首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

Few treatments are available that can safely and effectively stimulate new platelet production for thrombocytopenic patients. Additionally, recipients of transfused platelets may experience an inflammatory response due to stored platelets becoming unnecessarily activated, thus creating the need for suitable agents that will dampen undesirable platelet activation. We investigated the effect of the feverfew plant-derived compound, parthenolide on platelet production and platelet activation because of its well-studied ability to induce apoptosis or differentiation in some types of cancer.

Methods

Parthenolide was used to treat human megakaryoblastic cell lines, primary human and mouse megakaryocytes. Resulting platelet production and function was measured via flow cytometry. The two most common parthenolide signaling mechanisms, oxidative stress and nuclear factor-κB inhibition, were assessed within the megakaryocytes using reactive oxygen species, glutathione and luciferase reporter assays. The influence of parthenolide on ex vivo platelet activation was tested with parthenolide pretreatment followed by collagen or thrombin activation. The resulting P-selectin surface expression and released soluble CD40 ligand was measured.

Results

Parthenolide stimulates functional platelet production from human megakaryocyte cell lines, and from primary mouse and human megakaryocytes in vitro. Parthenolide enhances platelet production via inhibition of nuclear factor-κB signaling in megakaryocytes and is independent of the parthenolide-induced oxidative stress response. Additionally, parthenolide treatment of human peripheral blood platelets attenuated activation of stimulated platelets.

Conclusion

Overall, these data reveal that parthenolide has strong potential as a candidate to enhance platelet production and to dampen undesirable platelet activation.  相似文献   

2.

Introduction

Atherosclerosis is a chronic vascular inflammatory disease. Platelets play a critic role in the initiation of vascular inflammation in atherosclerosis. In the present study, we investigated the effects of ginkgolide B on the inhibition of platelet release and the potential mechanisms.

Methods

Experiments were performed in freshly human platelets. Platelet aggregation and ATP release were measured with a Lumi-aggregometer. Thrombin (0.5 U/ml) was used to induce platelet activation. Protein expression and phosphorylation was examined by Western blotting.

Results

The results showed that ginkgolide B significantly suppressed ATP release by 50.8% in thrombin-activated platelets. Ginkgolide B completely abolished the expression of platelet factor 4 (PF4) and CD40 Ligand (CD40L). Moreover, ginkgolide B fully attenuated the phosphorylation of Syk and p38MAPK. Similarly, R788 (a syk inhibitor) and SB203580 (a p38 MAPK inhibitor) inhibited the expression PF4 and CD40L, respectively. Furthermore, the combination of low concentrations of ginkgolide B and R788 or SB203580 has synergistic inhibition on the expression of PF4 and CD40L. Ginkgolide B partially reduced calcium efflux by 52.7% in thrombin-stimulated platelets.

Conclusion

Ginkgolide B potently inhibited the expression of PF4 and CD40L in thrombin-activated platelets. Ginkgolide B partially decreased ATP release and Ca2 + efflux. The mechanism might be associated with the inhibition of Syk and p38 MAPK phosphorylation. These results demonstrated that ginkgolide B might be a promising drug on inhibiting platelet function and reducing inflammation in atherosclerosis.  相似文献   

3.

Introduction

Thromboxane A2 (TXA2) induces platelet aggregation and vasoconstriction, and agents that inhibit TXA2 production or interaction with receptors may exert potential application in stroke therapy.

Aim

To illustrate the platelet aggregation antagonistic and endothelial protective effect of (E) - 3 - (3 - methoxy - 4 - ((3, 5, 6 - trimethylpyrazin - 2 - yl) methoxy) phenyl) sodium acrylate (MC-002) through TXA2 inhibition and underline mechanisms.

