首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effects of intrathecal (i.t.) nocistatin, a peptide identified from the precursor of orphanin FQ/nociceptin (OFQ) on the spinal nociceptive flexor reflex in decerebrate, spinalized, unanesthetized rats and its interaction with i.t. OFQ. Nocistatin induced a moderate, non-dose-dependent facilitation of the flexor reflex without producing reflex depression whereas i.t. OFQ induced a biphasic dose-dependent facilitatory and inhibitory effect. The facilitatory effect of low dose (0.55 pmol) OFQ was significantly increased by nocistatin. On the other hand, the duration, but not magnitude, of reflex depression induced by a high (550 pmol) dose of OFQ was significantly shortened by 5.5 nmol nocistatin. Thus, nocistatin interacts with OFQ in a complex fashion, increasing excitation and reducing inhibition. No evidence was obtained for an antinociceptive effect of nocistatin in rat spinal cord.  相似文献   

2.
The action of phaclofen, the phosphonic acid derivative of baclofen, on baclofen-induced suppression of spinal reflex transmission was tested in anaesthetized rats. Intrathecal (i.th.) injection of phaclofen, 100 nmol, antagonized the depressant effect of baclofen, 2 nmol, on spinal Hoffmann (H)-reflexes and polysynaptic flexor reflexes but ha on the action of muscimol, 20 nmol. The antagonistic effect of phaclofen on baclofen-induced depression of H-reflexes was dose-dependent in doses ranging from 1 to 100 nmol. When administered alone, phaclofen, 100 nmol, was devoid of stimulatory or depressant effects on spinal reflexes. These results indicate that phaclofen specifically antagonizes the reflex suppressant action of baclofen. The lack of intrinsic action of phaclofen suggests that there is no endogenous tonic inhibition mediated by GABAB receptors under the present experimental conditions.  相似文献   

3.
Electrical stimulation in the nucleus reticularis gigantocellularis (NGC) and gigantocellularis pars alpha (NGC alpha) produces facilitation and/or inhibition of spinal nociceptive transmission in behavioral and electrophysiological studies. The present study examined spinal neurotransmitter receptors mediating descending facilitation from the NGC/NGC alpha. As previously demonstrated, electrical stimulation in the NGC/NGC alpha at low intensities (approximately equal to 10 microA) produced facilitation and at greater intensities (approximately equal to 38 microA) inhibition of the tail-flick (TF) reflex. Intrathecal pretreatment with the non-selective serotonin (5-HT) receptor antagonist methysergide attenuated or completely abolished facilitation of the TF reflex produced by electrical stimulation in the NGC/NGC alpha; intrathecal pretreatment with atropine, phentolamine, naloxone or mecamylamine was without effect on stimulation-produced facilitation. Descending inhibition from the NGC/NGC alpha produced by electrical stimulation was attenuated or completely abolished by bilateral transection of the dorsolateral funiculi (DLF) of the cervical spinal cord. Descending facilitation produced by electrical stimulation, however, was unaffected or enhanced following DLF transections. Glutamate microinjections (1.7 nmol/0.17 microliters) into the NGC/NGC alpha produced a rapid, repeatable and short-duration facilitation of the TF reflex in rats with bilateral DLF transections and such facilitation was attenuated by intrathecal pretreatment with methysergide, but not atropine, xylamidine (5-HT2 selective receptor antagonist) or MDL-72222 (5-HT3 selective receptor antagonist). These findings suggest that facilitation of the TF reflex from the activation of the cell bodies in the NGC/NGC alpha is mediated by a descending serotonergic pathway traveling in the ventrolateral funiculi and by spinal 5-HT1 receptors.  相似文献   

4.
Previous studies in anesthetized or reduced preparations of nonprimate animals revealed that the alpha 2-adrenergic agonist tizanidine, clinically used as an antispastic drug, effectively reduces polysynaptic flexor reflexes. To further clarify the invoked adrenergic mechanism for physiological motor functions, and in view of the clinical relevance of tizanidine, the effect of this substance was reinvestigated in awake, nonanesthetized monkeys. Systemic applications of tizanidine dose-dependently reduced the magnitude of the electromyographic response of the flexor reflex that was induced by nonnoxious stimulation of cutaneous afferents. Whereas the effects on the flexor response were consistent, the changes of the background electromyogram were much more variable, often not paralleling those of the reflex. The reflex depression produced by tizanidine could be prevented by pretreatment with the alpha 2-antagonist yohimbine. It is concluded that the action of tizanidine on spinal reflexes, and therefore probably also on hyperactive reflexes of spastic patients, is mediated via the alpha 2-adrenergic properties of the drug. On the basis of the present results, taken together with previous observations that tizanidine transiently inactivates neurons of the nucleus locus coeruleus, it is proposed that the reflex depression may be caused by a removal of a descending noradrenergic facilitation exerted on spinal reflex transmission. This interpretation leaves open further possible actions of tizanidine exerted directly on spinal interneurons.  相似文献   

