首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cancer treatment and pharmacogenetics of cytochrome P450 enzymes   总被引:3,自引:0,他引:3  
Summary For the treatment of cancer, the window between drug toxicity and suboptimal therapy is often narrow. Interindividual variation in drug metabolism therefore complicates therapy. Genetic polymorphisms in phase I and phase II enzymes may explain part of the observed interindividual variation in pharmacokinetics and pharmacodynamics of anticancer drugs. The cytochrome P450 superfamily is involved in many drug metabolizing reactions. Information on variant alleles for the different isoenzymes of this family, encoding proteins with decreased enzymatic activity, is rapidly growing. The ultimate goal of ongoing research on these enzymes would be to enable pharmacogenetic screening prior to anticancer therapy. At this moment, potential clinically relevant application of CYP450 pharmacogenetics for anticancer therapy may be found for CYP1A2 and flutamide, CYP2A6 and tegafur, CYP2B6 and cyclophosphamide, CYP2C8 and paclitaxel, CYP2D6 and tamoxifen, and CYP3A5. For this latter enzyme, the drugs of interest still need to be identified.  相似文献   

2.
3.
There is wide variability in the response of individuals to standard doses of drug therapy. This is an important problem in clinical practice, where it can lead to therapeutic failures or adverse drug reactions. Polymorphisms in genes coding for metabolising enzymes and drug transporters can affect drug efficacy and toxicity. Pharmacogenetics aims to identify individuals predisposed to a high risk of toxicity and low response from standard doses of anti-cancer drugs. This review focuses on the clinical significance of polymorphisms in drug-metabolising enzymes (cytochrome P450 [CYP] 2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, dihydropyrimidine dehydrogenase, uridine diphosphate glucuronosyltransferase [UGT] 1A1, glutathione S-transferase, sulfotransferase [SULT] 1A1, N-acetyltransferase [NAT], thiopurine methyltransferase [TPMT]) and drug transporters (P-glycoprotein [multidrug resistance 1], multidrug resistance protein 2 [MRP2], breast cancer resistance protein [BCRP]) in influencing efficacy and toxicity of chemotherapy.The most important example to demonstrate the influence of pharmacogenetics on anti-cancer therapy is TPMT. A decreased activity of TPMT, caused by genetic polymorphisms in the TPMT gene, causes severe toxicity with mercaptopurine. Dosage reduction is necessary for patients with heterozygous or homozygous mutation in this gene.Other polymorphisms showing the influence of pharmacogenetics in the chemotherapeutic treatment of cancer are discussed, such as UGT1A1*28. This polymorphism is associated with an increase in toxicity with irinotecan. Also, polymorphisms in the DPYD gene show a relation with fluorouracil-related toxicity; however, in most cases no clear association has been found for polymorphisms in drug-metabolising enzymes and drug transporters, and pharmacokinetics or pharmacodynamics of anti-cancer drugs. The studies discussed evaluate different regimens and tumour types and show that polymorphisms can have different, sometimes even contradictory, pharmacokinetic and pharmacodynamic effects in different tumours in response to different drugs.The clinical application of pharmacogenetics in cancer treatment will therefore require more detailed information of the different polymorphisms in drug-metabolising enzymes and drug transporters. Larger studies, in different ethnic populations, and extended with haplotype and linkage disequilibrium analysis, will be necessary for each anti-cancer drug separately.  相似文献   

