首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sulfation is an important metabolic pathway in humans for xenobiotics, hormones and neurotransmitters, and is catalysed by the cytosolic sulfotransferase (SULT) enzymes. Phenol SULTs, especially SULT1A1, are particularly important in xenobiotic and drug metabolism because of their broad substrate specificity and extensive tissue distribution. A common variant SULT1A1 allozyme (SULT1A1*2) exists in the population, and is less stable than the wild-type SULT1A1*1. 4-Nitrophenol is widely used as a substrate for quantifying SULT1A1 activity. However, our kinetic experiments suggest that 4-nitrophenol is not an ideal substrate when determining SULT1A1 activity in human liver. Assays with a bank of 68 human liver cytosols revealed three distinct kinetic profiles for 4-nitrophenol sulfation in the population: linear, biphasic and inhibition. Sulfation of 4-nitrophenol by purified, recombinant SULT1A1*1 and SULT1A1*2 shows marked substrate inhibition, with inhibition at 4-nitrophenol concentrations greater than 4 and 10 microM, respectively. Furthermore, sulfation of 4-nitrophenol by purified recombinant SULT1B1 was significant at concentrations of 4-nitrophenol less than 10 microM. Western blots showed that the SULT1A1 levels in liver are highly variable between liver samples and that no correlation was observed between SULT1A1 activity and protein level in liver cytosols. However, a correlation between SULT1A1 activity and protein level was observed in human placental cytosols, where SULT1B1 is not expressed. We believe that in human liver other SULT isoforms (particularly SULT1B1) contribute to the sulfation of 4-nitrophenol. Therefore, 4-nitrophenol is not an ideal substrate with which to quantitate SULT1A1 activity in human liver tissue.  相似文献   

2.
Sulfation, catalysed by members of the cytosolic sulfotransferase (SULT) enzyme family, is important in xenobiotic detoxification and in the biosynthesis and homeostasis of many hormones and neurotransmitters. The major human phenol sulfotransferase SULT1A1 plays a key role in chemical defence, is widely expressed in the body and is subject to a common polymorphism that results in reduced protein levels. Study of these enzymes in vitro requires robust probe substrates, and we have previously shown measurement of activity with the widely used SULT1A1 substrate, 4-nitrophenol, does not accurately reflect protein expression. Additionally, the high degree of substrate inhibition observed with this compound further reduces its value as a probe for SULT1A1. Here we show that 2-aminophenol is a more suitable probe substrate for quantifying SULT1A1 activity in human liver. This compound is sulfated at a high rate (V(max) with purified recombinant SULT1A1=121nmol/(minmg) and shows strong affinity for the enzyme (K(m) with purified recombinant SULT1A1=9microM) and, importantly, is a very poor substrate for the other major SULT1 enzyme expressed in liver, SULT1B1 (with V(max) and K(m) values of 17nmol/(minmg) and 114microM, respectively). Experiments with purified recombinant human SULTs and a panel of 28 human liver cytosols demonstrated that 2-aminophenol shows limited substrate inhibition with SULT1A1, and V(max) values measured in liver cytosols correlated strongly with SULT1A1 enzyme protein levels measured by a quantitative immunoblot method. We therefore suggest that 2-aminophenol is a suitable substrate to use for quantifying SULT1A1 enzyme activity.  相似文献   