5.
Cholinergic input modulates excitability of motoneurons and plays an important role in the control of locomotion in both intact and spinalized animals. However, spinal cord transection in adult rats affects cholinergic innervation of only some hindlimb motoneurons, suggesting that specificity of this response is related to functional differences between motoneurons. Our aim was therefore to compare cholinergic input to motoneurons innervating the soleus (Sol) and tibialis anterior (TA) motoneurons following spinal cord transection at a low-thoracic level. The second aim was to investigate whether deficits in cholinergic input to these motoneurons could be modified by locomotor training. The Sol and TA motoneurons were identified by retrograde labelling with fluorescent dyes injected intramuscularly. Cholinergic terminals were detected using anti-vesicular acetylcholine transporter (VAChT) antibody. Overall innervation of motoneurons was evaluated with anti-synaptophysin antibody. After spinalization we found a decrease in the number of VAChT-positive boutons apposing perikarya of the Sol (to 49%) but not TA motoneurons. Locomotor training, resulting in moderate functional improvement, partly reduced the deficit in cholinergic innervation of Sol motoneurons by increasing the number of VAChT-positive boutons. However, the optical density of VAChT-positive boutons terminating on various motoneurons, which decreased after spinalization, continued to decrease despite the training, suggesting an impairment of acetylcholine availability in the terminals. Different effects of spinal cord transection on cholinergic innervation of motoneurons controlling the ankle extensor and flexor muscles point to different functional states of these muscles in paraplegia as a possible source of activity-dependent signaling regulating cholinergic input to the motoneurons.  相似文献   

6.
Reflexes in visceral preganglionic motility-regulating (MR) neurons which project in the lumbar splanchnic nerves were investigated in acutely spinalized cats. Some neurons were analyzed before and after spinalization. The stimuli used were mechanical stimulation of mucosal skin of the anus and of perianal (perigenital) hairy skin, and distension and contraction of urinary bladder and colon. Most MR neurons exhibited a reflex pattern which consists of the following components: excitation upon bladder distension, inhibition or no effect upon colon distension and excitation (or, rarely, no effect) upon anal stimulation. This is the reflex pattern of MR1 neurons. Some neurons were excited by anal stimulation but not affected from the colon and urinary bladder. Some were inhibited by anal and perianal stimulation but otherwise exhibited the reflex patterns of the MR1 neurons. Analysis of the reflexes before and after spinalization showed that, in particular, inhibition elicited by anal, perianal and bladder stimulation was abolished; inhibition elicited from the colon was enhanced after spinalization. It is concluded that the reflexes elicited in preganglionic lumbar visceral neurons by the natural stimuli probably use spinal pathways, with the afferent input occurring at the sacral spinal cord. These spinal reflex pathways are probably controlled by descending inhibitory and excitatory spinal systems from the supraspinal neuraxis.  相似文献   

7.
Clonidine and morphine depress nociceptive reflex responses when given alone; when given in combination, the effect of each is potentiated by the other. The present study was designed to test if activity in ascending axons evoked by electrical stimulation of afferent C-fibers in the sural nerve of the rat also exhibits potentiation of the depressant effects of clonidine and morphine when both drugs are administered in combination by intrathecal (i.t.) injection to the lumbar spinal cord. For comparison, experiments were also carried out on the tail-flick response in rats. The results show that clonidine produced a dose-dependent inhibition of the tail-flick response (Ed50 20 micrograms); a combination of ineffective doses of clonidine (0.3 microgram) and morphine (2 micrograms) significantly inhibited the tail-flick response; clonidine (35 micrograms) reduced spontaneous, C-fiber-evoked and, due to co-activation, A delta-fibre-evoked activity in ascending axons; and clonidine at a threshold (0.3 microgram) or higher (3 micrograms) dose administered together with morphine at a dose (2 micrograms) that caused only a moderate inhibition produced a supra-additive effect in significantly depressing spontaneous. A delta- and C-fiber-evoked ascending activity. The dose-response curve of depression by morphine alone of C-fiber-evoked activity (ED50 8 micrograms) is significantly shifted by clonidine to the left (ED50 0.9 microgram). Naloxone (0.2 mg/kg) injected intravenously did not affect the inhibition of ascending activity caused by clonidine at the highest dose (35 micrograms), but it reduced the depressant effect of combined i.t. administration of clonidine and morphine. The potentiation of the antinociceptive effects of clonidine and morphine given in combination are possibly due to actions of the two drugs at different sites between the nociceptive afferents and the neurons sending their axons to the brain.  相似文献   