4.
The current 'fixed-dosage strategy' approach to medicine, means there is much inter-individual variation in drug response. Pharmacogenetics is the study of how inter-individual variations in the DNA sequence of specific genes affect drug responses. This article will highlight current pharmacogenetic knowledge on important drug metabolizing enzymes, drug transporters and drug targets to understand interindividual variability in drug clearance and responses in clinical practice and potential use in personalized medicine. Polymorphisms in the cytochrome P450 (CYP) family may have had the most impact on the fate of pharmaceutical drugs. CYP2D6, CYP2C19 and CYP2C9 gene polymorphisms and gene duplications account for the most frequent variations in phase I metabolism of drugs since nearly 80% of drugs in use today are metabolised by these enzymes. Approximately 5% of Europeans and 1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant drug metabolising enzyme that demonstrates genetic variants. Studies into CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and CYP2C9*3 alleles. Extensive polymorphism also occurs in a majority of Phase II drug metabolizing enzymes. One of the most important polymorphisms is thiopurine S-methyl transferases (TPMT) that catalyzes the S-methylation of thiopurine drugs. With respect to drug transport polymorphism, the most extensively studied drug transporter is P-glycoprotein (P-gp/MDR1), but the current data on the clinical impact is limited. Polymorphisms in drug transporters may change drug's distribution, excretion and response. Recent advances in molecular research have revealed many of the genes that encode drug targets demonstrate genetic polymorphism. These variations, in many cases, have altered the targets sensitivity to the specific drug molecule and thus have a profound effect on drug efficacy and toxicity. For example, the beta (2)-adrenoreceptor, which is encoded by the ADRB2 gene, illustrates a clinically significant genetic variation in drug targets. The variable number tandem repeat polymorphisms in serotonin transporter (SERT/SLC6A4) gene are associated with response to antidepressants. The distribution of the common variant alleles of genes that encode drug metabolizing enzymes, drug transporters and drug targets has been found to vary among different populations. The promise of pharmacogenetics lies in its potential to identify the right drug at the right dose for the right individual. Drugs with a narrow therapeutic index are thought to benefit more from pharmacogenetic studies. For example, warfarin serves as a good practical example of how pharmacogenetics can be utilized prior to commencement of therapy in order to achieve maximum efficacy and minimum toxicity. As such, pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and licensed drugs.  相似文献   

5.
1. Pharmacogenetics refers to the study of genetically controlled variations in drug response. Functional variants caused by single nucleotide polymorphisms (SNPs) in genes encoding drug-metabolising enzymes, transporters, ion channels and drug receptors have been known to be associated with interindividual and interethnic variation in drug response. Genetic variations in these genes play a role in influencing the efficacy and toxicity of medications. 2. Rapid, precise and cost-effective high-throughput technological platforms are essential for performing large-scale mutational analysis of genetic markers involved in the aetiology of variable responses to drug therapy. 3. The application of a pharmacogenetics approach to therapeutics in general clinical practice is still far from being achieved today owing to various constraints, such as limited accessibility of technology, inadequate knowledge, ambiguity of the role of variants and ethical concerns. 4. Drug actions are determined by the interplay of several genes encoding different proteins involved in various biochemical pathways. With rapidly emerging SNP discovery technological platforms and widespread knowledge on the role of SNPs in disease susceptibility and variability in drug response, the pharmacogenetics approach to therapeutics is anticipated to take off in the not-too-distant future. This will present profound clinical, economic and social implications for health care.  相似文献   

6.
Large differences among normal human subjects in the efficacy and safety of many therapeutic agents are caused by genetically controlled polymorphisms of drug-metabolizing enzymes, drug transporters, and drug receptors. Development of pharmacogenomics as a new field has accelerated progress in pharmacogenetics by elucidating at the level of the human genome the inherited basis for those large interindividual variations. Examples discussed in this review illustrate how this approach can be used not only to guide new drug discovery but also to individualize therapy. Adverse drug reactions, often attributable to large differences among subjects in drug response, constitute a leading cause of death in the USA. Such high morbidity and mortality could be reduced by application of the principles of pharmacogenetics and pharmacogenomics, defined broadly as the study of genetically caused variability in drug response.  相似文献   

7.
In the treatment of cancer, a narrow therapeutic window generally exists between toxicity and suboptimal therapy. In addition, interindividual variation in drug metabolism seriously complicates therapy. Genetic polymorphisms in phase 1 and phase 2 enzymes are present in the population and may explain part of the observed interindividual variation in drug pharmacokinetics. For the cytochrome P450 superfamily, information on variant alleles encoding enzymes with decreased activity is rapidly on the increase. The potential of applying pharmacogenetic screening before therapy in the treatment of cancer seems to be greatest for CYP2B6 (cyclophosphamide treatment), CYP2C8 (paclitaxel therapy), and CYP3A5; however, the drugs of interest still need to be identified for this latter enzyme.  相似文献   

