and each papilla was surrounded by groove and crescent pad. A zigzag surface structure appeared on the connective tissue core of the vallate papilla. The foliate papillae were seen on the dorsolateral aspect of the tongue and some ridges and grooves were exposed reciprocally. A zigzag surface structures appeared on the connective tissue cores of the ridges of the foliate papillae.  相似文献   

10.
We observed the external surface and connective tissue cores (CTCs) of the lingual papillae (filiform, fungiform and vallate papillae) of adult Spotted seals (Phoca largha) using SEM and light microscopy. The tongue was V-shaped and its apex was rather rounded. On the dorsal surface from apex to the one-third posterior of the tongue, the lingual mucosa was densely covered by filiform papillae, with a scatted distribution of dome-like fungiform papillae, which have orthokeratinized epithelium. At the posterior part of the tongue, filiform papillae were totally diminished and their epithelium was parakeratinized. Approximately 6-7 vallate papillae were arranged in a V-shape on the posterior of the tongue. After removal of the epithelium, the CTCs of the filiform papillae that were distributed at apex consisted of a primary core and approximately 5-6 rod-shaped small accessory cores. The CTCs of filiform papillae that were distributed at anterior part of the tongue lacked primary protrusions and possessed approximately 10-15 rod shaped small accessory cores that were arranged in a horseshoe manner. The CTCs offungiform papillae had cylindrical primary cores and were fringed with accessory protrusion. In the Vallate papillae, taste buds were only seen at the dorsal epithelium.  相似文献   

11.
We examined the dorsal lingual surfaces of an adult Patagonian cavy (Dolichotis patagonum) by scanning electron microscopy. The tongue of the Patagonian cavy is about 8 cm long and the lingual body had lingual prominence on the posterior third. There were no fungiform papillae in the lingual dorsal surface. The fungiform papillae were observed in both lateral sides of the lingual apex. The filiform papilla of the lingual body consisted of a large conical papilla. The connective tissue core of the filiform papilla showed many slender processes. The fungiform papillae were round in shape. The connective tissue core of the fungiform papilla was flower-bud shaped. Two vallate papillae were located on between lingual body and root, and insert in two grooves. The connective tissue core of the vallate papilla was covered with numerous small spines. Many foliate papillae were observed on the posterolateral regions of the tongue. After removing epithelium from the foliate papillae many vertical depressions became apparent. These findings suggest that in the structure of the lingual papillae of the Patagonian cavy there is similar to that of the capybara.  相似文献   

12.
The lingual papillae and the connective tissue cores (CTC) of the American beaver were examined by light and scanning electron microscopy. The tongue of American beaver was about 9 cm in length, 3.5 cm in width, and has a lingual prominence. Four types of papillae (filiform, fungiform, vallate and foliate papillae) were observed. The filiform papillae can be classified into three types (filiform, large filiform and dorm-like papillae). Filiform papillae distributed on the anterior tongue and posterior of the lingual prominence consisted of a posterior thick main process and several small accessory processes. After removal of the epithelium, the CTCs of the filiform papillae had U-shaped, horseshoe-like primary cores with 10-15 rod-shaped small accessory cores. Large filiform papillae were distributed at the anterior margin of the lingual prominence. Dome-like papillae were distributed at the top of lingual prominence. Fungiform papillae were observed two types. Fungiform papillae, which were distributed at the anterior tongue, were round shaped. Fungiform papillae of the posterior of the lingual prominence were large and surrounded with a papillary groove. At the posterior of the tongue, three vallate papillae were arranged in a triangular pattern. Foliate papillae were on 22 to 25 parallel ridges and grooves.  相似文献   

13.
The structure of the tongue of the marsupial feathertail glider (Acrobates pygmeus) was observed under a light and scanning electron microscope. The elongated tongue with a sharpened apex is ca. 10 mm in length. Only the posterior half of the tongue is attached to the bottom of the oral cavity by the frenulum, which facilitates considerable mobility of the anterior free part of the tongue. On the dorsal surface of the tongue, three types of lingual papillae were distinguished, that is, mechanical filiform papillae and gustatory fungiform and vallate papillae. The arrangement, shape, and size of filiform papillae and the direction of their keratinized processes change depending on the part of the tongue, so that the surface of the apex and the body of the tongue resembles a brush adapted to effective holding of semiliquid food and collection of pollen. The fungiform papillae have a single taste bud and are uniformly scattered between filiform papillae only on the anterior half of the tongue. On the smooth root of the tongue, three oval vallate papillae are arranged in the form of a triangle, similarly as it is the case in other marsupials. The posterior biggest vallate papilla is oriented perpendicularly to the smaller anterior papillae. The results of the study on the feathertail glider show that the special arrangement of lingual papillae is strongly adapted to feeding behavior of this nectar‐eating and frugivorous animal. Anat Rec, 290:1355–1365, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