Materials and methods

Platelets aggregation and thoracic aorta ring contraction of rabbits were induced by U46619. Human umbilical vein endothelial cells (HUVECs) were further applied to explore the protective effect of MC-002 on endothelium when exposed to tumor necrosis factor - α (TNF-α). MTT method was used to assess cell damage, and ELISA analysis was exerted to estimate nitrogen monoxide (NO), endothelin-1 (ET-1), thromboxane B2 (TXB2) and 6-keto-prostaglandin F1α (6-keto-PGF1α) releasing. Fluorescence spectrophotometry was conducted to determine intracellular calcium concentration ([Ca2 +]i), and western blotting method was applied to evaluate the protein expressions of intracellular adhesion molecule-1 (ICAM-1), P-selectin and nuclear factor-kappa B (NF-κB).

Results and conclusions

TXA2 analog U46619 mediated obvious platelet aggregation and vasoconstriction. MC-002 inhibited platelet aggregation through administration in vivo and incubation with platelet in vitro, and relaxed aorta ring in endothelium dependent manner. MC-002 alleviated cell damage, [Ca2 +]i overload, ET-1 overexcretion and TXB2 activation, but improved NO availability reduction in HUVECs treated with TNF-α. Furthermore, MC-002 downregulated ICAM-1, P-selectin and NF-κB overexpression induced by TNF-α. In conclusion, MC-002 exerted antiplatelet aggregation effect through TXA2 inhibition and relieved inflammatory injury of endothelial cells through NF-κB signal pathway.  相似文献   

4.

Introduction

Prasugrel, a P2Y12 adenosine diphosphate (ADP) receptor antagonist effectively inhibits ADP-mediated platelet activation and aggregation, and may be useful in reducing vaso-occlusive crises in sickle cell disease (SCD). In this study, we assess the effect of prasugrel on biomarkers of platelet activation and coagulation in patients with SCD.

Materials and Methods

Twelve adult patients with SCD and 13 healthy subjects were examined before and after 12 ± 2 days of 5.0 or 7.5 mg/day oral prasugrel. Assessed cellular biomarkers included monocyte- and neutrophil-platelet aggregates, activated glycoprotein IIb-IIIa (GPIIbIIIa), P-selectin, CD40 ligand (CD40L), tissue factor (TF) expression on circulating platelets and on monocyte-platelet aggregates, and platelet-erythrocyte aggregates. Soluble biomarkers included CD40L, prothrombin fragment 1.2 (F1.2), thromboxane B2 (TXB2), P-selectin, and TF.

Results

Patients with SCD had increased platelet baseline activation compared to healthy subjects, as measured by percentages of monocyte-platelet aggregates, neutrophil-platelet aggregates, and platelets expressing CD40L. Likewise, baseline levels of soluble F1.2 and TXB2 were elevated in patients with SCD compared to healthy subjects. After 12 days of prasugrel, patients with SCD had a significant reduction in platelet-monocyte aggregates that was not observed in healthy subjects. Following prasugrel administration, those with SCD maintained higher levels of monocyte-platelet aggregates and soluble F1.2, but had lower levels of platelet-erythrocyte aggregates and soluble TF compared to healthy subjects.

Conclusions

These results provide evidence for chronic platelet activation in the SCD steady state, activation that was in part attenuated by prasugrel, thereby suggesting that ADP may mediate platelet activation in SCD.  相似文献   

5.
6.

Introduction

CME-1, a novel water-soluble polysaccharide, was purified from the mycelia of Cordyceps sinensis, and its chemical structure was characterized to contain mannose and galactose in a ratio of 4:6 (27.6 kDa). CME-1 was originally observed to exert a potent inhibitory effect on tumor migration and a cytoprotective effect against oxidative stress. Activation of platelets caused by arterial thrombosis is relevant to various cardiovascular diseases (CVDs). However, no data are available concerning the effects of CME-1 on platelet activation. Hence, the purpose of this study was to examine the ex vivo and in vivo antithrombotic effects of CME-1 and its possible mechanisms in platelet activation.

Methods

The aggregometry, immunoblotting, flow cytometric analysis and platelet functional analysis were used in this study.