8.
It is well known that interindividual variability can affect the response to many drugs in relation to age, gender, diet, and organ function. Pharmacogenomic studies have also documented that genetic polymorphisms can exert clinically significant effects in terms of drug resistance, efficacy and toxicity by modifying the expression of critical gene products (drug-metabolizing enzymes, transporters, and target molecules) as well as pharmacokinetic and pharmacodynamic parameters. A growing body of in vitro and clinical evidence suggests that common polymorphisms in the folate gene pathway are associated with an altered response to methotrexate (MTX) in patients with malignancy and autoimmune disease. Such polymorphisms may also induce significant MTX toxicity requiring expensive monitoring and treatment. Although the available data are not conclusive, they suggest that in the future MTX pharmacogenetics could play a key role in clinical practice by improving and tailoring treatment. This review describes the genetic polymorphisms that significantly influence MTX resistance, efficacy, and toxicity.  相似文献   

9.
Much of the interindividual variability in drug response is attributable to the presence of single nucleotide polymorphisms (SNPs) in genes encoding drug-metabolizing enzymes and drug transporters. In recent years, we have investigated the polymorphisms in a number of genes encoding phase I and II drug-metabolizing enzymes including CYPIA1, CYP3A4, CYP3A5, GSTM1, NAT2, UGT1A1, and TPMT and drug transporter (MDR1) in three distinct Asian populations in Singapore, namely the Chinese, Malays, and Indians. Significant differences in the frequencies of common alleles encoding these proteins have been observed among these three ethnic groups. For example, the frequency of the variant A2455G polymorphism of CYP1A1 was 28% in Chinese and 31% in Malays, but only 18% in Indians. CYP3A4*4 was detected in two of 110 Chinese subjects, but absent in Indians and Malays. Many Chinese and Malays (61-63%) were homozygous for the GSTM1*0 null genotype compared with 33% of Indians. The frequency of the UGTIA1*28 allele was highest in the Indian population (35%) compared to similar frequencies that were found in the Chinese (16%) and Malay (19%) populations. More importantly, our experience over the years has shown that the pharmacogenetics of these drug-metabolizing enzymes and MDR1 in the Asian populations are different from these in the Caucasian and African populations. For example, the CYP3A4*1B allele, which contains an A-290G substitution in the promoter region of CYP3A4, is absent in all three Asian populations of Singapore studied, but occurs in more than 54% of Africans and 5% of Caucasians. There were no difference in genotype and allelic variant frequencies in exon 12 of MDR1 between the Chinese, Malay, and Indian populations. When compared with other ethnic groups, the distribution of the wild-type C allele in exon 12 in the Malays (34.2%) and Indians (32.8%) was relatively high and similar to the Japanese (38.55%) and Caucasians (41%) but different from African-Americans (15%). The frequency of wild-type TT genotype in Asians (43.5% to 52.1%) and Japanese (61.5%) was much higher than those found in Caucasians (13.3%). All the proteins we studied represent the primary hepatic or extrahepatic enzymes, and their polymorphic expression may be implicated in disease risk and the disposition of drugs or endogenous substances. As such, dose requirements of certain drugs may not be optimal for Asian populations, and a second look at the factors responsible for this difference is necessary.  相似文献   

10.
Clinically important genetic polymorphisms influencing drug metabolism and drug response have typically been discovered on the basis of phenotypic differences among individuals from different populations. Routine genotyping before drug therapy may enable the identification of responders, nonresponders, or patients at increased risk of toxicity. Automated, high-throughput detecting methods for single-nucleotide polymorphisms (SNPs) are highly desirable in many clinical laboratories. The aim of this study is to develop a high-throughput genotyping method for detecting SNPs influencing drug response in the Japanese population. We have developed three real-time PCR assays for detecting SNPs in the human drug-metabolizing enzymes and drug targets. The assay for simultaneously detecting CYP2A6, CYP2B6, CYP2C9, CYP2C18, CYP2C19, CYP2D6, CYP2E1, CYP3A5, NAT2, TPMT, DPYD, UGT1A1, ALDH2, ADH2, MDR1, CETP, DCP-1, ADRB2, HTR2A, INPP1, SDF1, and mitochondrial DNA polymorphisms takes less than 1.5 h. With the clinical application of NAT2 genotyping, we found statistically significant difference between the incidence of adverse drug reactions (ADRs) and the NAT2 genotype. The incidence of the ADRs was significantly higher in the slow type than the in other two types, as 5 of the 6 patients were of the slowtype, and the other was the intermediatetype, while no patients of the rapidtype has developed any ADRs.  相似文献   