3.
4.
The current study was designed to examine the role of sulfation in the metabolism of cigarette smoke toxicants and clarify whether these toxicants, by serving as substrates for the cytosolic sulfotransferases (SULTs), may interfere with the sulfation of key endogenous compounds. By metabolic labeling, [(35)S]sulfated species were found to be generated and released into the media of HepG2 human hepatoma cells and primary human lung endothelial cells labeled with [(35)S]sulfate in the presence of cigarette smoke extract (CSE). Concomitantly, several [(35)S]sulfated metabolites observed in the medium in the absence of CSE either decreased or disappeared. Eleven previously prepared human cytosolic SULTs were tested for sulfating activity with CSE and known cigarette smoke toxicants as substrates. Activity data revealed SULT1A1, SULT1A2, SULT1A3, and SULT1C#2 as major enzymes responsible for their sulfation. To examine their inhibitory effects on the sulfation of 17beta-estradiol by SULT1A1, enzymatic assays were performed in the presence of three representative toxicant compounds, namely N-hydroxy-4-aminobiphenyl (N-OH-4-ABP), 4-aminobiphenyl (4-ABP) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). IC(50) values determined for the sulfation of 17beta-estradiol by SULT1A1 were 11.8 microM, 28.2 microM, and 500 microM, respectively, for N-OH-4-ABP, 4-ABP and PhIP. Kinetic analyses indicated that the mechanism underlying the inhibition of 17beta-estradiol sulfation by these cigarette smoke toxicants is of a mixed competitive-noncompetitive type. Metabolic labeling experiments clearly showed inhibition of the production of [(35)S]sulfated 17beta-estradiol by N-OH-4-ABP in a concentration-dependent manner in HepG2 cells. Taken together, these results suggest that sulfation plays a significant role in the metabolism of cigarette smoke compounds. By serving as substrates for SULTs, cigarette smoke toxicants may interfere with the metabolism of 17beta-estradiol and other endogenous compounds.  相似文献   

5.
Lash LH  Putt DA  Cai H 《Toxicology》2008,244(1):56-65
We previously catalogued expression and activity of organic anion and cation, amino acid, and peptide transporters in primary cultures of human proximal tubular (hPT) cells to establish them as a cellular model to study drug transport in the human kidney [Lash, L.H., Putt, D.A., Cai, H., 2006. Membrane transport function in primary cultures of human proximal tubular cells. Toxicology 228, 200-218]. Here, we extend our analysis to drug metabolism enzymes. Expression of 11 cytochrome P450 (CYP) enzymes was determined with specific antibodies. CYP1B1, CYP3A4, and CYP4A11 were the only CYP enzymes readily detected in total cell extracts. These same CYP enzymes, as well as CYP3A5 and possibly CYP2D6, were detected in microsomes from confluent hPT cells, although expression levels varied among kidney samples. In agreement with Western blot data, only activity of CYP3A4/5 was detected among the enzyme activities measured. Expression of all three glutathione S-transferases (GSTs) known to be found in hPT cells, GSTA, GSTP, and GSTT, was readily detected. Variable expression of three sulfotransferases (SULTs), SULT1A3, SULT1E, and SULT2A1, and three UDP-glucuronosyltransferases (UGTs), UGT1A1, UGT1A6, and UGT2B7, was also detected. When examined over the course of cell growth to confluence, expression of all enzymes was generally maintained at readily measurable levels, although they were often lower than in fresh tissue. These results indicate that primary cultures of hPT cells possess significant capacity to metabolize many classes of drugs, and can be used as an effective model to study drug metabolism.  相似文献   

6.
Abstract

1.?Cattle are an important component of the human food chain. Drugs used either legally or illegally in cattle may therefore enter the food chain and it is thus important to understand pathways of drug metabolism in this species, including sulfation catalyzed by the sulfotransferases (SULTs).

2.?In this study, we have analyzed the sulfation of 4-nitrophenol and other compounds in male and female bovine liver and characterized recombinant bovine SULT isoforms 1A1 and 1B1 expressed in Escherichia coli.

3.?We found that, in contrast to most other mammalian species, the major phenol sulfotransferase SULT1A1 is not expressed in bovine liver. Rather SULT1B1 seems to be a major form in both male and female bovine liver.

4.?We also identified kinetic differences between bovine and human SULT1A1 and, using the human SULT1A1 crystal structure, identified two amino acid positions in the active site of bovine SULT1A1 (Ile89Val and Phe247Val) that may be responsible for these differences.  相似文献   