8.
The effect of intrathecal (i.t.) vasoactive intestinal peptide (VIP) and an analogue of growth hormone releasing factor (GRF) with putative VIP antagonistic property, (Ac-Try1, D-Phe2)-GRF-(1-29), on the nociceptive flexor reflex was studied in decerebrate, spinalized, unanesthetized rats. VIP (10 pM) facilitated the flexor reflex for several minutes. A similar facilitation was induced by the VIP antagonist applied i.t. with a potency 15 times less than that of VIP. Pre-administration of the VIP antagonist dose-dependently antagonized the reflex facilitation by i.t. VIP. In contrast, the reflex facilitation induced by i.t. substance P, somatostatin, calcitonin gene-related peptide and galanin was not influenced by the VIP-antagonist. The VIP antagonist by itself did not depress the flexor reflex over the dose range of 3 pM-3 nM and neither did it block the facilitation of the flexor reflex induced by a brief conditioning electrical stimulus train that activated the C-afferents in skin innervated by the sural nerve. The present results indicate that this GRF analogue is an effective and specific VIP antagonist in the rat spinal cord. Furthermore, it is suggested that VIP may not be involved in the transmission of cutaneous nociceptive information under normal conditions.  相似文献   

9.
We have investigated the receptor subtype(s) mediating the noradrenergic inhibition of cerebellar Purkinje cell spontaneous firing rate using local application of specific agonists and antagonists, in situ, via pressure microejection. Extracellular action potentials were recorded from Purkinje neurons in anesthetized Fischer 344 rats. Timolol, a beta-receptor antagonist, did not affect norepinephrine (NE)-induced inhibition in 9 of 12 cells studied. Phentolamine, an alpha-receptor antagonist, blocked the effect of NE in 8 of 11 cells. To further determine the subtype of alpha-receptor involved, the effects of the alpha 1-antagonist prazosin and alpha 2-antagonists idazoxan and yohimbine were examined. While prazosin had no effect on NE-mediated inhibition, both idazoxan and yohimbine blocked NE effects. Idazoxan was also successful in blocking phencyclidine (PCP), an indirect noradrenergic agonist. The inhibitory action of NE upon Purkinje cell firing rate was mimicked by the selective alpha 2-agonist clonidine; this action of clonidine was blocked by idazoxan but not by timolol or prazosin. In addition, the alpha 1-adrenergic agonist phenylephrine and the beta-adrenergic agonist isoproterenol inhibited Purkinje cell firing rate. Phenylephrine effects were blocked by prazosin but not by timolol or idazoxan. Isoproterenol-induced inhibition was blocked by timolol but not phentolamine. Taken together, these studies suggest that both alpha- and beta-receptors alter Purkinje cell firing rate; the depressant action of locally applied NE, however, seems to be mediated primarily via an alpha 2-adrenergic receptor.  相似文献   

10.
Summary Morphine caused in the anaesthetized rat reduction in brain noradrenaline (NA) turnover, hypotension and bradycardia, similarly to the antihypertensive,-adrenergic agonist, clonidine. All effects of morphine were antagonized by naloxone, as well as the-receptor antagonist, yohimbine. In contrast, naloxone did not affect the circulatory depression and reduction in brain NA utilization by clonidine, which both previously have been found to be antagonized by yohimbine. In contrast to clonidine, morphine even in high doses did not facilitate the flexor reflex activity of acutely spinalized rats. Pretreatment with protriptylin largely attenuated the circulatory depressive effects of morphine, as it has previously been found to block the corresponding effects of clonidine. Thus, the morphine-induced cardiovascular depressive effects are primarily elicited by activation of opiate receptors. However, the inhibition of brain NA neurotransmission by morphine appears critically involved in the mediation of the circulatory depression.  相似文献   