Results

CME-1 (2.3-7.6 μM) exhibited highly potent activity in inhibiting human platelet aggregation when stimulated by collagen, thrombin, and arachidonic acid but not by U46619. CME-1 inhibited platelet activation accompanied by inhibiting Akt, mitogen-activated protein kinases (MAPKs), thromboxane B2 (TxB2) and hydroxyl radical (OH) formation. However, CME-1 interrupted neither FITC-triflavin nor FITC-collagen binding to platelets. CME-1 markedly increased cyclic AMP levels, but not cyclic GMP levels, and stimulated vasodilator-stimulated phosphoprotein (VASP) phosphorylation. SQ22536, an inhibitor of adenylate cyclase, but not ODQ, an inhibitor of guanylate cyclase, obviously reversed the CME-1-mediated effects on platelet aggregation and vasodilator-stimulated phosphoprotein (VASP), Akt, p38 MAPK phosphorylation, and TxB2 formation. CME-1 substantially prolonged the closure time of whole blood and the occlusion time of platelet plug formation.

Conclusion

This study demonstrates for the first time that CME-1 exhibits highly potent antiplatelet activity that may initially activate adenylate cyclase/cyclic AMP and, subsequently, inhibit intracellular signals (such as Akt and MAPKs), ultimately inhibiting platelet activation. This novel role of CME-1 indicates that CME-1 exhibits high potential for application in treating and preventing CVDs.  相似文献   

7.

Introduction

The outstanding importance of (soluble) CD40L to cardiovascular disease (CVD) is becoming increasingly apparent as CD40L is an important mediator of thrombotic and inflammatory processes. Platelets are the main source for CD40 ligand, linking platelet stimulatory events to inflammation and adverse adaptive immune responses. Periodontitis represents a chronic dental infection by distinct gram negative bacteria that is associated with an increased risk for CVD. However, the effects of periodontopathogens on CD40L expression by platelets have not been determined.

Material and Methods

Effects of periodontopathogens A. actinomycetemcomitans Y and P. gingivalis on the expression of CD40L were determined and the underlying receptors and pathways were investigated. 26 patients with periodontitis and 19 controls were included in the clinical part of this study.

Results

Periodontopathogens directly induce surface expression of CD40L in human platelets. This activation depends on plasma factors like CD14 and involves TLR2 and TLR4 but not FcγRII. Inhibition of PI3K and PLC completely abolishes bacteria-induced surface expression of CD40L. TLR2 and TLR4 agonists, for example, are also able to induce expression and release of CD40L in human platelets.In patients with periodontitis, plasma levels of soluble CD40L are elevated and positivity for P. gingivalis is associated with a statistical significant increase of soluble CD40L.

Conclusions

Our data indicate an involvement of periodontopathogens in increased plasma levels of soluble CD40L in periodontitis and therefore provide a novel link between periodontitis and increased risk for CVD.  相似文献   

8.
9.

Introduction

Downregulation of calsequestrin (CSQ), a major Ca2 + storage protein, may contribute significantly to the hyperactivity of internal Ca2 + ([Ca2 +]i) in diabetic platelets. Here, we investigated changes in CSQ-1 abundance, Ca2 + signaling and aggregation responses to stimulation with the progression of diabetes, especially the mechanism(s) underlying the exaggerated Ca2 + influx in diabetic platelets.

Materials and methods

Type 1 diabetes was induced by streptozotocin in rats. Platelet [Ca2 +]i and aggregation responses upon ADP stimulation were assessed by fluorescence spectrophotometry and aggregometry, respectively. CSQ-1 expression was evaluated using western blotting.

Results

During the 12-week course of diabetes, the abundance of CSQ-1, basal [Ca2 +]i and ADP-induced Ca2 + release were progressively altered in diabetic platelets, while the elevated Ca2 + influx and platelet aggregation were not correlated with diabetes development. 2-Aminoethoxydiphenyl borate, the store-operated Ca2 + channel blocker, almost completely abolished ADP-induced Ca2 + influx in normal and diabetic platelets, whereas nifedipine, an inhibitor of the nicotinic acid adenine dinucleotide phosphate receptor, showed no effect. Additionally, inhibition of Na+/Ca2 + exchange induced much slower Ca2 + extrusion and more Ca2 + influx in normal platelets than in diabetic platelets. Furthermore, under the condition of Ca2 +-ATPase inhibition, ionomycin caused greater Ca2 + mobilization and Ca2 + influx in diabetic platelets than in normal platelets.