7.
8.
栀子主要药效成分京尼平具有明显的肝毒性,限制了京尼平以及栀子的应用和开发。本文主要以人源性Hepa RG肝细胞为研究对象,基于肝脏主要代谢解毒酶CYP3A4、SULT2A1和UGT1A1探究介导京尼平代谢解毒的具体路径。结果表明, CYP3A4、SULT2A1和UGT1A1协同介导了京尼平于肝脏的代谢解毒,且CYP3A4是起决定因素的限速酶;其最主要代谢解毒路径为:CYP3A4-SULT2A1/UGT1A1,即:京尼平进入肝细胞后,首先经CYP3A4代谢为毒性减轻的I相代谢产物,再经II相代谢酶SULT2A21和UGT1A1代谢为毒性进一步减轻的代谢产物。本研究的结果初步阐明了京尼平的肝代谢解毒路径,为今后京尼平及栀子的合理使用及研发提供了依据,也为将来京尼平以及中药栀子和含栀子的中药组方配伍解毒的研究奠定了基础。  相似文献   

9.
The oxidative metabolism of 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT), a tryptamine-type designer drug, was studied using rat liver microsomal fractions and recombinant cytochrome P450 (CYP) enzymes. 5-MeO-DIPT was biotransformed mainly into a side-chain N-deisopropylated metabolite and partially into an aromatic ring O-demethylated metabolite in liver microsomal fractions from untreated rats of both sexes. This metabolic profile is different from our previous findings in human liver microsomal fractions, in which the aromatic ring O-demethylation was the major pathway whereas the side-chain N-deisopropylation was minor [Narimatsu S, Yonemoto R, Saito K, Takaya K, Kumamoto T, Ishikawa T, et al. Oxidative metabolism of 5-methoxy-N,N-diisopropyltryptamine (Foxy) by human liver microsomes and recombinant cytochrome P450 enzymes. Biochem Pharmacol 2006;71:1377-85]. Kinetic and inhibition studies indicated that the side-chain N-dealkylation is mediated by CYP2C11 and CYP3A2, whereas the aromatic ring O-demethylation is mediated by CYP2D2 and CYP2C6 in untreated male rats. Pretreatment of male rats with beta-naphthoflavone (BNF) produced an aromatic ring 6-hydroxylated metabolite. Recombinant rat and human CYP1A1 efficiently catalyzed 5-MeO-DIPT 6-hydroxylation under the conditions used. These results provide valuable information on the metabolic fate of 5-MeO-DIPT in rats that can be used in the toxicological study of this designer drug.  相似文献   

10.
We examined the effects of amiloride derivatives, especially 5-(N-ethyl-N-isopropyl)amiloride (EIPA), on the activity of cytochrome P450 (CYP) 1 isoforms, known to metabolize carcinogenic polycyclic aromatic hydrocarbons (PAHs), such as benzo(a)pyrene (BP), into mutagenic metabolites and whose cellular expression can be induced through interaction of PAHs with the arylhydrocarbon receptor. EIPA was found to cause a potent and dose-dependent inhibition of CYP1-related ethoxyresorufine O-deethylase (EROD) activity in both liver cells and microsomes. It also markedly reduced activity of human recombinant CYP1A1 enzyme through a competitive mechanism; activities of other human CYP1 isoforms, i.e. CYP1A2 and CYP1B1, were also decreased. However, EIPA did not affect BP-mediated induction of CYP1A1 mRNA and protein levels in rat liver cells, likely indicating that EIPA does not block activation of the arylhydrocarbon receptor by PAHs. Inhibition of CYP1 activity by EIPA was associated with a decreased metabolism of BP, a reduced formation of BP-derived DNA adducts and a diminished BP-induced apoptosis in liver cells. The present data suggest that amiloride derivatives, such as EIPA, may be useful for preventing toxicity of chemical carcinogens, such as PAHs, through inhibition of CYP1 enzyme activity.  相似文献   