11.
Hyperalgesia is a characteristic of inflammation and is mediated, in part, by an increase in the excitability of spinal neurons. Although substance P does not appear to mediate fast synaptic events that underlie nociception in the spinal cord, it may contribute to the hyperalgesia and increased excitability of spinal neurons during inflammation induced by complete Freund's adjuvant. We examined the role of endogenous substance P in changes in the excitability of spinal neurons during adjuvant-induced, peripheral inflammation by determining the effect of a selective NK1 receptor antagonist (RP67580) on the nociceptive flexor reflex in adult rats. Experiments were conducted 2 or 3 days after injection of adjuvant. Animals exhibited moderate thermal hyperalgesia at this time. The flexor reflex was evoked by electrical stimulation of the sural nerve and was recorded in the ipsilateral hamstring muscles. The flexor reflex ipsilateral to the inflamed hindpaw was enhanced approximately two-fold compared to the flexor reflex evoked in untreated animals as determined by the number of potentials and the duration of the reflex. The enhanced reflex in adjuvant-treated animals was most likely due to an increase in the excitability of spinal interneurons because short-latency activity in the hamstring muscles did not differ between untreated animals and adjuvant-treated animals following electrical stimulation of the L5 dorsal root or the nerve innervating the muscle with a stimulus that was 1.3–1.5 times the threshold for excitation of A-fibers. Intrathecal administration of RP67580 (2.3 and 6.8 nmol) attenuated the flexor reflex evoked in adjuvant-treated animals, but had no effect in untreated animals. Intravenous or intraplantar injection of RP67580 (6.8 nmol) did not affect the flexor reflex in adjuvant-treated animals indicating a spinal action of the drug following intrathecal administration. RP68651, the enantiomer of RP67580, was without effect at doses up to 6.8 nmol, indicating that the effects of comparable doses of RP67580 were due to an action of the drug at NK1 receptors. However, intrathecal administration of 23 nmol of both drugs attenuated the reflex in adjuvant-treated and control animals indicating that effects of RP67580 at this dose were not mediated entirely by its action at NK1 receptors. Overall, these data suggest that endogenous substance P has a role in the increased excitability of spinal interneurons observed during persistent inflammation and support the hypothesis that substance P released in the spinal cord contributes to the hyperalgesia that accompanies adjuvant-induced persistent, peripheral inflammation.  相似文献   

12.
Several researches have shown that the spinal reflex transmission in animals, as well as humans, was inhibited by alpha(2)-agonists, due to a disfacilitation of tonic noradrenergic control on motoneuronal output. To understand better the mechanisms regulating certain aspects of motor activity, here we reinvestigated the possible role of noradrenergic systems in modulating reflex activity of the brainstem in humans. To this aim, blink reflex responses (R1 and R2) evoked by electrical stimulation of the supraorbital nerve were electromyographically recorded in healthy volunteers. Both R1 and R2 areas were measured at 10-min intervals before and after i.v. injection of alpha(2)-agonist clonidine (0.5 microg/kg). The substance induced consistent depression of R1, which reached its maximum 40 min after drug administration (-43% of the control values). Ipsilateral R2 area resulted little affected by clonidine (-15% at 50 min), whereas no effects were observed in contralateral R2. Blood pressure values were never altered by drug injections. These results, taken together with previous observations, support the hypothesis that alpha(2)-agonist substances may cause a transient inactivation of noradrenergic neurons, thus releasing neurons involved in the circuitry of the blink reflex from a facilitatory drive. Since clonidine differentially modulated blink reflex responses, it is likely to assume that such a disfacilitation concerns mostly pontine units mediating the R1. However, the complexity of clonidine's effects at multiple pre- and postsynaptic sites does not allow us to exclude that other systems are involved in the alpha(2)-mediated control of facial motoneurons.  相似文献   

13.
The effects of 3 phosphodiesterase inhibitors, aminophylline, isobutylmethylxanthine (IBMX), and RO 20-1724, were tested on descending intraspinal and spinal reflex transmission to sympathetic preganglionic neurons in unanesthetized spinal cats. Sympathetic discharges, recorded from upper thoracic preganglionic white rami, were evoked by stimulation (0.1 Hz) of descending excitatory pathways in the cervical dorsolateral funiculus (intraspinal) or of adjacent intercostal nerves (spinal reflex). Each phosphodiesterase rapidly and markedly enhanced transmission through intraspinal pathways but only slowly and modestly enhanced transmission through spinal reflex pathways. Pretreatment with a methyltyrosine-reserpine combination, chlorpromazine, or prazosin markedly restricted the enhancement of intraspinal transmission by IBMX to levels typically produced on spinal reflex pathways. Clonidine markedly depressed transmission through both pathways and prevented enhancement by the phosphodiesterase inhibitors. Yohimbine or tolazoline antagonized the depressant effects of clonidine and restored the ability of the phosphodiesterase inhibitors to enhance transmission. Somatic spinal reflexes were not affected by the phosphodiesterase inhibitors. The results suggest that descending norepinephrine pathways to sympathetic preganglionic neurons activate adenylate cyclase to generate cyclic AMP which increases neuronal excitability, possibly by phosphorylating membrane proteins. Clonidine appears to depress neuronal excitability by inhibiting adenylate cyclase through activation of alpha 2-adrenergic receptors.  相似文献   