Conclusions

These data demonstrate that platelet hyperactivity in diabetes is caused by several integrated factors. Besides the downregulation of CSQ-1 that mainly disrupts basal Ca2 + homeostasis, insufficient Na+/Ca2 + exchange also contributes, at least in part, to the hyperactive Ca2 + response to stimulation in diabetic platelets.  相似文献   

10.
Major depression is a prevalent, debilitating disease, yet therapeutic interventions for depression are frequently inadequate. Many clinical and pre-clinical studies have demonstrated that depression is associated with aberrant activation of the inflammatory system, raising the possibility that reducing inflammation may provide antidepressant effects. Using the learned helplessness mouse model, we tested if susceptibility or recovery were affected by deficiency in either of two receptors that initiate inflammatory signaling, Toll-like receptor-4 (TLR4) and TLR2, using knockout male mice. TLR4-/- mice displayed a strong resistance to learned helplessness, confirming that blocking inflammatory signaling through TLR4 provides robust protection against this depression-like behavior. Surprisingly, TLR2-/- mice displayed increased susceptibility to learned helplessness, indicating that TLR2-mediated signaling counteracts susceptibility. TLR2-mediated signaling also promotes recovery, as TLR2-/- mice demonstrated a severe impairment in recovery from learned helplessness. That TLR2 actually protects from learned helplessness was further verified by the finding that administration of the TLR2 agonist Pam3CSK4 reduced susceptibility to learned helplessness. Treatment with Pam3CSK4 also reversed chronic restraint stress-induced impaired sociability and impaired learning in the novel object recognition paradigm, demonstrating that TLR2 stimulation can protect from multiple impairments caused by stress. In summary, these results demonstrate that TLR2-mediated signaling provides a counter-signal to oppose deleterious effects of stress that may be related to depression, and indicate that TLR2 and TLR4 act oppositely to balance mood-relevant responses to stress.  相似文献   

11.
Our previous study demonstrated that Toll-like receptor 4 (TLR4) could act as a co-receptor with annexin A2 (ANX2) mediating anti-β2-glycoprotein I/β2- glycoprotein I (anti-β2GPI/β2GPI) -induced tissue factor (TF) expression in human acute monocytic leukaemia cell line THP-1. In the current study, we further explored the roles of TLR4 and its adaptors, MD-2 and MyD88, as well as nuclear factor kappa B (NF-κB), in anti-β2GPI/β2GPI-induced the activation of THP-1 cells, especially on the expression of some proinflammatory molecules. The results showed that treatment of THP-1 cells with anti-β2GPI (10 μg/ml)/β2GPI (100 μg/ml) complex could increase IL-6 (interleukin-6), IL-8 (interleukin-8) as well as TNF-α (tumor necrosis factor alpha) expression (both mRNA and protein levels). These effects could be blocked by addition of TAK-242 (5 μM), a blocker of signaling transduction mediated by the intracellular domain of TLR4, and also by NF-κB inhibitor PDTC (20 μM). Overall, our results indicate that anti-β2GPI/β2GPI complex induced IL-6, IL-8 and TNF-α expression involving TLR4/MD-2/MyD88 and NF-κB signaling pathways and this might be associated with pathological mechanisms of antiphospholipid syndrome (APS).  相似文献   

12.
N Lu  M Zhan  C Gao  G Wu  H Zhang 《Thrombosis research》2012,130(4):e209-e215

Introduction

1-[4-[2-(4-Bromobenzene-sulfonamino)ethyl]phenylsulfonyl]-3-(trans-4-methylcy-clohexyl)urea(I4, CAS865483-06-3); a totally synthetic new sulfonylurea compound, combining the hypoglycemic active structure of Glimepiride (CAS 93479-97-1) and anti-TXA2 receptor (TP) active structure of BM-531(CAS 284464-46-6), was designed and synthesized. Its effects on TXA2 synthesis and TP have not been reported yet.