11.
Pharmacogenetic polymorphisms that change the amino acid sequences in coding regions only account for part of the interindividual differences in disease susceptibility and drug response. Additional pharmacogenomic and epigenetic factors are also involved. In children, pharmacogenetic studies are limited, although it has been clear for many years that the interactions between developmental patterns of drug-metabolizing enzymes and transporters have a major impact on dose exposure with age-specific dosage requirements. This article will analyze the factors affecting variability in drug response in children and focus on the pharmacogenetic polymorphisms of immunosuppressants, antidepressants, anticancer and anti-inflammatory drugs. Additional pharmacogenetic and epigenetic studies should be performed to allow the individualization of therapy in children.  相似文献   

12.
Most medications exhibit wide interpatient variability in their efficacy and toxicity. For many medications, these interindividual differences result in part from polymorphisms in genes encoding drug-metabolizing enzymes, drug transporters, and/or drug targets (eg, receptors, enzymes). Pharmacogenomics is a burgeoning field aimed at elucidating the genetic basis of differences in drug efficacy and toxicity, using genome-wide approaches to identify the network of genes that govern an individual's response to drug therapy. For some genetic polymorphisms, such as thiopurine S-methyltransferase (TPMT), monogenic traits have a marked effect on the pharmacokinetics of medications, such that individuals who inherit an enzyme deficiency must be treated with markedly different doses of the affected medications (eg, 5-10% of the standard thiopurine dose). This review uses the TPMT polymorphism and thiopurine therapy (eg, azathioprine, mercaptopurine) to illustrate the potential of pharmacogenomics to elucidate genetic determinants of drug response, and optimize the selection of drug therapy for individual patients.  相似文献   

13.
Genetic variability in CYP3A5 and its possible consequences   总被引:13,自引:0,他引:13  
The cytochrome P450 3A (CYP3A) subfamily members are the most abundant and important drug-metabolizing enzymes in humans, and wide interindividual variability in CYP3A expression and function is present. CYP3A4 alone cannot fully explain the observed constitutive variability because its genetic variants are relatively uncommon and have limited functional significance, whereas CYP3A5 expression in humans is highly variable and may be contributory. However, it is difficult to delineate the relative contribution of CYP3A4 and CYP3A5, and to differentiate their effects on drug metabolism as their protein structure, function and substrates are so similar. By contrast, molecular biology methods provide the ability to identify CYP3A4 and CYP3A5 genotypes with certainty. This review collates currently available data on CYP3A5 polymorphisms, provides information on the population frequency of each genetic variant in major ethnic groups, and describes in vitro and in vivo studies that have attempted to identify genotype-phenotype associations.  相似文献   

14.
The importance of pharmacogenetics in medicine is growing with the identification of genetic variability by faster screening methods using automatic sequencers. A particularly interesting finding is that apart from environmental and psychological factors, drug response may be influenced by several biological factors as a result of genetic determinants leading to interindividual variability. Several mutations in genes coding for enzymes of the drug metabolizing system, as well as for neurotransmitter receptors or degrading enzymes and monoamine transport proteins, have been identified and investigated in psychiatry. But, despite the fact that some genetic polymorphisms of enzymes (mainly cytochrome P450 2D6) are well known, the application of pharmacogenetics as a therapeutic tool for improving patient care is rare. This review has three parts. In the first an overview is given of CYP450 characteristics and the genetic polymorphisms of interest to psychiatry. In the second the clinical implications of the CYP2D6 polymorphism are reviewed and in the third part other aspects on pharmacogenetic research in psychiatry are discussed. The aim of our review is to promote the application of pharmacogenetics in everyday clinical practice.  相似文献   

15.
Genomic variations influencing response to pharmacotherapy of pain are under investigation. Candidate genes such as (opioid)-receptors, transporters and other molecules important for pharmacotherapy are discussed. Drug metabolising enzymes represent a further major target of ongoing research in order to identify associations between an individual's genetic profile and drug response (pharmacogenetics). Polymorphisms of the cytochrome P450 enzymes influence analgesic efficacy of codeine, tramadol and tricyclic antidepressants (CYP2D6). Blood levels of some NSAIDs are dependent on CYP2C9 activity, whereas opioid-receptor polymorphisms are discussed for differences in opioid mediated analgesia and side effects. Pharmacogenetics as a diagnostic tool has the potential to improve patient therapy and care, and it is hoped that pharmacogenetics will individualise drug treatment to a greater extent in the near future.  相似文献   