14.
Summary Spinal rats and rats with an intact neuraxis received an intrathecal injection of an enantiomer of baclofen. TheR-enantiomer was 100–1000 times more potent than its antipode in inhibiting the tail-flick reflex, both in intact rats and in spinal rats. Spinalization enhanced the inhibitory effects of both enantiomers without altering their dose-response relations. The findings show that baclofen enantiomers have direct actions on stereoselective spinal mechanisms and that spinalization fails to alter the stereoselectivity of spinal mechanisms towards the enantiomers.  相似文献   

15.
Within one day after spinal transection, the antinociceptive effect of systemically administered morphine on the spinal withdrawal reflex is significantly reduced. This observation has provided important empirical support for the present model of opiate-induced analgesia. One prediction from this model is that the antinociceptive effect of intrathecal (spinal) morphine injections should not be reduced by spinalization. When examined experimentally, this prediction was not supported; the antinociceptive effect of intrathecally administered morphine was significantly enhanced after acute spinalization. This result suggested an alternate hypothesis of morphine-induced analgesia. One prediction from this new hypothesis is that the decreased behavioral response to systemic morphine in spinal rats is due to a decrease in the spinal concentration of morphine produced by spinal transection. To test this prediction separate groups of intact rats and acute (one day) spinal rats, were assessed with the tail-flick (TF) procedure 60 min after subcutaneous injection of various doses of morphine (0.75, 1.5, 3.0, 4.5, 6.0 or 9.0 mg/kg) or at different time points (30, 60, 90, 150 or 240 min) after a single injection of 9.0 mg/kg. Immediately after behavioral testing, the rats were killed and brains, spinal cords and blood samples were collected and subsequently analyzed with a morphine radioimmunoassay. The results show that the concentration of morphine in the brain and spinal cords of acute spinal rats is significantly lower than that of intact rats, whereas morphine levels in the blood do not differ. These data suggest that the decreased antinociceptive effect of subcutaneous morphine in acute rats is due to a decrease in the concentration of the opiate in the central nervous system.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The interaction between FLFQPQRFamide and alpha 2-adrenergic spinal antinociception was examined in an electrophysiological study in the intact anaesthetised rat. The inhibition of C fibre-evoked neuronal responses by the selective alpha 2-adrenergic agonist dexmedetomidine was significantly reduced by intrathecal FLFQPQRFamide pretreatment. The results suggest a modulatory role of FLFQPQRFamide in spinal alpha 2-adrenergic antinociception.  相似文献   

17.
We have examined the effects of intrathecal (i.t.) administration of [Leu31,Pro34]-neuropeptide Y (NPY) or NPY-(13–36), selective agonists of NPY Y1 or Y2 receptors, respectively, on the excitability of the flexor reflex in normal rats and after unilateral transection of the sciatic nerve. In rats with intact and sectioned sciatic nerves, i.t. [Leu31,Pro34]-NPY induced a similar biphasic effect on the flexor reflex with facilitation at low doses and facilitation followed by depression at high doses. In contrast, i.t. NPY-(13–36) only facilitated the flexor reflex in normal rats, and at high dose it caused ongoing discharges in the electromyogram. NPY-(13–36) caused dose-dependent depression of the flexor reflex in rats after sciatic nerve transection, in addition to its facilitatory effect. Topical application of [Leu31,Pro34]-NPY or NPY-(13–36) caused a moderate and brief reduction in spinal cord blood flow. No difference was noted between the vasoconstrictive effect of [Leu31,Pro34]-NPY and NPY-(13–36). It is suggested that activation of Y1 receptors may be primarily responsible for the reflex depressive effect of i.t. neuropeptide Y in rats with intact sciatic nerves, whereas both Y1 and Y2 receptors may be involved in mediating the depressive effect of NPY after axotomy.  相似文献   