Aim

To study the inhibitory effects of I4 and its mechanisms of action on TXA2 and TP.

Methods

Platelet aggregation studies were performed on human platelet, rat whole blood platelet and rabbit platelet, platelets aggregation was induced by TP agonist U-46619(stable analog of TXA2, CAS 56985-40-1). Plasma TXB2 and 6-keto-prostaglandin F (6-keto-PGF) were used as markers to determine the effect of I4 on thromboxane synthesis. Fluo-3-AM was used to measure the cytosolic Ca2 + concentrations ([Ca2 +]i) in rabbit platelet. Aorta rings with and without endothelium were prepared and aorta contraction was induced by U-46619. A model of type 2 diabetes mellitus was established by intraperitoneal injection of low dose of streptozocin to rats fed a high-calorie diet. Both normal rats and type 2 diabetic rats were used to assay the inhibitory effect of I4 on platelet aggregation induced by U-46619.

Results

I4 exhibited a higher inhibitory potency than Glimepiride on U-46619 induced platelet aggregation in vitro and in vivo. I4 increased the ratio of plasma PGI2/TXA2 and decreased [Ca2 +]i release from platelet internal stores. In addition, I4 presented a vasorelaxant activity on isolated rat aorta contraction induced by U-46619.Oral administration of I4 (1 ~ 10 mg/kg) markedly and dose-dependently inhibited platelet aggregation in both normal rats and type 2 diabetic rats.

Conclusion

I4 significantly inhibited platelet aggregation induced by U-46619 in vitro and in vivo, and rat aorta contraction. It probably acts by partly blocking TXA2 action, decreasing the platelet intracellular Ca2 +, and increasing the PGI2/TXA2 ratio.  相似文献   

13.

Introduction

Platelet hyperreactivity associates with cardiovascular events in humans. Studies in mice and humans suggest that prostaglandin E2 (PGE2) regulates platelet activation. In mice, activation of the PGE2 receptor subtype 3 (EP3) promotes thrombosis, but the significance of EP3 in humans is less well understood.

Objectives

To characterize the regulation of thromboxane-dependent human platelet activation by PGE2.

Patients/Methods

Platelets collected from nineteen healthy adults were studied using an agonist of the thromboxane receptor (U46,619), PGE2, and selective agonists and/or antagonists of the EP receptor subtypes. Platelet activation was assayed by (1) optical aggregometry, (2) measurement of dense granule release, and (3) single-platelet counting.

Results

Healthy volunteers demonstrated significant interindividual variation in platelet response to PGE2. PGE2 completely inhibited U46,619-induced platelet aggregation and ATP release in 26% of subjects; the remaining 74% had partial or no response to PGE2. Antagonism of EP4 abolished the inhibitory effect of PGE2. In all volunteers, a selective EP2 agonist inhibited U46,619-induced aggregation. Furthermore, the selective EP3 antagonist DG-041 converted all PGE2 nonresponders to full responders.

Conclusions

There is significant interindividual variation of platelet response to PGE2 in humans. The balance between EP2, EP3, and EP4 activation determines its net effect. PGE2 can prevent thromboxane-induced platelet aggregation in an EP4-dependent manner. EP3 antagonism converts platelets of nonresponders to a PGE2-responsive phenotype. These data suggest that therapeutic targeting of EP pathways may have cardiovascular benefit by decreasing platelet reactivity.  相似文献   

14.

Introduction

Sciatica causes intense pain. No satisfactory therapeutic drugs exist to treat sciatica. This study aimed to probe the potential mechanism of ferulic acid in sciatica treatment.

Methods

Thirty-two SD rats were randomly divided into 4 groups: sham operation, chronic constriction injury (CCI), mecobalamin, and ferulic acid. We conducted RNA sequencing, behavioral tests, ELISA, PCR, western blotting, and immunofluorescence analysis. TAK-242 and JSH23 were administered to RSC96 and GMI-R1 cells to explore whether ferulic acid can inhibit apoptosis and alleviate inflammation.