11.
CYP2A enzymes are responsible for nicotine metabolism and for activating tobacco-related carcinogens. Inhibition of CYP2A is a promising approach in chemoprevention, which could lead to a decrease in cigarette consumption and to a reduction in tobacco-related cancer risk. 8-Methoxypsoralen (8-MOP) is a mechanism-based inhibitor of human CYP2A6 and CYP2A13. 8-MOP is also an inhibitor of Cyp2a5, but the mode of this inhibition is unknown. There is no published data on the inhibition of CYP2A3 by 8-MOP. The objective of this work was to investigate the characteristics of 8-MOP inhibition on mouse hepatic Cyp2a5 and rat nasal CYP2A3, in order to determine the best experimental model for chemoprevention studies using 8-MOP. The results show that 8-MOP inhibits CYP2a5 through three different mechanisms: competitive, non-competitive (K(iu)=1.7 microM), and mechanism-based (K(inactivation) of 0.17 min(-1)). By contrast, 8-MOP was able to inhibit CYP2A3-mediated coumarin 7-hydroxylase only in a non-competitive way (K(iu)=0.22 microM). In conclusion, we showed that 8-MOP inhibits Cyp2a5 and CYP2A3 through different mechanisms.  相似文献   

12.
The aim of the present study was to estimate the relative contribution of rat P450 isoforms to the metabolism of caffeine and to assess the usefulness of caffeine as a marker substance for estimating the activity of P450 in rat liver and its potential for pharmacokinetic interactions in pharmacological experiments. The results obtained using rat cDNA-expressed P450s indicated that 8-hydroxylation was the main oxidation pathway of caffeine (70%) in the rat. CYP1A2 was found to be a key enzyme catalyzing 8-hydroxylation (72%) and substantially contributing to 3-N-demethylation (47%) and 1-N-demethylation (37.5%) at a caffeine concentration of 0.1mM (relevant to "the maximum therapeutic concentration in humans"). Furthermore, CYP2C11 considerably contributed to 3-N-demethylation (31%). The CYP2C subfamily (66%) - mainly CYP2C6 (27%) and CYP2C11 (29%) - played a major role in catalyzing 7-N-demethylation. At higher substrate concentrations, the contribution of CYP1A2 to the metabolism of caffeine decreased in favor of CYP2C11 (N-demethylations) and CYP3A2 (mainly 8-hydroxylation). The obtained results were confirmed with liver microsomes (inhibition and correlation studies). Therefore, caffeine may be used as a marker substance for assessing the activity of CYP1A2 in rats, using 8-hydroxylation (but not 3-N-demethylation-like in humans); moreover, caffeine may also be used to simultaneously, preliminarily estimate the activity of CYP2C using 7-N-demethylation as a marker reaction. Hence caffeine pharmacokinetics in rats may be changed by drugs affecting the activity of CYP1A2 and/or CYP2C, e.g. by some antidepressants.  相似文献   

13.
This study was aimed at identifying the isoform(s) of human liver cytochrome P450 (CYP) involved in the hepatic biotransformation of trans-resveratrol (trans-3,5,4'-trihydroxystilbene). Trans-resveratrol metabolism was found to yield two major metabolites, piceatannol (3,5,3',4'-tetrahydroxystilbene) and another tetrahydroxystilbene named M1. Trans-resveratrol was hydroxylated to give piceatannol and M1 with apparent K(m) of 21 and 31 microM, respectively. Metabolic rates were in the range 14-101 pmol min(-1) mg(-1) protein for piceatannol and 29-161 pmol min(-1) mg(-1) protein for M1 in the 13 human liver microsomes tested. Using microsomal preparations from different human liver samples, piceatannol and M1 formation significantly correlated with ethoxy-resorufin-O-deethylation (r(2) = 0.84 and 0.88, respectively), phenacetin-O-deethylation (r(2) = 0.92 and 0.94) and immuno-quantified CYP1A2 (r(2) = 0.85 and 0.90). Formation of these metabolites was markedly inhibited by alpha-naphthoflavone and furafylline, two inhibitors of CYP1A2. Antibodies raised against CYP1A2 also inhibited the biotransformation of trans-resveratrol. In addition, the metabolism of trans-resveratrol into these two metabolites was catalyzed by recombinant human CYP1A1, CYP1A2 and CYP1B1. Our results provide evidence that in human liver, CYP1A2 plays a major role in the metabolism of trans-resveratrol into piceatannol and tetrahydroxystilbene M1.  相似文献   