14.
The dorsal lingual surfaces of four adult cape hyraxes (Procavia capensis) were examined by scanning electron microscopy (SEM). Filiform, fungiform and foliate papillae were observed. The lingual body had lingual torus on the posterior third. In the lateral sides of the tongue large fungiform papillae were observed and in the lateral sides of the torus very developmental foliate papillae were observed. Many fungiform papillae were observed in the ventral surface of the lingual apex. No vallate papillae were seen on the dorsal surface. The filiform papilla on the apical surface of the tongue had shovel-shaped papilla. The filiform papilla contained the connective tissue core consisting of some processes. The connective tissue core of the fungiform papillae was floral bud in shape. In the surface of the lingual torus numerous dome-shaped papillae are found. The dome-shaped papilla contained the connective tissue core consisting of a zigzag surface structure and the connective tissue core is surrounded by the processes of various sizes. In the surface of the lingual root numerous openings of the lingual glands were found. Around the glandular openings connective tissue ridges formed circular sheaths. In the lateral sides of the tongue large fungiform papillae were round in shape. The connective tissue core of the fungiform papilla was floral bud in shape. The foliate papillae were seen on the dorsolateral aspect of the tongue and some ridges and grooves were exposed reciprocally. Many small protrusions appeared on the connective tissue core of the ridge of the foliate papilla. These findings suggested that in the structure of the lingual papillae of the cape hyrax there was intermediate type between Rodentia and Artiodactyla.  相似文献   

15.
The dorsal lingual surface of the large flying foxes were examined by scanning electron microscopy. Filiform, fungiform and vallate papillae were observed. The filiform papillae were distributed over the entire dorsal surface of the tongue. The filiform papillae notably differed in morphology by their location on the tongue and could be classified into 6 types: 1) scale-like, 2) giant trifid, 3) small crown-like, 4) large crown-like, 5) long conical and 6) short conical papillae. The fungiform papillae were present rounded bodies on the anterior 2/3 of the tongue. The large flying foxes showed the triangular arrangement of the three vallate papillae, with the apex of the triangle directed posteriorly. These findings indicate that the tongue of the large flying bat is similar to that of the lesser dog-faced fruit bat.  相似文献   

16.
The tongues of adult silver foxes were studied using scanning electron microscopy. Five types of lingual papillae were found on the dorsal surface of the tongue. The most numerous papillae were filiform papillae covering the apex and body of the tongue. The filiform papillae on the anterior part of the tongue are divided into 1 main and 10-12 accessory processes. In the posterior part of the body of the tongue the number of accessory processes is reduced. Fungiform papillae are located between the filiform papillae. A cluster of 12 large fungiform papillae was found on the apex of the tongue. Conical papillae are located in the area of the vallate papillae and cover the posterior part of the root of the tongue. Their size increases towards the pharynx, where they are distributed more sparsely. In the silver foxes there were two pairs of vallate papillae. The wall surrounding each papilla and its gustatory trench forms partly connected 6-8 conical papillae. The foliate papillae on both margins of the tongue body are small and consist of 4-5 laminae. The distribution and type of lingual papillae found in the silver fox are similar to those in the other species belonging to the family Canidae.  相似文献   