16.
Genomic variations influencing response to pharmacotherapy of pain are under investigation. Candidate genes such as (opioid)-receptors, transporters and other molecules important for pharmacotherapy are discussed. Drug metabolising enzymes represent a further major target of ongoing research in order to identify associations between an individual's genetic profile and drug response (pharmacogenetics). Polymorphisms of the cytochrome P450 enzymes influence analgesic efficacy of codeine, tramadol and tricyclic antidepressants (CYP2D6). Blood levels of some NSAIDs are dependent on CYP2C9 activity, whereas opioid-receptor polymorphisms are discussed for differences in opioid mediated analgesia and side effects. Pharmacogenetics as a diagnostic tool has the potential to improve patient therapy and care, and it is hoped that pharmacogenetics will individualise drug treatment to a greater extent in the near future.  相似文献   

17.
Clinical relevance of pharmacogenetics   总被引:2,自引:0,他引:2  
  相似文献   

18.
Drug management can be a difficult task in certain situations because of the variable response observed from one patient to another. Genetic factors affecting the pharmacokinetics and pharmacodynamics of drug reactions could explain the interindividual variability in drug response. Pharmacogenetic analysis provides insight into the molecular mechanisms involved in drug response, with the ultimate goal of achieving optimal drug efficacy and safety. Numerous polymorphisms have been described in genes encoding drug-metabolising enzymes, transporters, and receptors. For some drugs, the impact on drug bioavailability and effect has been elucidated. We review here the molecular basis of interindividual variation in drug response and the methods used to identify individual risk of drug failure or toxicity. Clinical applications, concerning enzymes metabolising drugs (cytochrome P4502D6, thiopurine S-methyltransferase and N-acetyltransferase) provide an illustrative demonstration of the usefulness of pharmacogenetic tests in improving patient management. Clinical validation of these tests and new technologies (real-time PCR, DNA chips) should, in the future promote pharmacogenetics in clinical practice and may be lead to more individualized drug therapy.  相似文献   

19.
Metabolic capacities for debrisoquin, sparteine, mephenytoin, nifedipine, and midazolam, which are substrates of polymorphic CYP2D6, CYP2C19, and CYP3A, have been reported to exhibit, in many cases, remarkable interindividual and ethnic differences. These ethnic differences are partly associated with genetic differences. In the case of the drug transporter ABCB1/MDR1, interindividual differences in its transporter activities toward various clinical drugs are also attributed to several ABCB1/MDR1 genetic polymorphisms. In this review, the existence and frequency of various low-activity alleles of drug metabolizing enzymes as well as populational drug metabolic capacities are compared among several different races or ethnicities. Distribution of nonsynonymous ABCB1/MDR1 SNPs and haplotype frequency in various races are summarized, with the association of nonsynonymous SNPs with large functional alterations as a rare event.  相似文献   

20.
Erratic or unpredictable response to drugs remains a challenge of modern drug therapy. An important determinant of such interindividual differences in drug response is variability in the expression of drug-metabolizing enzymes and/or transporters at sites of absorption and/or tissue distribution. Variable drug-metabolizing enzyme and transporter expression can result in unpredictable exposure and tissue distribution of drugs and may manifest as adverse effects or therapeutic failure. In the past decade, important new insights have been made relating to the regulatory mechanisms governing the expression of drug-metabolizing enzymes and transporters by ligand-activated nuclear receptors. Specifically, there is compelling evidence to demonstrate that PXR, CAR, FXR, LXR, VDR, HNF4alpha, and AhR form a battery of nuclear receptors that regulate the expression of many important drug-metabolizing enzyme and transporters. In this review, the authors focus on clinically important drug-metabolizing enzymes such as CYP3A4, CYP2B6, CYP2C9, CYP2C19, UGT1A1, SULT2A1, and glutathione S-transferases and their regulation by nuclear receptors. They also review the nuclear receptor-mediated regulation of drug transporters such as MDR1, MRP2, MRP4, BSEP, BCRP, NTCP, OATP1B3, and OATP1A2. Finally, they outline how the drug development process has been affected by the current understanding of the involvement of nuclear receptors in the regulation of drug disposition genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号