14.
Sulfotransferases (SULTs) are important phase II drug‐metabolizing enzymes. Regulation of SULTs by hormones and other endogenous molecules is relatively well understood, while xenobiotic induction of SULTs is not well studied. Caffeine is one of the most widely consumed psychoactive substances. However, SULT regulation by caffeine has not been reported. In this report, male and female rats were treated with different oral doses of caffeine (2, 10, 50 mg kg?1 per day) for 7 days. Western blot and real‐time RT‐PCR were used to investigate the changes in SULT protein and mRNA expression following the caffeine treatment. Caffeine induced both rat aryl sulfotransferase (rSULT1A1, AST‐IV) and rat hydroxysteroid sulfotransferase (rSULT2A1, STa) in the liver and intestine of female rats in a dose‐dependent manner. Caffeine induction of rSULT1A1 and rSULT2A1 in the female rat intestine was much stronger than that in the liver. Although caffeine induced rSULT1A1 significantly in the male rat liver, it did not significantly induce rSULT2A1. In male rat intestine, caffeine significantly induced rSULT2A1. The different SULTs induction patterns in male and female rats suggest that the regulation of rat SULTs by caffeine may be affected by different hormone secretion patterns and levels. Our results suggest that consumption of caffeine can induce drug metabolizing SULTs in drug detoxification tissues. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Astaxanthin (Ax), a xanthophyll carotenoid, is reported to induce cytochrome P450 (CYP) 1A-dependent activity. CYP1A is one of the most important enzymes participating in phase I metabolism for chemicals, and it can activate various mutagens. To investigate the effect of Ax on the metabolic activation of a typical promutagen, benzo[a]pyrene by CYP1A, we orally administrated Ax-containing oil (100 mg Ax/kg body weight/day for 3 days) to male Wistar rats. In the treated rat liver, expression of CYP1A1 mRNA, protein, and its activity were significantly increased (5.5-, 8.5-, and 2.5-fold, respectively). In contrast, the activities of phase II enzymes (glutathione S-transferase and glucuronosyl-transferase) were not modulated by Ax-containing oil. As a consequence, the mutagenicity of benzo[a]pyrene was more enhanced in Ax-treated rats, compared with controls in the Ames assay. On the other hand, NADPH P450 reductase activity was decreased in liver microsomes from the treated group. This result suggests the possibility that Ax inhibits the electron supply necessary for CYP catalytic activities and decreases CYP1A activity indirectly. In conclusion, Ax-containing oil intake can alter CYP1A-dependent activities through two different mechanisms: (1) induction of CYP1A1 mRNA, protein expression, and activity; and (2) inhibition of the electron supply for the enzyme.  相似文献   

16.
1.?TAK-438, vonoprazan fumarate, is a novel orally active potassium-competitive acid blocker, developed as an antisecretory drug. In this study, we investigated the in vitro metabolism of 14C-labeled TAK-438. In human hepatocytes, M-I, M-II, M-III and M-IV-Sul were mainly formed, and these were also detected in clinical studies. N-demethylated TAK-438 was also formed as an in vitro specific metabolite. Furthermore, CYP3A4 mainly contributed to the metabolism of TAK-438 to M-I, M-III, and N-demethylated TAK-438, and CYP2B6, CYP2C19 and CYP2D6 partly catalyzed the metabolism of TAK-438. The sulfate conjugation by SULT2A1 also contributed to the metabolism of TAK-438 to form TAK-438 N-sulfate, and CYP2C9 mediated the formation of M-IV-Sul from TAK-438 N-sulfate. The metabolite M-IV, which could be another possible intermediate in the formation of M-IV-Sul, was not observed as a primary metabolite of TAK-438 in any of the in vitro studies.