18.
The effects on cardiovascular functions of noxious stimulation to the orofacial areas innervated by trigeminal afferent nerves were analyzed in urethane-anesthetized, spinal cord-intact rats and in rats acutely spinalized at the second cervical level. In the spinal cord-intact rats, pinching of the upper lip produced increases in both heart rate (HR) and mean arterial pressure (MAP). Both responses were considered to be due to activation of sympathetic efferent nerves to the cardiovascular organs. Both responses were attenuated but did not disappear after spinalization at the C2 level. In spinalized rats, sympathetic preganglionic neurons emerging from the thoracolumbar spinal cord could not receive any neural influences from the brain. The HR response in the spinal rats was abolished after either bilateral vagotomy or intravenous injection of a peripherally acting muscarinic cholinergic receptor antagonist, methylatropine. This suggests that the increase in HR was elicited via vagal cholinergic efferent fibers, probably by decreasing tonic activity of vagus nerves to the heart. In spinal rats, neither vagotomy nor cholinergic blockade affected the increase in MAP, but i.v. injection of the vasopressin V1 receptor antagonist, OPC-21268, abolished the response of MAP. This suggests that the response of MAP was due to peripheral vasoconstriction elicited by vasopressin secreted from the posterior pituitary lobe. The present study demonstrated that, in rats acutely spinalized at the C2 level, noxious stimulation of orofacial areas innervated by the trigeminal nerve could produce reflex increases both in HR, by decreasing cholinergic vagal nerve activity to the heart, and blood pressure, by secreting vasopressin from the pituitary gland, even though sympathetic efferent innervation to the cardiovascular organs could not be directly affected by trigeminal afferent nerve excitation.  相似文献   

19.
Xu Z  Chen SR  Eisenach J  Pan HL 《Brain research》2000,861(2):95-398
Intrathecal administration of alpha(2) adrenergic agonists, such as clonidine, is capable of alleviating neuropathic pain. Recent studies suggest that spinal nitric oxide (NO) mediates the analgesic effect of intrathecal clonidine. Furthermore, compared to nicotinic receptors, spinal muscarinic receptors play a greater role in the analgesic effect of intrathecal clonidine. In the present study, we tested a hypothesis that clonidine-evoked NO release is dependent primarily on muscarinic receptors in the spinal cord after nerve injury. A rat model of neuropathic pain was induced by ligation of the left L(5)/L(6) spinal nerves. Using an in vitro spinal cord perfusion preparation, the effect of muscarinic and nicotinic receptor antagonists on clonidine-evoked nitrite (a stable product of NO) release was determined. Both muscarinic and nicotinic antagonists dose-dependently attenuated clonidine-elicited nitrite release. In spinal cords from the neuropathic rats, the inhibitory effect of muscarinic receptor antagonists (atropine and scopolamine) on clonidine-elicited nitrite release was more potent than that of nicotinic receptor antagonists (mecamylamine and hexamethonium). However, in spinal cords obtained from sham animals, the inhibitory effect of muscarinic and nicotinic antagonists did not differ significantly. These results indicate that muscarinic, as well as nicotinic, receptors mediate clonidine-induced NO release in the spinal cord. These data also suggest that after nerve injury, the cascade of activation of alpha(2) adrenergic receptors-muscarinic receptors-NO in the spinal cord likely plays a predominant role in the analgesic effect of intrathecal clonidine on neuropathic pain.  相似文献   

20.
Neuroendocrine effects of intravenous injections of clonidine, 0.15 mg, were investigated in 13 heroin addicts and 14 normal control subjects. The study was designed to determine whether continuous opiate administration leads to the development of hypersensitive alpha 2-adrenergic receptors. The peak increments in levels of plasma growth hormone (GH) and beta-endorphin induced by clonidine did not differ between heroin addicts and normal control subjects. At no time interval could the clonidine-induced rise in GH levels in addicts be differentiated from that induced by placebo. Clonidine failed to alter plasma prolactin, gonadotropin, or thyrotropin levels in either heroin addicts or controls. Since clonidine's neuroendocrine effects are reportedly due to the activation of postsynaptic alpha 2-adrenoceptors, it appears that (1) continuous opiate use does not lead to the development of hypersensitive alpha 2-adrenergic receptors involved in neuroendocrine mechanisms and (2) brain norepinephrine does not play a role in the regulation of tonic prolactin, gonadotropin, and thyrotropin secretion in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号