17.
The microvascular architecture of all kinds of lingual papillae in the Japanese monkey was investigated on plastic corrosion casts and epithelium-separated specimens under a scanning electron microscope. Three kinds of the filiform papillae were observed; the circularly-arranged papillae with a small papilla in the center on the lingual apex, a simple large conical papilla with a bilateral pair of spines on the lingual body and the aggregated filiform papillae on the top of an epithelial projection on the lingual radix. Five to eight capillary loops were arranged in a circle of the above filiform papillae on the lingual apex. Arterioles ascended in the filiform center on the lingual body to form an intrapapillary network in the shape of a large cone, from which capillary loops were observed only on the top surface of the papilla. Capillary loops arising from the subepithelial capillary network in the epithelial projection were distributed to each filiform papilla on the lingual radix. Globular fungiform papilla on the lingual apex were supplied by capillary loops radiating from the intrapapillary capillary network. Cylindrical fungiform papillae on the lingual body were supplied by capillary loops only on the top surface of each fungiform papilla without any loop formation on the lateral surface. Four vallate papillae, a medial and lateral pair, were supplied by arterioles ascending in the papillary center to form an intrapapillary capillary network, from which capillary loops were sent off on the top surface of the papilla and formed a network in the lateral surface. Each foliate papilla was supplied by an arteriole passing through each papillary center along the long axis and 5 or 6 capillary loops from the arteriole on the frontal section. Every lingual papilla was supplied by a characteristic microvascular pattern, which correlated closely with the location of the papillae and areas reflecting the regional role of the tongue movement, especially in the filiform and fungiform papillae.  相似文献   

18.
Light and scanning electron microscopical demonstrations were carried out on the tongues of adult Japanese weasels (Mustela itatsi). Four types of papillae are present on the mucous membrane of the tongue; filiform, fungiform, vallate and foliate papillae. The vallate and foliate papillae are furnished with taste buds. Three types of lingual glands are present in the tongue; mucous (Weber's), serous (Ebner's) and mixed glands. Weber's glands are compound tubular glands which are well developed near the radix. Ebner's glands are compound tubular glands connected with the vallate papillae. Mixed glands are compound tubulo-alveolar glands and present in the lower half of the tongue, near the apex.  相似文献   

19.
We observed the external surface and connective tissue cores (CTCs), after exfoliation of the epithelium of the lingual papillae (filiform, fungiform, foliate and vallate papillae) of the common raccoon (Procyon lotor) using scanning electron microscopy and light microscopy. The tongue was elongated and their two-third width was almost fixed. Numerous filiform papillae were distributed along the anterior two-thirds of the tongue and fungiform papillae were distributed between the filiform papillae. Eight vallate papillae that had a weak circumferential ridge were distributed in a V-shape in the posterior part of the tongue and numerous taste buds were observable in the circumferential furrows of vallate papillae. Weak fold-like foliate papillae were observable at the lateral edge in the posterior part of the tongue and a few salivary duct orifices were observable beneath the foliate papillae. An islet-like structure with numerous taste buds, was observable on the deep part of the salivary duct of foliate papillae. Large conical papillae were distributed at the posterior part and root of the tongue. After removal of epithelium, filiform papillae of CTCs were appeared to be a thumb or cone-like main core and associating several finger-like short accessory cores. These cores were surrounded an oval concavity. The main core was situated behind the concavity and associated with accessory cores. CTCs of fungiform papillae were cylinder-like with numerous vertically running ridges and with a few concavities seen at the top of the cores. CTCs of vallate papillae and their surrounded circumferential ridge were covered with numerous pimple-like protrusions. The lingual papillae of Common raccoon's tongue had morphological feature of carnivore species.  相似文献   

20.
This study was carried out to describe the anatomical, histological and mucinous histochemical characteristics of the tongue in the Persian squirrel. This species is a rodent distributed all over the Middle East and recently has been considered a companion animal. Anatomical observations showed the median sulcus on the apex and absence of a lingual prominence in the body. Light and scanning electron microscopy showed that the filiform papillae cover the entire dorsal surface of the tongue, and their sizes increased approaching the root. The fungiform papillae, which contained 1–4 taste buds, were scattered on the apex, margin, body and root of the tongue. Three vallate papillae were observed on the root, each one surrounded by a groove and crescent pad with taste buds on its lateral walls. The foliate papillae on both margins of the tongue contained several laminae with taste buds. The core of the tongue was composed of lingual glands, skeletal muscles and connective tissues. These glands were confined to the body and root, which were composed of serous cells located anteriorly and mucosal and seromucosal cells placed posteriorly. The mucin histochemistry using the periodic acid-Schiff (PAS), alcian blue (AB) (pH 1.0 and 2.5), PAS–AB (pH 2.5) and aldehyde fuchsin-AB (pH 2.5) techniques showed that the mucosal content included both carboxylated and sulfated acidic mucins with neutral mucins. The results of this study could contribute to the knowledge of the morphological characteristics of the wild animal tongue and provide data for comparison with other rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号