2.?In conclusion, TAK-438 was primarily metabolized by multiple metabolizing enzymes including CYP3A4, CYP2B6, CYP2C19, CYP2D6, and a non-CYP enzyme SULT2A1, and the influence of the CYP2C19 genotype status on gastric acid suppression post TAK-438 dosing could be small. The multiple metabolic pathways could also minimize the effects of co-administrated CYP inhibitors or inducers on the pharmacokinetics of TAK-438.  相似文献   

17.
Veratramine, a steroidal alkaloid originating from Veratrum nigrum L., has demonstrated distinct anti‐tumor and anti‐hypertension effects, however, its metabolism has rarely been explored. The objective of the current study was to provide a comprehensive investigation of its metabolic pathways. The in vitro metabolic profiles of veratramine were evaluated by incubating it with liver microsomes and cytosols. The in vivo metabolic profiles in plasma, bile, urine and feces were monitored by UPLC‐MS/MS after oral (20 mg/kg) and i.v. (50 µg/kg) administration in rats. Meanwhile, related P450s inhibitors and recombinant P450s and SULTs were used to identify the isozymes responsible for its metabolism. Eleven metabolites of veratramine, including seven hydroxylated, two sulfated and two glucuronidated metabolites, were characterized. Unlike most alkaloids, the major reactive sites of veratramine were on ring A and B instead of on the amine moiety. CYP2D6 was the major isozyme mediating hydroxylation, and substrate inhibition was observed with a Vmax, Ki and Clint of 2.05 ± 0.53 nmol/min/mg, 33.08 ± 10.13 µ m and 13.58 ± 1.27 µL/min/mg. SULT2A1, with Km, Vmax and Clint values of 19.37 ± 0.87 µ m , 1.51 ± 0.02 nmol/min/mg and 78.19 ± 8.57 µL/min/mg, was identified as the major isozyme contributing to its sulfation. In conclusion, CYP2D6 and SULT2A1 mediating hydroxylation and sulfation were identified as the major biotransformation for veratramine. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We cloned a cDNA encoding a novel CYP2C enzyme, called P450 M-2C, from a marmoset liver. The deduced amino acid sequence showed high identities to those of human CYP2C8 (87%), CYP2C9 (78%) and CYP2C19 (77%). The P450 M-2C enzyme expressed in yeast cells catalyzed p-methylhydroxylation of only tolbutamide among four substrates tested, paclitaxel as a CYP2C8 substrate, diclofenac and tolbutamide as CYP2C9 substrates and S-mephenytoin as a CYP2C19 substrate. p-Methylhydroxylation of tolbutamide by marmoset liver microsomes showed monophasic kinetics, and the apparent K(m) value (1.2 mM) for the substrate was similar to that of the recombinant P450 M-2C (1.8 mM). Although all of the recombinant human CYP2C8, CYP2C9 and CYP2C19 expressed in yeast cells catalyzed tolbutamide p-methylhydroxylation, the kinetic profile of CYP2C8 was most similar to that of P450 M-2C. Tolbutamide oxidation by the marmoset liver microsomes and the recombinant P450 M-2C was inhibited most effectively by quercetin, a CYP2C8 inhibitor, followed by omeprazole, a CYP2C19 inhibitor, whereas sulfaphenazole, a CYP2C9 inhibitor, was less potent under the conditions used. These results indicate that P450 M-2C is the major tolbutamide p-methylhydroxylase in the marmoset liver.  相似文献   

19.
20.
目的 试从mRNA表达水平阐明地非三唑对鼠肝微粒体中细胞色素P450 CYP1A1/2的诱导机制。方法 给SD大鼠腹腔注射地非三唑,采用Trizol法提取大鼠肝脏RNA,用RT-PCR测定经地非三唑处理1, 2及4 d的鼠肝中细胞色素P450 CYP1A1, CYP1A2 mRNA的表达水平。结果 地非三唑处理不同时间的鼠肝细胞中细胞色素P450 CYP1A1, CYP1A2 mRNA的表达水平比空白对照组明显增加,空白对照组CYP1A1吸光度比值为0.270±0.040, 诱导1, 2及4 d的吸光度比值分别为0.343±0.055, 0.417±0.045及0.603±0.083;空白对照组的CYP1A2吸光度比值为0.613±0.189, 而诱导1,2及4 d的吸光度比值分别为1.510±0.226, 3.057±0.518及4.120±0.458。随着诱导时间的增加,细胞色素P450 CYP1A1及CYP1A2 mRNA的表达也逐步增加,诱导时间与表达水平之间存在一定的线性关系,相关系数分别为0.9984和0.9563。结论 地非三唑对细胞色素P450 CYP1A1/2 mRNA表达具有诱导作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号