Results

RNA sequencing showed that TLR4/NF-κB pathway is involved in the mechanism of sciatica. CCI induced cold and mechanical hyperalgesia; destroyed the sciatic nerve structure; increased IL-1β, IL-6, TNF-α, IL-8, and TGF-β protein levels and IL-1β, IL-6, TNF-α, TGF-β, TLR4, and IBA-1 mRNA levels; and decreased IL-10 and INF-γ protein levels and IL-4 mRNA levels. Immunohistochemistry showed that IBA-1, CD32, IL-1β, iNOS, nNOS, COX2, and TLR4 expression was increased while S100β and Arg-1 decreased. CCI increased TLR4, IBA-1, IL-1β, iNOS, Myd88, p-NF-κB, and p-p38MAPK protein levels. Treatment with mecobalamin and ferulic acid reversed these trends. Lipopolysaccharide (LPS) induced RSC96 cell apoptosis by reducing Bcl-2 and Bcl-xl protein and mRNA levels and increasing Bax and Bad mRNA and IL-1β, TLR4, Myd88, p-NF-κB, and p-p38MAPK protein levels, while ferulic acid inhibited cell apoptosis by decreasing IL-1β, TLR4, Myd88, p-NF-κB, and p-p38MAPK levels and increasing Bcl-2 and Bcl-xl levels. In GMI-R1 cells, Ferulic acid attenuated LPS-induced M1 polarization by decreasing the M1 polarization markers IL-1β, IL-6, iNOS, and CD32 and increasing the M2 polarization markers CD206, IL-4, IL-10 and Arg-1. After LPS treatment, IL-1β, iNOS, TLR4, Myd88, p-p38MAPK, and p-NF-κB levels were obviously increased, and Arg-1 expression was reduced, while ferulic acid reversed these changes.

Conclusion

Ferulic acid can promote injured sciatic nerve repair by reducing neuronal cell apoptosis and inflammatory infiltration though the TLR4/NF-κB pathway.  相似文献   

15.

Background

Aspirin, a commonly used antiplatelet agent, blocks platelet thromboxane A2 (TXA2) formation from arachidonic acid (AA) by acetylating platelet cyclooxygenase-1 (COX-1). Laboratory methods currently used to detect this antiplatelet effect of aspirin provide variable results. We have reported three methods that assess platelet COX-1 acetylation (inactivation) by aspirin and its direct consequences. The first and second assays use monoclonal anti-human-COX-1 antibodies that only detect acetylated (inactivated) COX-1 and active (non-acetylated) COX-1, respectively. The third method measures platelet production of TXB2 (the stable metabolite of TXA2) in vitro in response to AA. We compared the results of these three reference methods with other routinely used methods for assessing the functional consequences aspirin treatment.

Methods

108 healthy volunteers were treated with low-dose aspirin for 7 days. On day 7 following aspirin treatment COX-1 in the platelets was fully acetylated whereas only non-acetylated COX-1 was present in the day 0 platelets. Further, TXB2 production by day 7 platelets was completely blocked. The following tests were performed on the samples obtained from study participants before and after seven days of aspirin treatment: PFA-100 closure time with collagen/epinephrine cartridge, VerifyNow® (VN) Aspirin Assay, platelet aggregation and ATP secretion using AA, ADP, epinephrine and collagen as agonists.

Results

Comparing the pre-treatment and day 7 values, methods that use AA as platelet agonist (AA-induced platelet aggregation/secretion and VN Aspirin Assay) showed high discriminative power. In contrast, results of the other tests showed considerable overlap between day 7 and day 0 values.

Conclusions

Only assays that clearly distinguish between acetylated and non-acetylated platelet COX-1 are useful for establishing the antiplatelet effect of aspirin. The other tests are not suitable for this purpose.  相似文献   

16.

Background

The controversy about the expression of tissue factor (TF) in platelet after de novo synthesis prevail despite many groups recognize that platelet isolation, assays and reagents, particularly non-specific antibodies, may account for the diversity. In this study the potential of TF expression was evaluated using immune-purified human platelets and employing a very sensitive and highly specific TF activity assay.

Methods

Isolated platelets in plasma anti-coagulated with Fragmin were subjected to stimulation by LPS plus PMA, IgG antibody or TRAP and tested for TF activity.

Results

Platelets stimulated with LPS plus PMA for 4 hours expressed trace amounts of TF like activity (PCA), not inhibited by anti-TF antibody (0.2 ± 0.1 mU/ml blood). Platelets, not immune-adsorbed to remove monocytes, showed significant TF activity (2.0 ± 0.9 mU/ml blood) that was nearly abolished by anti-TF antibody. IgG antibody from patient with lupus anticoagulant failed to enhance the trace amount of PCA as compared to the control in contrast to high TF activity induced in monocytes (0.4 ± 0.1 mU/ml blood versus 27.5 ± 10.5 mU/106 cells) showing that activation of complement is not mediating TF expression. Platelet subjected to TRAP activation for 10 min possessed only trace amounts of PCA that was not inhibited by anti-TF antibody and slightly enhanced by anti-TFPI antibody.

Conclusions

It is concluded that platelets free of monocytes do not express TF activity when stimulated by LPS or activated complement factors, implying no role for Toll like receptor (TLR4) as suggested recently. There is no evidence of TF activity associated with platelets as a result of rapid and dynamic process.  相似文献   

17.

Introduction

The aim of this study was to further characterize the effect of the antiplatelet agents, aspirin and eptifibatide, on the surface expression of CD40L and CD62P on platelets from patients with stable coronary artery disease.

Materials and methods

Platelet function was evaluated using standard light transmission aggregometry. Measurements of CD62P and CD40L were carried out by flow cytometry and ELISA assays.

Results

All patients had the expected level of platelet aggregation inhibition in response to 20 μM ADP in the presence of increasing eptifibatide concentrations. Platelet activation by adenosine diphosphate (ADP) or thrombin agonist peptide (TRAP) increased CD62P and CD40L surface density in the presence of aspirin by 1.9 - 2.8 -fold. Aspirin treatment did not prevent either CD62P or CD40L expression. Eptifibatide pretreatment at pharmacologically relevant concentrations blocked agonist-induced increases in CD62P platelet surface density. A marked percentage of platelets still expressed low levels of surface CD62P suggesting slight platelet activation even with potent platelet inhibition. Eptifibatide also blocked agonist-induced increases in CD40L surface expression and decreased the percent of platelets positive for surface CD40L. Decreased expression of CD40L was due to an inhibition of CD40L translocation and not caused by enhanced shedding from the surface, as soluble CD40L (sCD40L). Eptifibatide concentrations that effectively blocked platelet aggregation correlated with total inhibition of increased CD62P and CD40L surface density.

Conclusion

Blockade of the GPIIb-IIIa receptor on platelets from coronary artery disease patients may have significant bearing on reducing proinflammatory and procoagulant events mediated by CD62P and sCD40L.  相似文献   

18.

Introduction

Proteinase 3 (PR3) is released from neutrophil azurophilic granules and exerts complex effects on the inflammatory process. PR3 catalyzes the degradation of a number of macromolecules, but the consequences on blood cells are less well defined. In the present study, the effect of PR3 on human platelets was thoroughly investigated.

Methods

The experiments were performed on washed platelets freshly isolated from blood donated by healthy human volunteers. Platelets shape change and aggregation was measured on a Chrono-Log aggregometer. The phosphorylated form of MYPT1 was visualized by immunostaining. Platelet activation was further evaluated by flow cytometry.

Results

PR3 induced platelet shape change but not aggregation. Flow cytometry analysis showed that PR3 induced no P-selectin expression or binding of fibrinogen to the platelets, and it did not change the activation in response to PAR1- or PAR4-activating peptides or to thrombin. Furthermore, Fura-2 measurement and immuno-blotting analysis, respectively, revealed that PR3 stimulated small intracellular Ca2 + mobilization and Thr696-specific phosphorylation of the myosin phosphatase target subunit 1 (MYPT1). Separate treatment of platelets with the Rho/Rho kinase inhibitor Y-27632 and the intracellular Ca2 + chelator BAPTA/AM reduced the shape change induced by PR3 whereas concurrent treatment completely inhibited it.

Conclusion

The data shows that the neutrophil protease PR3 is a direct modulator of human platelets and causes shape change through activation of the Rho/Rho kinase and Ca2 + signaling pathways. This finding highlights an additional mechanism in the complex interplay between neutrophils and platelets.  相似文献   

19.

Introduction

Derived from the root of Panax ginseng C.A.Mey, Panax notoginsenosides (PNS) is a widely used herbal medicine to treat atherothrombotic diseases in Asian medicine. Ginsenoside Rg1 is one of the main compounds responsible for the pharmaceutical actions of PNS. As platelets play pivotal roles in atherothrombogenesis, we therefore studied the effect of Rg1 on platelet activation and its underlying mechanisms.

Materials and Methods

Human platelets are obtained from healthy subjects. Platelet activation and the inhibition of Rg1 were assessed by Born aggregometer, flow cytmetry, flow chamber and western blot. The in vivo thrombosis model was induced by 10% FeCl3 on mesenteric arterioles of wild type B57/b6 mice.

Results

Rg1 significantly inhibited platelet aggregation induced by thrombin, ADP, collagen and U46619, e.g., aggregation rate stimulated by 0.1 U mL- 1 thrombin was decreased 46% by Rg1. Rg1 also reduced thrombin (0.1 U mL- 1)-enhanced fibrinogen binding and P-selectin expression of single platelet by 81% and 66%, respectively. Rg1 affected αIIbβ3-mediated outside-in signaling as demonstrated by diminished platelet spreading on immobilized fibrinogen. Rg1 also decreased the rate of clot retraction in platelet rich plasma. Furthermore, Rg1 decreased platelet adhesion on collagen surface under a shear rate correlated to the arterial flow (1000 s- 1) by approximately 70%. Western blot showed that Rg1 potently inhibited ERK phosphrylation. The in vitro findings were further evaluated in the mouse model of in vivo arterial thrombosis, and Rg1 was found to prolong the mesenteric arterial occlusion time (34.9 ± 4.1 min without and 64.3 ± 4.9 min with Rg1; p < 0.01).

Conclusions

Rg1 inhibits platelet activation via the inhibition of ERK pathway, and attenuates arterial thrombus formation in vivo.  相似文献   

20.

Objectives

Platelet-leukocyte aggregation is believed to contribute to acute thrombotic events. While the effect of aspirin on platelet-to-platelet aggregation is well established, the impact of the drug on pro-inflammatory platelet function remains equivocal. Thus we investigated the effect of aspirin on selected platelet-related inflammatory biomarkers in both acute ischaemic stroke patients and healthy volunteers.

Methods

Using five-colour flow cytometry the platelet surface expression of CD62P and CD40L and subpopulations of leukocyte-platelet aggregates were assessed in 63 acute stroke patients and 40 healthy volunteers at baseline and after a 10-day period of aspirin intake at a daily dose of 150 mg. Simultaneously the plasma levels of soluble CD62P and CD40L, serum level of TxB2, and whole blood impedance platelet aggregation under arachidonic acid (AA) stimulation were investigated.

Results

No differences in values of studied platelet-related inflammatory biomarkers in both resting platelets and those activated with TRAP after 10-day treatment with aspirin were confirmed in stroke subjects. In healthy individuals the resting platelet expression of CD62P, plasma level of soluble CD62P and percentage of circulating monocyte-platelet aggregates were lower after the aspirin intake period (P = 0.009; P = 0.04; P = 0.004, respectively). In both studied groups serum level of TxB2 and platelet aggregation under AA stimulation were lower than before treatment (P < 0.001).

Conclusion

Despite effective inhibition of COX-1-dependent platelet aggregation, aspirin does not influence the platelet α-granule-derived inflammatory mediators and monocyte-platelet aggregation in acute stroke subjects, although it does in healthy individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号